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Abstract

Example-based texture synthesis algorithms have gained
widespread popularity for their ability to take a single input
image and create a perceptually similar non-periodic texture.
However, previous methods rely on single input exemplars that
can capture only a limited band of spatial scales. For example,
synthesizing a continent-like appearance at a variety of zoom
levels would require an impractically high input resolution. In this
paper, we develop a multiscale texture synthesis algorithm. We
propose a novel example-based representation, which we call an
exemplar graph, that simply requires a few low-resolution input
exemplars at different scales. Moreover, by allowing loops in the
graph, we can create infinite zooms and infinitely detailed textures
that are impossible with current example-based methods. We also
introduce a technique that ameliorates inconsistencies in the user’s
input, and show that the application of this method yields improved
interscale coherence and higher visual quality. We demonstrate
optimizations for both CPU and GPU implementations of our
method, and use them to produce animations with zooming and
panning at multiple scales, as well as static gigapixel-sized images
with features spanning many spatial scales.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration

1 Introduction

Example-based texture synthesis algorithms generate a novel image
from a given input exemplar image. These algorithms make it prac-
tical to create a large (or even infinite) coherent, non-periodic tex-
ture, while designing or acquiring only a small exemplar of the tex-
ture. Unfortunately, the exemplar has a finite (and often small) reso-
lution, and therefore conveys texture information for only a limited
band of spatial scales. Texture features larger than the exemplar, or
smaller than an exemplar’s pixel, are missed altogether. This is a
severe shortcoming: many real-world (multiscale) textures contain
features at widely varying spatial scales. Our work addresses this
deficiency by developing a simple method for multiscale texture
synthesis from a small group of input exemplars.

We propose a general, succinct, example-based representation,
which we call an exemplar graph (§3.1). Consider for instance
Fig. 1 (top), which depicts the exemplar graph for a map at various
scales. When viewed from satellite distance, the texture features
are on the order of oceans and land masses. As we zoom in, fea-
tures take on the shape of coastlines, forests, or mountain ranges.
At the finest levels we begin to differentiate rivers, valley systems,
and individual ridges. In this graph, each exemplar need only be
large enough (in resolution) to faithfully capture those features that

Input: Exemplar Graph
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Figure 1: Multiscale texture synthesis. From a user-defined set of eleven

256 × 256 exemplars and associated scaling relations (top), we synthesize

a 16k × 16k texture exhibiting features at all scales (bottom). All figures

in this paper have been downsampled to 300dpi; for full resolution images

please see the supplemental materials.
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Figure 2: Single- vs. multiscale texture. (left) A single 256× 256 exemplar contains information for a limited band of spatial scales, as is evident when a

standard synthesis method is used to produce an 8k×4k image. (right) In contrast, the range of scales synthesized by our method depends on the output (not

the exemplar) resolution. Starting with an exemplar graph (center), our synthesis method interprets both the original 256×256 texture data together with the

self-similarity information in a single reflexive edge to generate an 8k×4k image with features spanning multiple scales.

characterize a particular spatial scale. The graph arrows relate tex-
ture structures of differing scale: the head of an arrow points to an
upsampled feature present somewhere on its tail, and the label on
the arrow gives the relative scale between its head and tail.1 Fig-
ure 1 (bottom) depicts a multiscale texture generated from the given
exemplar graph. While the multiscale approach produces the entire
landscape from eleven 256×256 exemplars, a single-scale method
would require a 16k × 16k exemplar.

Loops in the exemplar graph represent an infinitely-detailed,
self-similar texture. They enable our method to transform a finite
resolution input into an infinite resolution output, that can be nav-
igated by unbounded zooming and panning (see Figs. 2 and 3).
Loops make the exemplar graph fundamentally more expressive
than a single exemplar, since a single exemplar (of large but fi-
nite resolution) cannot allow for infinite levels of detail. By using
graphs of exemplars, we take one step toward enjoying the bene-
fits typically associated to procedural methods [Perlin 1985; Ebert
et al. 2003]—in particular their ability to generate images of arbi-
trary resolution. At the same time, we allow for synthesis in those
settings (e.g., acquired data, artistic design) where a precise mathe-
matical formulation is not readily available.

