
Multimaterial Mesh-Based Surface Tracking

Fang Da⇤
Columbia University

Christopher Batty†
University of Waterloo

Eitan Grinspun‡

Columbia University

Figure 1: Two-Droplet Collision: Using our multimaterial mesh-based surface tracker, two immiscible liquid droplets with different materials
but identical physical properties impact symmetrically in zero gravity under strong surface tension. The collision merges the droplets so that
a new interface separates the two liquids, and a non-manifold triple-curve is created where the two liquids meet the ambient air.

Abstract

We present a triangle mesh-based technique for tracking the evolu-
tion of three-dimensional multimaterial interfaces undergoing com-
plex deformations. It is the first non-manifold triangle mesh track-
ing method to simultaneously maintain intersection-free meshes
and support the proposed broad set of multimaterial remeshing
and topological operations. We represent the interface as a non-
manifold triangle mesh with material labels assigned to each half-
face to distinguish volumetric regions. Starting from proposed
application-dependent vertex velocities, we deform the mesh, seek-
ing a non-intersecting, watertight solution. This goal necessitates
development of various collision-safe, label-aware non-manifold
mesh operations: multimaterial mesh improvement; T1 and T2 pro-
cesses, topological transitions arising in foam dynamics and multi-
phase flows; and multimaterial merging, in which a new interface is
created between colliding materials. We demonstrate the robustness
and effectiveness of our approach on a range of scenarios including
geometric flows and multiphase fluid animation.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation;

Keywords: surface tracking, topology change, multimaterial
flows, nonmanifold meshes

Links: DL PDF WEB VIDEO CODE

⇤e-mail:fang@cs.columbia.edu
†e-mail:christopher.batty@uwaterloo.ca
‡e-mail:eitan@cs.columbia.edu

1 Introduction

Mesh-based surface tracking iteratively advances a triangle mesh
to capture the temporal evolution of dynamic interfaces. Such in-
terfaces, often employed in fluid animation and geometric model-
ing, separate distinct materials that are deforming and undergoing
topology changes. Mesh-based approaches have been touted for
their ability to preserve volume, mesh-scale detail, and sharp fea-
tures [Wojtan et al. 2011], and robust strategies have been proposed
to perform topological merging and splitting: Boolean-like geomet-
ric operations [Campen and Kobbelt 2010], hybrid implicit/explicit
approaches [Müller 2009; Wojtan et al. 2009], and local zipper-
ing/pinching combined with robust collision resolution [Brochu and
Bridson 2009]. These approaches are restricted to interfaces sepa-
rating exactly two material regions: an exterior and an interior.

Less explored in the graphics literature are multimaterial mesh in-
terfaces, separating multiple distinct materials. This introduces
non-manifold triple- and higher-order junctions, expanding the
space of possible mesh entanglements, giving rise to new topologi-
cal operations, and opening a rich space of research problems.

Stepping into the multimaterial setting, we address a suite of non-
manifold mesh operations: (1) merging of like materials, (2) split-
ting, (3) mesh improvement, (4) merging of different materials, and
the so-called (5) T1 and (6) T2 processes of foam dynamics [Weaire
and Hutzler 2001]. Operations (4)–(6), which arise only for multi-
material cases, will be the focus of our discussion.

We build on past work that addresses subsets of our goal. Multi-
material codes exist that support some of these operations, but they
ignore collisions. Those collision-aware codes noted above are lim-
ited to manifold meshes. Alas, staggering or gluing available codes
does not offer the best of both worlds; it is unclear how to adapt
known multimaterial operations for collision-safety. Furthermore,
merging in multimaterial settings—an outcome of considering both
collisions and non-manifold structure—has never been addressed.

To our knowledge, no triangle mesh-based surface tracking method
simultaneously preserves watertight intersection-free meshes, and
supports the above suite of operations. Our contribution is to
develop such a unified, robust, multimaterial mesh-based surface
tracking scheme, and demonstrate its effectiveness.

http://doi.acm.org/10.1145/2601097.26
http://portal.acm.org/ft_gateway.cfm?id=26&type=pdf
http://www.cs.columbia.edu/cg/multitracker/
http://www.cs.columbia.edu/cg/multitracker/multitracker.mp4
http://www.cs.columbia.edu/cg/multitracker/

2 Related Work

2.1 Multimaterial Surface Tracking Methods

Level set methods [Sethian 1999; Osher and Fedkiw 2002] are
usually extended to multimaterial settings by replacing the binary
sign of the distance field with an integer material label [Losasso
et al. 2006; Zheng et al. 2006; Kim 2010; Saye and Sethian 2012].
In some methods one signed distance field is used per region,
while other methods reduce storage and computational costs by
using a single unsigned distance field for all regions. Starinshak
et al. [2014] discuss one challenge specific to multimaterial level
set methods—overlaps or vacuums at the triple junctions—which
is typically corrected via projection. By contrast, our non-manifold
mesh-based approach explicitly tracks such triple-junctions, avoid-
ing vacuums/overlaps by construction. Previous work in mesh-
based surface tracking has explored trade-offs between explicit and
implicit approaches in the standard two-material setting (e.g., [Du
et al. 2006; Wojtan et al. 2009]).

Particle-based surface representations augment each particle
with a material label or color [Müller et al. 2005; Solenthaler and
Pajarola 2008], or assign material properties to particles directly.

Volume-of-fluid methods [Hirt and Nichols 1981] store a volume
fraction per cell, and their multimaterial generalizations store a
partition of unity (one fraction per material); various approaches
exist to reconstruct continuous interface geometry from this data
[Dyadechko and Shashkov 2008; Anderson et al. 2010].

Moving mesh or Lagrangian volumetric mesh methods [Quan
and Schmidt 2007; Pons and Boissonnat 2007a; Pons and Boisson-
nat 2007b; Quan et al. 2009; Misztal et al. 2012] assign material
labels to each volume element. For example, for a tetrahedraliza-
tion of space, the interface is the subset of triangular faces border-
ing two differently labeled tetrahedra. Several recent works address
mesh quality maintenance [Wicke et al. 2010; Clausen et al. 2013].

2.2 Triangle Meshes with Merging and Splitting

Mesh Surgery / Boolean Approaches. Topology changes are rec-
ognized as a challenge for surface mesh evolution, or “front track-
ing” [Glimm et al. 1998; Glimm et al. 2000]. Colliding surfaces en-
tangle and must be stitched via mesh surgery or Boolean(-like) op-
erations [Campen and Kobbelt 2010; Zaharescu et al. 2011; Bern-
stein and Wojtan 2013]. Existing two-phase solutions do not map
directly to the multimaterial setting, where new topological changes
arise. For instance, the collision of two different materials im-
mersed in a third requires that a separating interface be established;
this interface is not a component of any existing surface. Bern-
stein and Wojtan [2013] specifically highlight this limitation of their
method, noting that a broader set of fundamentally different topo-
logical operations may be required for some applications.

Hybrid Implicit Approaches sidestep the requisite mesh opera-
tions by converting colliding regions into implicit (e.g., Eulerian)
representations, either globally or locally, and then reconstructing
(e.g., via marching cubes) a new mesh [Glimm et al. 2000; Du et al.
2006; Bargteil et al. 2006; Müller 2009; Wojtan et al. 2009; Wo-
jtan et al. 2010]. In computational physics the best known is the
FronTier package [Du et al. 2006]. These methods rely on a binary
inside/outside classification, and a multimaterial extension appears
nontrivial.