Example-based texture synthesis is now a relatively mature field
with many useful tools and methods. One strength of our frame-
work is that it can directly leverage these existing techniques. In
particular, we build on the method of Lefebvre and Hoppe [2005],
whose parallel hierarchical synthesis approach provides a natural
starting point for our algorithm. We show the insights needed to
bridge the gap between conventional and multiscale hierarchical
texture synthesis (§4), and furthermore demonstrate optimizations
to enable GPU implementation (§6).

With the increased expressive power of exemplar graphs comes
an added caveat: the implicit information that the graph gives about
the texture function may contain contradictions. In some cases, the
user may intentionally provide inconsistent graphs (Figs. 5 and 9,
for example), and in other cases, the data acquisition process may
not yield consistent data (e.g., changes in lighting). Such contra-
dictions do not exist in single-exemplar setting, where features of
all scales are encoded in a single image; our treatment of exem-
plar graphs must therefore include a discussion of consistency. We
present a correction method (§5) that improves interscale coherence
in the presence of inconsistencies, and yields higher visual quality.

Our CPU and GPU implementations handle general graphs with
arbitrary connectivity, including multiple loops, as evident in nu-
merous examples derived from both user-designed textures and
real-world data. Our algorithms can generate gigapixel-sized im-
ages exhibiting different features at all scales (e.g., Figs. 1, 7, 8, 9).

1All unlabeled edges in Fig. 1 carry a scale relation of 23 = 8.
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Figure 3: Coherent infinite zooms. Using a single exemplar with one re-

flexive edge, we can specify textures with infinite detail. From left to right,

each image shows a 16× zoom into the previous one. These self-similar

textures exhibit structure at every scale, all taken from the same exemplar.

Alternatively, they can render small windows of the multiscale tex-
ture at a given spatial position and scale, and even support pans and
zooms into infinite resolution textures (Fig. 3).

2 Previous Work

Our work builds on recent literature in texture synthesis, and in
particular hierarchical and parallel example-based synthesis.

Texture Synthesis A great deal of recent work synthesizes tex-
ture using either parametric [Heeger and Bergen 1995; Portilla and
Simoncelli 2000], non-parametric [DeBonet 1997; Efros and Le-
ung 1999; Wei and Levoy 2000], or patch-based [Praun et al. 2000;
Efros and Freeman 2001; Liang et al. 2001; Kwatra et al. 2003]
approaches. Using only a single exemplar, these methods capture
only a limited range of scales.

Hierarchical texture synthesis Hierarchical methods synthe-
size textures from a single exemplar whose features span varying
spatial frequencies [Popat and Picard 1993; Heeger and Bergen
1995; Wei and Levoy 2000]. A hierarchical method synthesizes
in a coarse-to-fine manner, establishing the positions of coarse fea-
tures and refining to add finer ones. This general approach serves
as a natural starting point for our work.

Parallel texture synthesis Since multiscale textures are typi-
cally very large, our work incorporates ideas from parallel synthe-
sis [Wei and Levoy 2002; Lefebvre and Hoppe 2005] to determin-
istically synthesize an arbitrary texture window at any scale. This



avoids explicitly rendering to the finest available scale—in fact, re-
cursive exemplar graphs have no finest scale!

Multiple exemplars and scales Several existing works employ
multiple exemplars, but these methods assume equal scale across
all inputs [Heeger and Bergen 1995; Bar-Joseph et al. 2001; Wei
2002; Zalesny et al. 2005; Matusik et al. 2005]. Others take multi-
ple scales into account, either explicitly [Tonietto and Walter 2002]
or in the form of local warps [Zhang et al. 2003], but they do not
consider scale relationships between exemplars.

3 Key concepts

The input representation for the multiscale synthesis problem is an
exemplar graph. Given this representation, we present theoretical
constructs that will be critical to the multiscale texture synthesis
algorithm (§4).

3.1 Exemplar graph

The exemplar graph, (V,E), is a reflexive, directed, weighted graph,
whose vertices are the exemplars, V = {E0,E1, . . .}, and whose
edges, E, denote similarity relations between exemplars. The root,
E0, serves as the coarsest-level starting point for synthesis. We
fix the spatial units by declaring that root texels have unit diameter.
For ease of notation, our exposition assumes that all exemplars have
resolution m×m (where m = 2L), but the formulation can easily be
generalized to exemplars of arbitrary size.

Figure 4a shows a simple graph with three exemplars. An edge,
(i, j,r) ∈ E, emanates from a source exemplar, Ei, and points to a
destination exemplar, E j, and carries an associated similarity rela-
tion r. In this paper we consider only scaling relations, which we
represent by a nonnegative integer r such that 2r is the spatial scale
of the source relative to the destination. For example, in Fig. 4a
the edge (0,1,2) denotes a transition from E0 to E1 along with the
interpretation that the diameter of a pixel in E0 is four (22) times
the diameter of a pixel in E1. Likewise, pixels in E2 are eight times
smaller than those of the root. The reflexive edge (2,2,1) indicates
that E2 is similar to a 2× scaling of itself. Finally, since exemplars
are self-similar, every exemplar has an implicit self-loop (not shown
in our figures) with r = 0.

We do not restrict the destination of an edge; in particular, we
permit arbitrary networks including loops (e.g., the self-loop of E2

in Fig. 4). We do, however, require r to be less than some maximum
value rmax; this ensures sufficient overlap between source and des-
tination scales, as this is required to reconstruct intermediate scales.
In our experience we found that rmax = L−3 provided good results.

3.2 Gaussian stacks

We associate to each exemplar, Ei, its Gaussian stack,
Ei

0
,Ei

1
, . . . ,Ei

L
[Lefebvre and Hoppe 2005]. Each stack level, Ei

k
,

is an m×m image obtained by filtering the full-resolution exemplar
image with a Gaussian kernel of radius 2L−k. Figure 4b shows the
Gaussian stacks associated with the exemplar graph in Fig. 4a, po-
sitioned to show their relative scales (E2 is shown twice to reflect
its self-similarity relation). The stacks pictured are eight levels tall,
corresponding to an exemplar size of 128 (L = 7).

3.3 Admissible candidates

In the single-exemplar setting, neighborhood matching (§4.4) oper-
ates naturally on neighborhoods chosen from the same stack level
as the source texel. The multiscale setting, however, requires us to
consider neighborhoods from multiple candidate stack levels, and–
in the presence of loops–possibly even from multiple levels within
each exemplar.

The admissible candidates for stack level Ei
k
,

A(Ei
k) = {E

j

l
| ∃ (i, j,k− l) ∈ E, 0 ≤ l < L } ,

are determined by the exemplar graph edges emanating from Ei,
and their associated scaling relations. For example, the admissible
candidate sets for three different stack levels are shown with dashed
lines in Fig. 4b. The setA(E0

5
) contains E0

5
, E1

3
, and E2

2
, since links

(0,0,0), (0,1,2), and (0,2,3) exist in the exemplar graph. Notice
that E2

1
is not admissible, as there is no link (0,2,4). The finest lev-

els of each stack (E0
7
, for example) are not admissible candidates;

this is to enforce that correction (see §4.4) will progress to finer
scales and not get “stuck” on a given exemplar. Finally, exemplar
graph loops (such as the reflexive edge at E2) can result in stack
levels with candidates from the same exemplar, e.g., E2

5
∈ A(E2

6
).

4 Multiscale texture synthesis

A graph of exemplars opens the door to far more expressive, yet
economical, design of textures. The question we address below is
how to enjoy the benefits of the graph representation with a min-
imal set of changes to an existing hierarchical approach. Specifi-
cally, we extend the parallel, hierarchical approach of Lefebvre and
Hoppe [2005], and adopt their notation where applicable.