Proximity-Based Merging locally stitches proximate meshes,
maintaining an intersection-free invariant via either conservative
bounds on time step [Stanculescu et al. 2011] or robust post-
collision processing [Brochu and Bridson 2009]. The reliance on

a kernel of simple, local mesh operations led us to extend this line
of work to multiple materials, building on El Topo [Brochu and
Bridson 2009].

2.3 Triangle Mesh-Based Multimaterial Techniques

Surface Evolver [Brakke 1992], a popular software package, is
a great source of inspiration for our work. The package uses an
evolving non-manifold triangle mesh to find equilibria for myriad
variational problems. It supports the foam and film-like topological
transformations arising in many multimaterial settings, known as
T1 and T2 processes (§4.4). We differ principally in (1) consider-
ing collisions, which induce new merging-type topology changes,
and (2) ensuring intersection-safety throughout, which is difficult
when topological transitions have special cases or affect large mesh
neighborhoods. We develop a new approach for T1 processes (§5)
that avoids special cases and, crucially, iteratively applies only a
single local vertex operation.

Surface Evolver and related approaches have been applied to foam
coarsening and grain growth problems in material sciences, for
which collisions are often unimportant [Weygand and Brechet
1999; Wakai et al. 2000; Kuprat et al. 2003; Mora et al. 2008; Syha
and Weygand 2010]. Most recently, Lazar et al. [2011] considered
large-scale simulations of up to 100,000 distinct grains. Authors in
graphics have also studied constant mean curvature surfaces using
related techniques [Pan et al. 2012]. In general, these methods do
not consider collision-induced merging or intersection-safety, and
apply topological operations with larger mesh stencils.

3 Multimaterial Mesh Representation

Two-material mesh-based methods rely on a binary inside/outside
classification of space. This classification may employ parity count-
ing of ray casts, which does not readily extend to multiple materials;
alternatively, it may employ a consistent orientation of mesh trian-
gles: each triangle’s vertex ordering and the right-hand rule define a
normal direction, which by convention points to the interior. If each
triangle is oriented consistently with its neighbors, and the mesh is
watertight and non-self-intersecting, we have a strict binary classi-
fication that enables safe topological operations.

The non-manifold setting requires n-ary material
classification, so mesh normals do not suffice. In-
stead, we follow previous authors [Brakke 1992;
Yuan et al. 2012] in giving each material a unique in-
teger label, and applying labels to the front and back
of each triangle (i.e., each half-face is labeled). In
this analogous 2D polygon example, colors indicate
labels. The top image shows the represented mate-
rial regions (including the “exterior” orange region),
while the bottom image shows the corresponding
mesh where edges each have two labels. This rep-
resentation does not require consistent triangle ori-
entation, even for triangle-pairs sharing a manifold
edge. Instead, it requires consistent material labels: all half-faces
bounding a closed region must be labeled identically. Maintaining
and exploiting this extended notion of mesh orientation allows us
to preserve watertight regions.

Throughout, the term region refers to a closed volume of space,
while material refers to a region’s type, indicated by its labels.
Thus, two regions may be composed of the same material, but a
region cannot consist of more than one material.

4 Method Overview

Beginning from an initially valid and non-self-intersecting multi-
material mesh, our overall approach proceeds as follows. The client
application proposes a set of vertex trajectories, which we process
with collision resolution techniques to recover an intersection-free
state. We then perform merging, mesh improvement, and splitting,
ensuring that each operation maintains intersection-safety. Algo-
rithm 1 lays out the structure of our method.

Algorithm 1 Multimaterial Mesh-Based Surface Tracking

Note: mesh is intersection-free after each checkmark (X)
while simulating do

Advance vertices to predicted positions (§4.1)
Resolve interpenetrations (§4.2) X
Perform topological merging (§7) X
Perform mesh improvement (§4.3) X
Perform topological separation (§5 and §6) X

end while

4.1 Computing Vertex Positions

We first ask the domain-application to advance the mesh vertices
to their proposed positions. A typical application will respond by
time-integrating a physical equation or geometric flow, but ulti-
mately we are agnostic to the source of the motion. The proposed
trajectory may induce mesh intersections.

4.2 Resolving Interpenetrations

Next, we perturb the proposed trajectory to a non-intersecting state.
We apply exact continuous collision detection (CCD) [Brochu et al.
2012], and resolve collisions using the method of Bridson et al.
[2002] as extended by Harmon et al. [2008]. Our enforcement of
an intersection-free invariant is crucial: subsequent steps rely on it
to ensure that remeshing and topology changes are performed safely
and successfully, following the general strategy of Brochu and Brid-
son [2009]. Beginning from the intersection-free state produced by
collision-resolution, every proposed edit to the mesh is checked for
collisions and canceled if any would be introduced. That is, in-
dividual mesh edits are treated as atomic operations that either
complete in full or are canceled; at all other times the mesh is
intersection-free. Treating mesh edits atomically also implies that
we should prefer fine-grained local edits, since these can be more
cheaply collision-checked and succeed more often in the presence
of tangled geometries.

4.3 Mesh Improvement

Strong mesh deformations necessitate remeshing to maintain tri-
angle sizes and aspect ratios. We apply an incremental, feature-
preserving scheme based on that of Brochu and Bridson [2009],
which is collision-safe per the discussion above. Complete details,
including extensions for non-manifoldness and multimaterial label-
ing, are in the supplemental material.

4.4 Multimaterial Topology Changes

Multimaterial scenarios in 3D undergo new topological transitions
that do not arise with only two materials. We first discuss the 2D
analogs to provide intuition (Figure 2).

Multimaterial Merging, discussed in §7, occurs when two distinct
material regions collide while immersed in a third; the middle re-
gion divides in two, and a new interface maintains separation be-
tween the originally disjoint outer regions (Figure 2, top). This

Figure 2: Multimaterial topology changes in 2D. Merging (top):
Two material regions separated by a third collide to yield a shared
interface. T1 process (middle): Two regions that share a border
separate while the remaining pair become connected. T2 pro-
cess (bottom): One region (cyan) collapses away.

contrasts with the usual two-material case, where colliding regions
always have the same material, and merge into one.

T1 and T2 Processes are known from the literature on soap films
and bubbles [Weaire and Hutzler 2001], and can describe how air
bubbles (i.e., materials) within a connected soap foam can change
their local connectivity under flow. In a T1 process two materi-
als that originally share a border separate from one another while
two different neighbouring materials become connected (Figure 2,
middle). This forms a new interface while leaving the region count
unchanged, and can only occur with four or more materials. In a
T2 process a region collapses to a point and disappears as occurs
commonly in convergent flows (Figure 2, bottom).

5 T1 Processes

Two Dimensions We analyze the behavior of a 2D T1 process by
distinguishing two types of non-manifold mesh configurations: reg-
ular vertices with edge valences of two or three, and irregular ver-
tices with edge valences above three (Figure 3). Irregular vertices
are related to the degenerate case where two or more valence three
(regular) vertices coincide, and infinitesimal perturbations would
eliminate the degeneracy. In applications, irregular vertices usually
exist only transiently or not at all. Meyer et al. [2008] discuss this
notion in the context of multimaterial meshing, dubbing our regu-
lar vertices “generic” (as in general position) and treating irregular
configurations by approximating with nearby regular ones. Simi-
larly, Plateau’s laws in 2D prohibit stable equilibria for soap films
with valences above three [Weaire and Hutzler 2001].