4.1 Overview

Adopting the traditional hierarchical approach, we build an im-
age pyramid S 0,S 1, . . . ,S T , in a coarse-to-fine order, where T de-
pends on our desired output image size. The images are not repre-
sented by color values, but rather store coordinates, S t[p] = (i,k,u),
of some stack level texel, Ei

k
[u]. Progressing in a coarse-to-fine

manner, each level S t is generated by (1) upsampling the coordi-
nates of S t−1, (2) jittering these coordinates to introduce spatially-
deterministic randomness, and then (3) locally correcting pixel
neighborhoods to restore a coherent structure.

Multiscale considerations When using Gaussian stacks one
must be careful to consider the physical scale of a referenced texel
relative to the current synthesis level. We use hk = 2L−k to denote
the regular spacing of a texel in level k of a given stack. In our
framework, synthesis pixels are not “synchronized”; each synthe-
sized pixel may point to a different exemplar, and to any level of
its Gaussian stack. Therefore, whereas Lefebvre and Hoppe [2005]
use a single h for each synthesis level, our spacing must be ac-
counted for on a per-pixel basis since each pixel can have a unique
relative scale. Additionally, our correction step must also take into
account the presence of multiple exemplars. When finding a match-
ing neighborhood for a given pixel, we search within all admissible
candidate levels (§3.3).

The images shown in this paper and the accompanying materials
can be on the order of gigapixels; building and maintaining a syn-
thesis pyramid of this size would be cumbersome and impractical.
Rather, we exploit the spatial determinism of the parallel approach
to generate smaller windows of the overall finest-scale texture and
tile them offline. Alternatively, since we can interpret any scale as
being the output image resolution, we generate our zooming ani-
mations (such as Fig. 3 and the accompanying videos) in real time,
with finer resolutions being rendered as needed.

4.2 Upsampling

We refine each pixel in S t−1 to form a coherent 2× 2 patch in S t

by upsampling its coordinates. Intuitively, pixels in the upsampled
image will point to the same exemplar as their parent pixels, but
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Figure 4: Data structures. (a) A simple exemplar graph containing three exemplars. The root exemplar, E0, correlates to exemplars E1 and E2 with a scale

relation of 4 and 8, respectively. (b) Upon computing the Gaussian stacks for each exemplar in the graph, we call those stack levels with equivalent scale

admissible candidates of one another. To guide the synthesis process towards higher-resolution exemplars, the finest stack levels are considered inadmissible.

(c) The superexemplar expansion of the graph shown at left. Nodes correspond to stack levels, red edges to upsampling steps, and black edges to correction

passes. Node labels give (respectively) exemplar index, stack level, and red depth; this last quantity will be used to aid in exemplar graph analysis (§6).

will move to the next-finer Gaussian stack level. Using (i,k,u) =
S t−1[p], the upsampled patch is defined by

S t

[

2p+∆+
(

1
2
, 1

2

)]

≔



i, k+1, u+ ⌊hk∆⌋ (mod m)


 ,

where ∆ ∈
{
(

± 1
2
,± 1

2

)
}

.

4.3 Jitter

Next, we jitter the coordinates. Using (i,k,u) = S t[p], the jittered
pixels are

S t[p]≔


i,k,u+ Jt(p) (mod m)


 , where Jt(p) =
⌊

hkH(p)ρt +
(

1
2
, 1

2

)
⌋

.

This jittering step directly follows that of Lefebvre and
Hoppe [2005], and we use the hash function, H , and the level-
dependent randomness coefficient, ρt ∈ [0,1], defined therein.

4.4 Correction

For each synthesized pixel, S t[p]= (i,k,u), the correction step seeks

among all admissible stack levels, E
j

l
∈A(Ei

k
), a texel E

j

l
[v], whose

local 5×5 exemplar neighborhood best matches the local 5×5 syn-
thesis neighborhood of S t[p]. Formally,

E
j

l
[v] is the minimizer of the error functional

∑

δ∈{−2...+2}2

∥

∥

∥

∥

*S t[p+δ]−E
j

l
[v+δhl]

∥

∥

∥

∥

2
(1)

over E
j

l
∈ A(Ei

k
) and v ∈ {0 . . .2L−1}2.