However, as illustrated by Figure 2, middle, a T1 process requires
passing directly through an irregular configuration: an irregular ver-
tex is created by an edge collapse, and then separated or resolved
into two regular vertices. In the figure, this allows red and cyan re-
gions to connect while green and yellow regions disconnect. With-
out the explicit resolution mechanism we will propose, the incident
regions remain artificially glued together at this lingering irregular
vertex, regardless of the flow field. (By analogy with Lagrangian
elastic simulations, this can be viewed as a kind of non-physical
“locking” effect. In both cases, insufficient degrees of freedom pro-
hibit the intended motion.)

A T1 process is perfectly reversible, so the separation direction
must depend on the underlying physics (e.g., Surface Evolver ex-
amines surface tension forces on vertices [Brakke 1992]). For gen-
erality, we allow this decision to be application-dependent; typi-

Figure 3: Regular and irregular vertex configurations in 2D:

Left: An interface separating two regions is regular, as is a triple-
point vertex separating three regions. Right: Vertices with edge
valence of four or higher are irregular.

Figure 4: Choice of separation direction: Resolution of an irregu-
lar vertex depends on the underlying flow field.

cally, we will analyze the local velocity field (Figure 4).

Three Dimensions Our philosophy in 3D is identical: we allow
irregular configurations to arise through collapsing of short edges
during mesh improvement, and then separate them back into regular
configurations as dictated by the flow.

Unfortunately, while a T1 process in 2D is fairly simple, a com-
plete 3D T1 process involves many individual mesh operations
(Figure 5). Rather than treat this situation with potentially frag-
ile, special-case code, we show that all irregular configurations
can be treated in a simple and unified manner by analyzing the
mesh topology and iterating on a single, low-level vertex separation
operation which we propose. Consistent with our overall approach,
collision-safety can be assured by canceling individual operations
that violate it. In theory this can delay topology changes, but we
observed no artifacts across thousands of T1 processes.

Region Graphs Now consider the space of possible configura-
tions about a vertex in 3D. As in 2D, the regular configurations
(Figure 6, left) mirror the stable states described by Plateau’s laws:
a manifold surface by itself; three surfaces meeting along a triple
curve; and four triple curves meeting at a point. However, in 3D
both vertices and edges may have high valences, leading to diverse
irregular configurations (Figure 6, right). Because visualizing 3D
vertex configurations is difficult, we need a better tool to charac-
terize their topology and determine how to resolve them. We will
therefore define the concept of a region graph of a mesh vertex.

For brevity, we adopt the following incidence definitions. A vertex
and an edge (resp. triangle) are incident if the vertex is one of the
two (resp. three) vertices composing the edge (resp. triangle). A

Figure 5: A 3D T1 process begins when a short edge between dis-
tinct triple-junction curves collapses to become a vertex incident on
four materials. Adjacent edges on the original interface (red) also
collapse yielding a quadruple-junction curve. Then, one vertex on
the curve separates perpendicularly to create a new interface (dark
blue). Nearby vertices follow suit to complete the process.

Figure 6: Regular and irregular configurations in 3D: Left: (1) A
manifold surface separating two regions (here, the top and bottom
half-spaces), (2) a triple-curve bordering three regions, and (3) a
quadruple-point at which four regions meet. Right: Four of the
infinitely many possible irregular non-manifold configurations that
must be resolved by vertex separation.

Regular Irregular

Figure 7: Region graphs: Left: The region graphs for vertices
at: (1) a two-region surface, (2) a 3-region curve, and (3) a 4-
region junction, corresponding to Figure 6, left. Their graphs are
complete. Right: The region graphs for the central vertices in the
irregular configurations of Figure 6, right, are incomplete.

region and another simplex (i.e., vertex, edge, or triangle) are in-
cident if any triangle bordering that region contains the simplex in
question. Two regions are incident only if they share a triangle; two
regions joined only by a vertex or edge are not incident.

The region graph of a vertex v is an undirected graph in which
each node corresponds to a region incident on v. Two graph nodes
are joined by an arc if the two corresponding regions are incident.
(We use the terms node and arc for graph elements, and vertex and
edge for 3D mesh elements). Figure 7 shows the region graphs for
the regular and irregular configurations in Figures 6. (This region
graph is a subgraph of a larger dual (pseudo-)graph of the entire
mesh, but per-vertex region graphs offer simpler visuals.)

Next, we make the key observation that the region graph for a reg-
ular vertex will be completely connected (Figure 7, left); all other
graphs, which lack some arcs, correspond to irregular vertex con-
figurations (Figure 7, right). Since graph arcs correspond to region
incidence relationships, this implies that a vertex v is regular if ev-
ery pair of regions incident on v is also mutually incident (share
a face). Missing arcs therefore indicate pairs of regions that are
not incident, an irregularity that we must correct. As suggested by
Figures 8 and 9, this requires vertex separation: splitting apart the
irregular vertex, and filling the gap with new geometry.

Vertex Separation As a concrete example, consider the central
vertex v in Figure 9, left. Its region graph has a missing arc cor-
responding to the left and right (non-incident) regions, A and B.
We duplicate and pull the mesh vertex v apart into new vertices va
and vb. Their separation distance is set to a fraction of the average
length of the surrounding edges, typically 10%. Triangles origi-
nally incident to region A are updated to use vertex va rather than
v, by simply relabeling one of its vertex indices. Similarly, triangles
incident to region B are updated to use vb. All remaining triangles
incident on v, but not on region A or B, are updated to use vb.
Figure 9, middle, shows the mesh after it has been pulled apart.

This may yield a gap in the mesh that we need to fill, depending on
the incident regions’ material types. The gap’s shape arises from
the existing edges incident on v “opening” into triangular gaps, as
the original vertex v splits in two. Therefore, for each edge vw
incident on region A, vertex separation creates a potential gap that
we may fill with a new face vavbw (Figure 9, right).

v va vb va vb

v vbva

Mesh
(Primal)

Region Graph
(Dual)

Figure 8: Vertex separation in 2D: Top: An irregular vertex v in
2D (left) is separated into two regular vertices, va and vb (middle);
the resulting gap is filled by a new edge with appropriate labels
(right). Bottom: The incomplete region graph of v is correspond-
ingly converted into two complete region graphs for va and vb.

v

vb

va

vb
1

w2

w1

w2

va vbv

Mesh
(Primal)

Region Graph
(Dual)

w

va
A B

A B

Figure 9: Vertex separation in 3D: Top: An irregular vertex in 3D
(left) is duplicated and separated (center), and the resulting gap is
filled by new triangles with appropriate labels (right). Bottom: The
incomplete region graph is replaced by two complete region graphs.

However, we do not always need to fill the resulting gap with tri-
angles. In some cases, adding these triangles would erroneously
separate regions consisting of the same material; i.e., the new trian-
gle would have the same label on both sides, making it redundant.
(Consider a 3-region variant of Figure 9 where the top and bottom
middle triangles are absent; our supplementary video illustrates this
case.) This can be detected in advance by examining the two trian-
gles incident on the edge vw and the region A. If the two triangles’
labels on the outside of region A differ, the triangle must be created
to maintain the separation of these materials.

Returning to the topological view, Figure 9, bottom, shows the ef-
fect of vertex separation on the region graph. The original graph for
vertex v is replaced by two distinct region graphs for the vertices va
and vb, both of which are complete. Therefore the new geometry is
in a regular configuration, as desired.

Vertex separation subsumes the two-material pinching of “singular”
non-manifold vertices of Brochu and Bridson [2009].

Resolving Complex Irregular Vertices Vertex separation can
be performed on any irregular vertex, but when its original region
graph has multiple missing arcs (i.e., multiple pairs of regions are
not mutually incident), one vertex separation may not suffice; va or
vb can remain irregular. This can be solved by iterating vertex sep-
aration as we discuss next. We will require a decision on which arc
to process at each step, but for the moment, consider picking one
missing arc arbitrarily at each step.

After applying vertex separation, each of the two new vertices’ re-
gion graphs may still have missing arcs. However, these region
graphs will have strictly fewer nodes, since the region graph for va
does not contain node B, and vice versa. Since vertex separation
only applies to irregular vertices, this monotonic decrease in nodes
per region graph halts when a vertex becomes regular with either
3 or 4 regions (nodes). Therefore, we place any new irregular ver-
tices back into a global queue to be processed, assured that iteration

Figure 10: Complex vertex resolution: This geometry’s central
irregular vertex is incident on six regions, and has a region graph
with multiple disconnected node pairs. A sequence of three vertex
separations are needed to resolve this case. The result is a new
interface (blue) between the front and back regions, bounded by
four regular vertices. Region graphs are shown in Figure 11.

Figure 11: Complex vertex region graphs: The sequence of region
graphs corresponding to Figure 10. The original irregular vertex is
split into two irregular vertices, each incident on five regions. Each
of these vertices are split into two regular vertices, each incident
on four regions. While the top vertex is not directly involved in the
mesh edits in the second step, its region graph is modified because
the newly created interface connects the front and back regions.

will terminate within finite steps with a set of regular vertex config-
urations. Figures 10 and 11 show a vertex initially incident on six
regions that requires three vertex separations, and the correspond-
ing region graph sequence, respectively.

Choosing Separation Directions In many cases there are multi-
ple candidate region pairs {A,B} at a vertex; the correct choice of
which pair to separate should be determined by the underlying flow.
For each pair {A,B}, we first compute the direction of separation
as the vector between the centroids of the one-ring vertices of v that
are incident to either region. For ambient velocity fields, we then
take the dot product between the directional derivative of the veloc-
ity with the direction of separation, which indicates how strongly
the velocity field is diverging along that direction, i.e., how strongly
the pair desires separation. We compute this separation strength
(either analytically or with finite differencing) for each candidate
pair, selecting the one with the highest value for processing. (If the
separation strength in a given direction is zero, no vertex separation
is performed.) Algorithm 2 summarizes the complete process.

For generality, we can support alternate measures of separation
strength. Mean curvature flows seek to reduce surface area, so we
examine the change in mesh surface area for each proposed ver-
tex separation, selecting the one which most reduces the area. Our
normal flows tests do not give rise to T1 processes (§8.2).

Vertex separation is performed in descending order of separation
strength over all irregular vertices. Because edits to the mesh can
slightly change its shape and resulting behavior, at the discrete level
a complex T1 process may depend on the outcome of others nearby.
This global sort assures that irregular vertices are processed in a
consistent order, so that the outcome depends on physical quanti-
ties rather than implementation-specific vertex ordering. This also
minimizes temporal flickering due to the mesh alternating among

Algorithm 2 Vertex Separation

while T1 process has occurred in the last iteration do
Candidate list C = { }

for all vertex v in the mesh do
Construct v’s region graph G = V,E
If the graph G is already complete, skip this vertex
for all {A,B} /2 E where A 2 V,B 2 V do

Compute separation direction dAB

tAB separation strength(dAB)
if tAB > 0 then

Add {A,B, tAB ,dAB} into the candidate list C
end if

end for
end for
Sort C with descending t (separation strength)
for all candidate {A,B, tAB ,dAB} in C do

tAB separation strength(dAB)
If tAB < 0, skip this candidate
Create vertices va and vb
va v + ✏dAB

vb v � ✏dAB

for all face f incident to v do
if f is incident to region A then

Change f ’s vertex v to va, keeping its labels
else

Change f ’s vertex v to vb, keeping its labels
end if

end for
for all vertex w adjacent to v and incident to A do

Add face vavbw with proper labels if needed
end for

end for
end while

nearby configurations. While more costly than greedily separating
in the optimal direction for each vertex individually, irregular ver-
tices typically comprise a small and sparse subset of the mesh.

Consistency with Edge Collapses Since edge collapse and ver-
tex separation are essentially dual operations, their triggering crite-
ria should be consistent. Otherwise, the same irregular vertex may
be repeatedly created and destroyed causing temporal coherence is-
sues. Therefore, when performing a collapse of a short edge that
would create an irregular vertex, we also check if the velocity field
is acting to decrease the edge length. If not, this indicates that the
physics is driving the geometry away from the potential T1 process,
so the instigating edge collapse is cancelled.

Collision-Safety It remains to ensure collision-safety of vertex
separation. To do so, we exploit the concept of pseudo-motions
[Brochu and Bridson 2009], which approximates certain instanta-
neous mesh operations as a continuous deformation over a step of
fictitious time. This allows CCD checks to identify any collisions
between the relevant geometry and the rest of the mesh. Vertex sep-
aration can be viewed as a pseudo-motion transporting vertex v to
the position of vb, followed by a second pseudo-motion that sepa-
rates va from vb, bringing the triangles of region A along with it.
The newly created gap-filling triangles vavbw are just the sweeping
trajectories of the edges vbw due to the motion from vb to va.

In addition to colliding with the rest of the mesh, triangles and
edges moved in the second pseudo-motion can end up intersecting
the geometry they were pulled apart from. This cannot be tested
via CCD since these elements are initially incident to vertex v, i.e.,

Figure 12: In a 3D T2 process, one region (blue) collapses away.

trivially colliding. We instead detect such intersections through in-
stantaneous (static) collision detection on the final configuration.
Specifically, the final positions of triangles incident on region A
are tested against all mesh edges, and the final positions of edges
incident on A are tested against all mesh triangles. This will guar-
antee no intersections, but could potentially allow tunneling of very
small components. We rule this out by testing for instantaneous
collisions between all mesh vertices and the volume swept out by
each moving triangle’s pseudo-motion. Since only a single vertex
of each triangle moves during the pseudo-motion, these volumes
are tetrahedra, and a standard point-in-tetrahedron test suffices.

Ordering of Operations In Algorithm 1, we perform merging
and mesh improvement before vertex separation. This choice en-
sures that potential T1 processes initiated by edge collapses are usu-
ally completed by vertex separation operations before proceeding to
the next time step. This allows the underlying physics to continue
evolving without locking four or more regions together.