Here *S t[p] dereferences the texel pointer, S t[p], to get the stored
texel color. Following Lefebvre and Hoppe [2005], we perform the
computation in parallel, splitting into eight subpasses to aid conver-
gence.

Accelerated matching To accelerate neighborhood matching,
we use the k-coherence search algorithm [Tong et al. 2002]. Given
the exemplar graph, our analysis algorithm identifies for each stack

level texel, Ei
k
[u], the exemplar texels, E

j

l
[v], which minimize the

error functional

∑

δ∈{−2...+2}2

∥

∥

∥

∥

Ei
k[u+δhk]−E

j

l
[v+δhl]

∥

∥

∥

∥

2
(2)

over E
j

l
∈ A(Ei

k
) and v ∈ {0 . . .2L−1}2. We choose the K best (typ-

ically, K = 2) spatially dispersed candidates [Zelinka and Garland
2002] to form the candidate set Ã(Ei

k
[u]). We then adopt coherent

synthesis [Ashikhmin 2001], which seeks the minimum of (1) over
the set of precomputed candidates

⋃

d∈{−1...1}2

Ã (*S t[p+d]) (3)

drawn from the 3× 3 synthesis neighborhood; to ensure that the
source and destination neighborhoods are aligned, we replace

E
j

l
[v+δhl] by E

j

l
[v+ (δ−d)hl] in (1).

5 Inconsistency Correction

We now examine the issue of consistency across graph edges. Con-
sider, for example, the exemplar graph in Fig. 5, which prescribes
a rainbow-stripe pattern at an 8× coarser scale relative to a black-
and-white texture. Clearly such a relation is inconsistent, since no
combination of downsampled neighborhoods in the greyscale im-
age can reproduce the colorful appearance. This problem unfortu-
nately conflicts with our desire to produce a synthesized image that
is coherent across scales.

One could simply restrict the space of allowable inputs to in-
clude only strictly consistent exemplar graphs, but this would also
restrict many useful and desirable applications. We would often like
to use data acquired from different sources (for instance, satellite
and aerial imagery), but variations in lighting and exposure make
it very hard to enforce consistency in these cases. Inconsistency
handling is also desirable in that it allows greater expressive power.
For example, the artist-designed exemplar graphs in Figs. 5 and 9
are largely inconsistent, yet generate pleasing outputs; were incon-
sistency not allowed, the same results would have required much
more effort on the part of the artist.

Overview Noting the coarse-to-fine direction of hierarchical syn-
thesis, we introduce the axiom that the visual appearance of a
coarser synthesis level constrains the visual appearance of the next
finer level, and by induction, all finer synthesis levels. Consider-
ing that a given exemplar is self-consistent by definition, it follows
that inconsistencies arise only as a result of inter-exemplar tran-
sitions during the correction step. Our strategy will therefore be
to describe each transition with an appearance transfer function,
r : RGB→ RGB, which captures the overall change in appearance
between the source and destination stack level neighborhoods. Dur-
ing synthesis, we will keep a history of all transitions by maintain-
ing a cumulative transfer function, Rt[p], at each synthesis pixel,
S t[p]. Specifically, Rt[p] is the composition of all transfer func-
tions encountered during the synthesis of S t[p], and the rendered
color of pixel S t[p] is now given by Rt[p](∗S t[p]).
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Figure 5: Inconsistency correction. An exemplar graph (middle) may in-

clude inconsistent relationships (edge from rainbow-streaked to grey blobby

texture). Neighborhoods in the finer (grey) exemplar provide poor matches

for those in the coarse (striped) exemplar (left). Inconsistency correction

(right) repairs this problem by maintaining a color transfer function at each

synthesis texel.
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Figure 6: Transfer functions. (a) For every transition found during anal-

ysis, (b) we find a transfer function, r that minimizes color error. (c) At

runtime, we store a cumulative transfer function, R, at each synthesis pixel.