6 T2 Processes

We now consider the simpler T2 process in which a region shrinks
until it disappears, as occurs in convergent velocity fields (Fig-
ure 12). In the discrete case, a closed tetrahedron shaped region
may undergo an edge collapse or edge flip during remeshing that
yields a specific degenerate configuration: a pair of triangles shar-
ing the same three vertices. Their labels nevertheless remain con-
sistent; i.e., the conceptual zero-volume region “between” the two
triangles is closed and consistently labeled.

To resolve this degeneracy, we detect if the
outer regions of the two triangles have dif-
ferent material labels; if so, we delete one of
the two triangles and relabel the other, effec-
tively removing the degenerate region while
leaving in place a separating interface be-
tween materials (top). Otherwise, the outer
regions have the same material and should
be connected, so we simply delete both trian-
gles (bottom). The latter subsumes the two-
material analog described by Brochu and Bridson [2009].

Degeneracy removal also provides a second natural splitting mech-
anism. If thread-like geometry becomes very slender its tetrahedra
collapse and are removed, without the explicit detection or cutting
of spindles (e.g., [Wojtan et al. 2010]).

7 Multimaterial Merging

T1 and T2 processes involve regions that are locally connected by
the non-manifold mesh. Multimaterial surface tracking also re-
quires the ability to handle collision-induced topology changes be-
tween regions that are initially disjoint, either merging them into
one or establishing a new separating interface. Like previous au-
thors [Brochu and Bridson 2009; Stanculescu et al. 2011], we initi-

ate merging when geometry comes within a user-defined proximity
threshold. However, these existing two-phase approaches depend
on a local zippering operation. While we adapted zippering to mul-
tiple materials (detailed in the supplemental material), in practice
it requires well-aligned geometry to avoid causing intersections.
Hence many zippering operations are canceled, preventing merg-
ing and causing lingering interface noise (cf. [Brochu et al. 2010]).

7.1 Snap-Based Merging

We propose a new merging strategy based on snap-
ping together of nearby vertices. Our snapping oper-
ation is identical to an edge collapse, which coalesces
two existing vertices, except that the original vertices
do not share an edge. This simple operation can lead
to more effective merging.

Ideal Snapping Consider first an idealized sce-
nario in which two perfectly aligned triangles ap-
proach head on. As they come within the merge
proximity threshold, each pair of corresponding ver-
tices is snapped together, so that the original two tri-
angles become perfectly coincident. Degeneracy re-
moval (§6) deletes one or both triangles to complete
the merge. The figure illustrates the 2D analog.

Generalized Snapping Since meshes rarely col-
lide in ideal alignment, we generalize snapping taking loose in-
spiration from compatible remeshing (e.g., [Alexa 2002]). Con-
cretely, we seek to modify the nearby meshes such that there are
readily snappable vertex pairs. We identify close edge-edge and
triangle-vertex pairs, and subdivide them as necessary: each edge
in an edge-edge pair is split at the closest point on the edge, and the
triangle in a triangle-vertex pair is trisected at the closest point to
the vertex (face splits can be collision-checked similar to an edge
split). Each vertex now has a counterpart on the opposing mesh,
and snapping proceeds as in the idealized setting. Figure 13 shows
the analogous 2D process.

Figure 13: Generalized snapping in 2D: Left: For nearby meshes,
an edge in a proximate edge-vertex pair is split at the closest point,
and the resulting vertex pair is snapped. Similarly snapping a sec-
ond edge-vertex pair completes the merge. For matching materials,
the separating edge would then be deleted. Right: A zipper-based
merge is more disruptive and adds more volume.
Because this split-and-snap strategy uses smaller, incremental ed-
its to the non-manifold mesh rather than zippering’s simultaneous
creation of a manifold tube, each edit is less likely to be halted by
collisions. Furthermore, our method actively modifies the mesh to
enable merging, whereas zippering relies on encountering a feasi-
ble state by chance, which becomes unlikely in tangled collisions.
Accordingly, snapping offers more effective merging.

Implementation Details When snapping a particular vertex pair,
we place the newly snapped vertex at the average position of the
original vertices. Individual splitting and snapping operations are
checked for collision-safety and the introduction of degenerate ge-
ometry exactly as for edge splits and collapses, respectively, and

canceled if necessary (see supplemental material). To minimize
poor quality geometry and unnecessary refinement, we also check
if an edge or triangle would be subdivided close to one of its ex-
isting vertices, and instead perform vertex-vertex snapping directly.
Likewise, if a triangle would be subdivided close to one of its edges,
we split the edge instead, and snap using its new vertex. We do not
snap vertices that share an edge since that is an edge collapse. We
allow snapping between components of triangles that share an edge
only if the angle between the triangles is less than 90�. This allows
snapping of folded geometry, which occurs often during collisions,
while preventing snapping in the plane of a triangle.

8 Discussion and Results

Recapping, our method can be seen to handle the entire targeted
suite of high-level tasks, using a concise set of local, collision-
checked, low-level transformations: edge flip, edge split, edge col-
lapse, face split, vertex smoothing, vertex snapping, vertex sepa-
ration, and degenerate face removal. In addition, the use of exact
CCD to detect and cancel unsafe operations further guarantees that
our topological changes never introduce intersecting meshes.

We are making the source code of our C++ implementation, dubbed
Los Topos, available in order to encourage application of our
method and to foster further research. It can be downloaded at
http://www.cs.columbia.edu/cg/multitracker/.

Below, we examine the capabilities of our method on several com-
plex multimaterial mesh flows. We report the results of two scaling
tests using our implementation in the supplemental material. To
give an example, it took 4 hours to run our largest mean curvature
flow test to completion (2200 frames), which involves 2000 initial
regions and 220K triangles, on an Intel Xeon 3.47GHz machine
with 24GB RAM.

Experiments consistent with first order convergence are docu-
mented in a technical report [Da et al. 2014].

8.1 Prescribed Velocity Flows

We start with multimaterial variants of two traditional stress tests:
the Zalesk sphere and Enright tests [Enright et al. 2002]. In the Za-
lesak sphere test a notched sphere is rotated through 360� about an
external point to test sharp feature preservation under rigid body
motions, a traditional strength of meshes. In the Enright test a
sphere is advected through a highly deforming velocity field to in-
duce very thin features. We used fourth-order Runge-Kutta to com-
pute vertex trajectories from the ambient vector fields.

Our multimaterial Zalesak disk test (see supplementary video) ex-
hibits no perceptible smoothing or lost volume. Our multimate-
rial Enright test (Figure 14) preserves thin features even under ex-
treme stretching in multi-layered regions. While gradually accu-
mulated position error due to time integration and remeshing mani-
fests as mild “wrinkling” on the final sphere, this is consistent with
El Topo’s results [Brochu and Bridson 2009] and difficult to avoid
for such purely passive flows. In a simulation scenario, this effect
should be eliminated either through problem-dependent physical
processes or additional regularization [Bojsen-Hansen and Wojtan
2013]. This effect has been repeatedly observed in computational
physics settings too, and treated by volume-preserving smoothing
or “undulation removal” [de Sousa et al. 2004; McKee et al. 2008;
Toutant et al. 2012].

Alternating steps of outward normal flow and the curl noise veloc-
ity field of Brochu and Bridson [2009] yields a stress test featuring
both substantial stretching and merging. We applied this process

http://www.cs.columbia.edu/cg/multitracker/

Figure 14: Multimaterial Enright test: A sphere divided into four
material regions is advected through the “Enright test” velocity
field. The distinct regions are well-preserved despite the extreme
stretching. Top: Interior interfaces. Bottom: Exterior interfaces.