Since analysis originally took place in the untransformed color space, (d)

these transfers must be undone before performing the correction step. Fi-

nally, (e) we arrive at a best-match texel and its associated transfer function,

which we (f) accumulate into the synthesis pixel by composition.

To formalize these ideas, consider any transfer function that is
linearly composable and invertible. In our implementation, we ex-
amined both linear (r(c) =Ac+b) and constant offset (r(c) = c+b)
functions, and found that the latter gave good results, a compact
and efficiently evaluable representation, and less numerical insta-
bility during fitting.

Analysis We will need a transfer function to describe every pixel
transition that happens during the correction step. Fortunately, for
all source pixels, Ei

k
[u], we need only consider a small number of

possible destinations, namely the candidate set E
j

l
[v] ∈ Ã(Ei

k
[u]).

Consequently, our transfer functions can be computed offline for all
precomputed candidates (§4.4).

During the candidate set precomputation (Fig. 6a), we solve for
the transfer function that best transforms the destination neighbor-
hood to match the source neighborhood (Fig. 6b), i.e., we optimize
r with respect to the metric

∑

δ∈{−2...+2}2

∥

∥

∥

∥

Ei
k[u+δhk]− r

(

E
j

l
[v+δhl]

)

∥

∥

∥

∥

2
. (4)

Given our choice of transfer function, r(c) = c+b, and the use of
5×5 neighborhoods, this yields:

b =
1

25

∑

δ∈{−2...+2}2

(

Ei
k[u+δhk]−E

j

l
[v+δhl]

)

.

By our definition of consistency, r is the identity map (b=0) for
intra-exemplar transitions.

Synthesis Recall that the correction step (§4.4) chooses the tran-
sition candidate that best matches the current synthesized neigh-
borhood. We would like to match to the appearance of the
transformed (i.e., viewer-perceived) neighborhood, Rt[p](∗S t[p])
(Fig. 6c). However, the precomputed transfer function was evalu-
ated with respect to the actual (untransformed) texel values. There-
fore, we inverse-transform the synthesis neighborhood back to the
original exemplar color space used during analysis (Fig. 6d). For
our transfer functions, inversion is simply: r−1(c) = c−b. Compos-
ing both the forward and inverse transforms, the error functional in
equation 1 becomes

∑

δ∈{−2...+2}2

∥

∥

∥

∥

R−1
p (Rp+δ(∗S t[p+δ]))− rv

(

E
j

l
[v+δhl]

)

∥

∥

∥

∥

2
, (5)

where we adopt the shorthand Rp = Rt[p]. Upon finding the best-
match neighborhood (Fig. 6e), we update the synthesis pixel by
composing the associated transfer function onto Rt[p] (Fig. 6f); for
constant offset functions, composition simply amounts to adding
offsets, b.

During upsampling, we must propagate the cumulative transfer
function to the next-finer synthesis level. We found that letting each
pixel inherit its parent’s transfer function (i.e., a piecewise constant
interpolation of Rt+1 from Rt) led to blocking artifacts. Instead, we
linearly interpolate the transfer functions of the four nearest parents.

6 GPU optimization

It is often useful to have a real-time visualization of synthesized
textures, e.g., for tuning of jitter parameters or for application to
games. As in the single-exemplar setting [Lefebvre and Hoppe
2005], we will use principal component analysis (PCA) to make
neighborhood matching more tractable on a GPU (or, alternatively,
faster on a CPU). However, we first define a construction, called
the superexemplar, that maps the exemplar graph into a form more
readily treatable by existing analysis tools.

Superexemplar For a formal definition of the superexemplar,
please refer to the appendix; informally, we (a) unroll exemplar
graph loops to transform the graph into a (possibly infinite) tree
whose root is E0, (b) expand each exemplar graph vertex into a
chain of vertices (each representing a stack level) connected by red
edges, and (c) for each exemplar graph edge we link correspond-
ing pairs of stack levels with black edges. Figure 4c illustrates the
superexemplar expansion of the exemplar graph shown in Fig. 4a.
Notice that red edges correspond to synthesis upsampling steps, and
black edges correspond to synthesis correction steps.