Figure 15: Normal Flow + Curl Noise: Alternating steps of nor-
mal flow and curl noise applied to four spheres yield complex de-
formations and topology changes.

to four spheres of different materials, which resulted in the com-
plex geometry in Figure 15. For this test, we performed normal
flow by computing area-weighted vertex normals (normalized aver-
age of incident triangle normals, weighted by area) and applying a
constant offset distance (i.e., forward Euler).

The final prescribed velocity flow in our video is a single-phase
grid-based fluid flow inside a cubic domain. External forcing is
applied to induce a swirling motion on a collection of 27 spheres
with various material labels being passively advected using second-
order Runge-Kutta.

8.2 Geometric Flows

Geometric surface flows have various applications within computer
graphics [Eckstein et al. 2007; Pan et al. 2012; Crane et al. 2013].
We consider multimaterial normal and mean curvature flows.

Normal Flows To examine merging in more detail, we apply
multimaterial normal flow on two special cases of interfacial speed
functions. First, we consider material surfaces moving (either in-
ward or outward) at a constant speed; when they collide, a new
interface is created and assigned a velocity of zero. Our video
shows two expanding spheres colliding, leading to the forma-
tion of a circular internal interface. This non-manifold curve re-
mains sharp, and the surfaces on either side remain smooth, due to
our non-manifold, feature-preserving
remeshing strategy. When the direc-
tion of flow is reversed, the spheres
seamlessly shrink until finally pinch-
ing off and disappearing. The figure
shows the result of normal flow ap-
plied to 25 initially disjoint spheres of
various materials (colors). Mixed ma-

Figure 16: Cyclical normal flow: Two overlapping spheres sharing
a circular internal interface undergo normal flow with a cyclical
ordering, with the front cut away for visualization. The result is a
curling effect around the stationary triple curve.

Figure 17: Mean curvature flow: A collection of 2000 random
Voronoi cells undergoes many T1 and T2 topology changes.

terial merging produces interior interfaces, while matching materi-
als merge into one region. Reversing the direction of flow causes
the interfaces to smoothly shrink and disappear. Our video contains
an example of two inflating Stanford bunnies that maintain good
surface detail.

The second special case of normal flow we consider follows an ex-
ample by Saye and Sethian [2012]. A set of three interfaces move at
constant speed in the normal direction, with the signs of the veloc-
ities chosen to satisfy a cyclical ordering; that is, material A flows
into material B, B flows into C, and C flows into A. The initial con-
figuration is two overlapping spheres sharing a flat circular interior
interface bounded by a triple curve. This causes a curling motion
around the stationary triple-curve (Figure 16).

We computed normal flow vertex trajectories using the face off-
setting method (FOM) [Jiao 2007]. FOM alleviates artifacts in
discretizations based on vertex normals, at the cost of a stringent
time step restriction. Because FOM does not (yet) support gen-
eral evolution of triple curves undergoing normal flow, these ex-
amples compute triple junction trajectories as special cases. (Mul-
timaterial normal flow with arbitrary speeds and triple junctions is
non-trivial even for level sets (e.g., [Zhao et al. 1996]), and has not
been addressed for triangle meshes.) For the expanding and shrink-
ing spheres, we compute triple-junction trajectories by considering
only the outer manifold surface, ignoring the (stationary) interior
interface. For cyclical normal flow, we treat the triple curve as a
zero-velocity boundary, consistent with the true solution.

Mean Curvature Flows Figures 5 and 12 show basic T1 and T2
processes, driven by mean curvature flow. An arrangement of 2000
distinct materials evolving inside a cube (Figure 17) demonstrates
robustness across thousands of topology changes.

We computed mean curvature flow vertex motions using the dis-
cretization of Meyer et al. [2002] with forward Euler. Based on
minimization of surface area, it extends to non-manifold vertices

simply by considering the area of all incident triangles.

8.3 Comparing Snapping and Zippering

To compare snap-based merging against zippering
we consider two spheres merging under normal
flow, with the resulting shared interfaces shown to
the right. With zippering (top), the growing inter-
section curve and internal interface develop in a dis-
continuous and noisy fashion. By contrast, snapping
(bottom) yields smoother growth of the new inter-
face. The video shows that the outer geometry also
exhibits greater overall symmetry and smoothness.

For these tests, we intentionally used normal flow
based on vertex normals. This gives merging velocities more re-
flective of fluid or solid animations, which undergo many topologi-
cal operations during collisions; by contrast, FOM generates vertex
velocities that (combined with small time steps) avoid merge oper-
ations after initial contact. The latter yields better normal flows, as
in §8.2, but does not adequately stress test complex merging.

8.4 Liquid Animation

We demonstrate full integration with a grid-based multiphase liq-
uid solver [Losasso et al. 2006], in which the evolution of the in-
terfaces is tightly coupled to the fluid physics. We first consider
liquid spheres colliding in zero gravity with surface tension. Figure
1 shows a two-droplet case merging and separating. The simulation
takes on average 48 seconds per frame, of which 8.6% is spent on
surface tracking. Our video includes a three-droplet variation, in
which two matching droplets briefly merge through the third sur-
rounding droplet, briefly forming an unstable non-standard double
bubble. Our third example (Figure 18) applies high viscosity (per
Batty and Bridson [2008]) to the collapse of nine viscous Stanford
bunnies falling in a heap under gravity; the various impacting in-
terfaces merge as expected. Each frame takes 174 seconds, and
surface tracking takes 23.8% of the total simulation time. Taking
best advantage of mesh detail for liquids can require appropriate
sub-grid physics, adaptive grids, or coupling with particles [Brochu
et al. 2010; Yu et al. 2012; Bojsen-Hansen and Wojtan 2013], which
has not yet been explored in the multimaterial setting. Following
Thuerey et al. [2010], we applied local volume-preserving mean
curvature flow to gradually regularize sub-grid geometric features,
deferring further study of this question to future work.

9 Limitations and Future Work

While we focused on topology change, enhancements to remesh-
ing would be welcome. In particular, we preserve intersection-
safety, but it remains uncertain what, if any, absolute and simultane-
ous guarantees on triangle quality and feature preservation may be
achievable. Spatially adaptive, anisotropic, or high-order remesh-
ing could improve our results [Jiao et al. 2010; Narain et al. 2012;
Clark et al. 2012]. Some edge-length scale popping or flickering
can be visible when edits must modify vertices on nearby distinct
feature curves or when folding occurs, such as in the curl noise ex-
ample (Figure 15); however, merging level sets also “pop” at the
grid scale.

Exact CCD only provably guarantees collision detection; floating
point precision hinders true guarantees on response in degenerate
scenarios [Brochu et al. 2012]. Hence our topological operations
are truly safe or canceled, but impulsive response [Bridson et al.
2002; Harmon et al. 2008] applied after time integration has no the-
oretical guarantees; we observed no failures. Pervasive collision

Figure 18: Viscous Bunnies: A multiphase scenario in which nine
viscous bunnies with different materials are dropped into a pile.

Figure 19: Swirling: We passively advect 27 spheres through a
single-phase fluid simulation in a cubic domain with a rotational
forcing function applied to induce mixing.

detection is also a bottleneck. We applied broad-phase culling via
uniform grids; adaptive alternatives could offer speed-ups. The lo-
cality of our mesh edits also suggests parallelization opportunities.

Faithful modeling of soap films and bubble blowing requires open
surfaces, for which surface meshes have strong natural advantages
over implicit models. For example, Bernstein and Wojtan [2013]
developed topological operations for geometric modeling with open
surfaces. The core challenge in our setting is to eliminate the de-
pendence on consistent region labels during topological operations.

The wide adoption of Surface Evolver and FronTier highlights the
many domains beyond computer graphics that involve deforming
interfaces, including material sciences and computational physics.
Though outside the scope of the current work, we plan to explore
these domains in the future, beginning with a thorough examination
of convergence behavior [Da et al. 2014].

Acknowledgments

This work was supported in part by the NSF (Grants IIS-
1319483, CMMI-1331499, IIS-1217904, IIS-1117257, CMMI-
1129917, IIS-0916129), the Israel-US Binational Science Founda-
tion, the Natural Sciences and Engineering Research Council of
Canada (NSERC), Intel, The Walt Disney Company, Autodesk,
Side Effects Software, NVIDIA, and the Banting Postdoctoral Fel-
lowships program. We would like to thank Brochu et al. for re-
leasing the El Topo source code [Brochu and Bridson 2009; Brochu
et al. 2012], which helped to make our work possible. We would
also like to thank Henrique Teles Maia, Nora Wixom and Rohan
Sawhney for their assistance with the work.

References

ALEXA, M. 2002. Recent advances in mesh morphing. Computer
Graphics Forum 21, 2, 173–198.

ANDERSON, J. C., GARTH, C., DUCHAINEAU, M. A., AND JOY,
K. I. 2010. Smooth, volume-accurate material interface recon-
struction. IEEE TVCG 16, 5, 802–814.

BARGTEIL, A. W., O’BRIEN, J. F., GOKTEKIN, T. G., AND
STRAIN, J. A. 2006. A semi-Lagrangian contouring method
for fluid simulation. ACM Trans. Graph. 25, 1 (Jan.), 19–38.

BATTY, C., AND BRIDSON, R. 2008. Accurate viscous free sur-
faces for buckling, coiling, and rotating liquids. In Symposium
on Computer Animation, 219–228.

BERNSTEIN, G., AND WOJTAN, C. 2013. Putting holes in holey
geometry: Topology change for arbitrary surfaces. ACM Trans.
Graph. (SIGGRAPH) 32, 4, 34.

BOJSEN-HANSEN, M., AND WOJTAN, C. 2013. Liquid surface
tracking with error compensation. ACM Trans. Graph. (SIG-
GRAPH) 32, 4, 79:1–79:10.

BRAKKE, K. 1992. The surface evolver. Experimental Mathemat-
ics 1, 2, 141–165.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Trans. Graph. (SIGGRAPH) 21, 3, 594–603.

BROCHU, T., AND BRIDSON, R. 2009. Robust topological opera-
tions for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4,
2472–2493.

BROCHU, T., BATTY, C., AND BRIDSON, R. 2010. Matching fluid
simulation elements to surface geometry and topology. ACM
Trans. Graph. (SIGGRAPH) 29, 4, 47.

BROCHU, T., EDWARDS, E., AND BRIDSON, R. 2012. Efficient
geometrically exact continuous collision detection. ACM Trans.
Graph. (SIGGRAPH) 31, 4, 96.

CAMPEN, M., AND KOBBELT, L. 2010. Exact and robust (self-
)intersections for polygonal meshes. Computer Graphics Forum
(Eurographics) 29, 2 (June), 397–406.

CLARK, B., RAY, N., AND JIAO, X. 2012. Surface mesh opti-
mization, adaption, and untangling with high-order accuracy. In
International Meshing Roundtable, Springer, Berlin, X. Jiao and
J.-C. Weill, Eds., 385–402.

CLAUSEN, P., WICKE, M., SHEWCHUK, J. R., AND O’BRIEN,
J. F. 2013. Simulating liquids and solid-liquid interactions with
Lagrangian meshes. ACM Trans. Graph. 32, 2, 17.

CRANE, K., PINKALL, U., AND SCHRÖDER, P. 2013. Robust
fairing via conformal curvature flow. ACM Trans. Graph. (SIG-
GRAPH) 32, 4, 61.

DA, F., BATTY, C., AND GRINSPUN, E. 2014. A convergence
study of multimaterial mesh-based surface tracking. Tech. rep.,
Columbia University.

DE SOUSA, F. S., MANGIAVACCHI, N., NONATO, L. G.,
CASTELO, A., TOMÉ, M. F., AND MCKEE, S. 2004. A front-
tracking/front-capturing method for the simulation of 3D multi-
fluid flows with free surfaces. J. Comp. Phys. 198, 2, 469–499.

DU, J., FIX, B., GLIMM, J., JIA, X., LI, X., LI, Y., AND WU, L.
2006. A simple package for front tracking. J. Comp. Phys. 213,
2, 613–628.

DYADECHKO, V., AND SHASHKOV, M. 2008. Reconstruction of
multi-material interfaces from moment data. J. Comp. Phys. 227,
11, 5361–5384.

ECKSTEIN, I., PONS, J.-P., TONG, Y., KUO, C.-C. J., AND DES-
BRUN, M. 2007. Generalized surface flows for mesh processing.
In Symposium on Geometry Processing, 183–192.

ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I.
2002. A hybrid particle level set method for improved interface
capturing. J. Comp. Phys. 183, 1, 83–116.

GLIMM, J., GROVE, J. W., LI, X., SHYUE, K.-M., ZENG, Y.,
AND ZHANG, Q. 1998. Three-dimensional front tracking. SIAM
J. Sci. Comput. 19, 3, 703–727.

GLIMM, J., GROVE, J. W., LI, X. L., AND TAN, D. C. 2000.
Robust computational algorithms for dynamic interface tracking
in three dimensions. SIAM J. Sci. Comput. 21, 6, 2240–2256.

HARMON, D., VOUGA, E., TAMSTORF, R., AND GRINSPUN, E.
2008. Robust treatment of simultaneous collisions. ACM Trans.
Graph. (SIGGRAPH) 27, 3, 23.

HIRT, C. W., AND NICHOLS, B. D. 1981. Volume of fluid (VOF)
method for the dynamics of free boundaries. J. Comp. Phys. 39,
1, 201–225.

JIAO, X., COLOMBI, A., NI, X., AND HART, J. 2010. Anisotropic
mesh adaptation for evolving triangulated surfaces. Engineering
with Computers 26, 4, 363–376.

JIAO, X. 2007. Face offsetting: A unified approach for explicit
moving interfaces. J. Comp. Phys. 220, 2, 612–625.

KIM, B. 2010. Multiphase fluid simulation using regional level
sets. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6, 175.

KUPRAT, A., GEORGE, D., STRAUB, G., AND DEMIREL, M. C.
2003. Modeling microstructure evolution in three dimensions
with Grain3D and LaGriT. Computational Materials Science
28, 1, 199–208.

LAZAR, E. 2011. The evolution of cellular structures via curvature
flow. PhD thesis, Columbia University.

LOSASSO, F., SHINAR, T., SELLE, A., AND FEDKIW, R. 2006.
Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH)
25, 3, 812–819.

MCKEE, S., TOMÉ, M. F., FERREIRA, V. G., CUMINATO, J. A.,
CASTELO, A., DE SOUSA, F. S., AND MANGIAVACCHI, N.
2008. The MAC method. Computers & Fluids 37, 8 (Sept.),
907–930.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A.
2002. Discrete differential-geometry operators for triangulated
2-manifolds. In VisMath, Springer-Verlag, Berlin, Germany, 35–
54.

MEYER, M., WHITAKER, R. T., KIRBY, R. M., LEDERGERBER,
C., AND PFISTER, H. 2008. Particle-based sampling and mesh-
ing of surfaces in multimaterial volumes. IEEE TVCG 14, 6,
1539–1546.

MISZTAL, M., ERLEBEN, K., BARGTEIL, A. W., CHRISTENSEN,
B. B., BAERENTZEN, A., AND BRIDSON, R. 2012. Multiphase
flow of immiscible fluids on unstructured moving meshes. In
Symposium on Computer Animation, Eurographics Association,
Lausanne, Switzerland, 97–106.

MORA, L. B., GOTTSTEIN, G., AND SCHVINDLERMAN, L. S.
2008. Three-dimensional grain growth: Analytical approaches
and computer simulations. Acta Materialia 56, 1, 5915–5926.

MÜLLER, M., SOLENTHALER, B., KEISER, R., AND GROSS, M.
2005. Particle-based fluid-fluid interaction. In Symposium on
Computer Animation, ACM, Los Angeles, CA, USA, 237–244.

MÜLLER, M. 2009. Fast and robust tracking of fluid surfaces.
In Symposium on Computer Animation, ACM, New York, NY,
USA, 237–245.

NARAIN, R., SAMII, A., AND O’BRIEN, J. F. 2012. Adaptive
anisotropic remeshing for cloth simulation. ACM Trans. Graph.
(SIGGRAPH Asia) 31, 6, 147.

OSHER, S., AND FEDKIW, R. 2002. Level Set Methods and Dy-
namic Implicit Surfaces. Springer, New York.

PAN, H., CHOI, Y.-K., LIU, Y., HU, W., DU, Q., POLTHIER, K.,
ZHANG, C., AND WANG, W. 2012. Robust modeling of con-
stant mean curvature surfaces. ACM Trans. Graph. (SIGGRAPH)
31, 4, 85.

PONS, J.-P., AND BOISSONNAT, J.-D. 2007. A Lagrangian ap-
proach to dynamic interfaces through kinetic triangulation of the
ambient space. Computer Graphics Forum 26, 2, 227–239.

PONS, J.-P., AND BOISSONNAT, J.-D. 2007. Delaunay de-
formable models: Topology-adaptive meshes based on the re-
stricted delaunay triangulation. In CVPR, IEEE, Minneapolis,
Minnesota, USA, 1–8.

QUAN, S., AND SCHMIDT, D. P. 2007. A moving mesh interface
tracking method for 3D incompressible two-phase flows. Jour-
nal of Computational Physics 221, 2, 761–780.

QUAN, S., LOU, J., AND SCHMIDT, D. P. 2009. Modeling
merging and breakup in the moving mesh interface tracking
method for multiphase flow simulations. Journal of Computa-
tional Physics 228, 7, 2660–2675.

SAYE, R., AND SETHIAN, J. 2012. Analysis and applications of
the Voronoi Implicit Interface Method. J. Comp. Phys. 231, 18,
6051–6085.

SETHIAN, J. 1999. Level set methods and fast marching methods.
Cambridge University Press.

SOLENTHALER, B., AND PAJAROLA, R. 2008. Density contrast
SPH interfaces. In Symposium on Computer Animation, Euro-
graphics Association, Dublin, 211–218.

STANCULESCU, L., CHAINE, R., AND CANI, M.-P. 2011.
Freestyle: Sculpting meshes with self-adaptive topology. Com-
puters and Graphics 35, 3, 614–622.

STARINSHAK, D. P., KARNI, S., AND ROE, P. L. 2014. A new
level set model for multimaterial flows. J. Comp. Phys. In press.

SYHA, M., AND WEYGAND, D. 2010. A generalized vertex dy-
namics model for grain growth in three dimensions. Modelling
Simul. Mater. Sci. Eng. 18, 1, 015010.

THUEREY, N., WOJTAN, C., GROSS, M., AND TURK, G. 2010. A
multiscale approach to mesh-based surface tension flows. ACM
Trans. Graph. (SIGGRAPH) 29, 3.

TOUTANT, A., MATHIEU, B., AND LEBAIGUE, O. 2012. Volume-
conserving smoothing for front tracking methods. Computers &
Fluids 67, 16–25.

WAKAI, F., ENOMOTO, N., AND OGAWA, H. 2000. Three-
dimensional microstructural evolution in ideal grain growth -
general statistics. Acta Materialia 48, 1, 1297–1311.

WEAIRE, D., AND HUTZLER, S. 2001. Physics of Foams. Oxford
University Press, New York.

WEYGAND, D., AND BRECHET, Y. 1999. Three-dimensional
grain growth: a vertex dynamics simulation. Philosophical Mag-
azine B 79, 5, 703–716.

WICKE, M., RITCHIE, D., KLINGNER, B. M., BURKE, S.,
SHEWCHUK, J. R., AND O’BRIEN, J. F. 2010. Dynamic lo-
cal remeshing for elastoplastic simulation. ACM Trans. Graph.
(SIGGRAPH) 29, 4, 49.

WOJTAN, C., THUEREY, N., GROSS, M., AND TURK, G. 2009.
Deforming meshes that split and merge. ACM Trans. Graph.
(SIGGRAPH) 28, 3, 76.

WOJTAN, C., THUEREY, N., GROSS, M., AND TURK, G. 2010.
Physically-inspired topology changes for thin fluid features.
ACM Trans. Graph. (SIGGRAPH) 29, 3, 50.

WOJTAN, C., MULLER-FISCHER, M., AND BROCHU, T. 2011.
Liquid simulation with mesh-based surface tracking. In SIG-
GRAPH Courses, ACM, Vancouver, 8.

YU, J., WOJTAN, C., TURK, G., AND YAP, C. 2012. Explicit
mesh surfaces for particle based fluids. Computer Graphics Fo-
rum (Eurographics) 31, 2, 815–824.

YUAN, Z., YU, Y., AND WANG, W. 2012. Object-space multi-
phase implicit functions. ACM Trans. Graph. (SIGGRAPH) 31,
4, 114.

ZAHARESCU, A., BOYER, E., AND HORAUD, R. 2011. Topology-
adaptive mesh deformation for surface evolution, morphing, and
multiview reconstruction. IEEE TPAMI 33, 4, 823–837.

ZHAO, H.-K., CHAN, T., MERRIMAN, B., AND OSHER, S. 1996.
A variational level set approach to multiphase motion. J. Comp.
Phys. 127, 1, 179–195.

ZHENG, W., YONG, J.-H., AND PAUL, J.-C. 2006. Simulation of
bubbles. In Symposium on Computer Animation, Eurographics
Association, Vienna, 325–333.