The red depth of a vertex is the number of red edges in the unique
path from the superexemplar root, E0

0
, to the vertex. This number

directly corresponds to the synthesis level, t, at which the superex-
emplar vertex plays a role. The set of superexemplar vertices of red
depth t gives us the set of stack levels that may appear at synthe-
sis level t. This knowledge will enable us to further optimize our
algorithm using PCA projection.

PCA projection We accelerate neighborhood matching (§4.4) by
projecting the 5× 5 pixel neighborhoods into a truncated 6D prin-
cipal component analysis (PCA) space. However, we make two
additional considerations for multiscale synthesis. First, since pix-
els may transition across multiple stack levels during correction, we
must consider all stack levels that can participate at a given synthe-
sis level. Using the superexemplar to find all levels at a given depth,
we perform PCA on the set of all neighborhoods found therein to
compute a suitable PCA basis.



Figure 7: Super-resolution. We use fourteen exemplars and a complex

topology (please refer to the supplemental materials to see the full graph)

to model a map of Japan. By disabling jitter at the coarsest levels, we

“lock in” large features such as mountains and cities; these constrain the

proceeding synthesis, which fills in details using the fine-scale exemplars.

To account for the inconsistency correction term in (5), we first
transform the target neighborhoods before projection into PCA
space. Note that a unique transfer function, r, is associated to each
candidate destination; we store alongside each candidate its transfer
function and its transformed, PCA-projected neighborhood. For the
GPU implementation, we also project the RGB color space down
to a per-synthesis level 2D PCA space.

Texture packing Since the superexemplar provides all of the w
stack levels that participate at level t, it is straightforward to map
indices (i,k) at level t to one integer coordinate, e ∈ [0 . . .w− 1].
This allows us to store all needed stack levels in one large wm×m
texture, and to replace the u coordinate universally with u′ =me+u.

We use one RGB texture for the stack levels Ee(u); three
RGBA textures for the two 6D PCA-reduced, inconsistency cor-
rected candidate neighborhoods; and one 16-bit RGBA texture2 to
store each of the candidate links and associated transfer functions,
(Ã(Ee(u)),ru). The synthesis structures (S [p],R[p]) are stored in
16-bit RGBA textures.

7 Results

We now explore the types of results enabled by our multiscale
framework. Please note that the figures in this paper have been
downsampled to 300dpi; full-resolution versions of all examples
are included in the supplementary materials.

Gigapixel textures Figure 1 shows a 16k × 16k map texture
generated using our method. The exemplar graph contains eleven
exemplars of size 256× 256, with scales spanning over three or-
ders of magnitude. The large resolution of this image is able to
capture features at all these scales, and allows us to evaluate the al-
gorithm’s success in synthesizing an image with spatial coherence
at all scales. We faithfully recreate details at all levels, from the
coarse distribution of islands to fine-level terrain details (shown in

2u′ will generally exceed the 8-bit limit of 256.

4
4

4

8x zoom out

Figure 8: Compact representation. The exemplar graph used here is very

small, being comprised of only four 128 × 128 exemplars; still, we are able

to generate a convincing output texture several orders of magnitude larger

(8k×8k, inset).

closeups). Generating such textures using existing single-exemplar
methods would require an exemplar on the order of 214×214 pixels,
or about 400 times more data!

A similar example is shown in Fig. 7, with the key distinction
that we have disabled jitter at the coarsest levels. In this light we can
interpret our method as a form of super-resolution [Freeman et al.
2001; Hertzmann et al. 2001]. As in previous such approaches,
we employ our hierarchical texture synthesis algorithm to fill in
high-resolution details on a lower-resolution image—in this case,
the root exemplar (a 256 × 256 map of Japan.) However, we can
deal with many more levels of detail beyond the coarse guiding
image; the output image shown is again of size 16k × 16k.

Coherent infinite zooms Figure 3 shows frames from two in-
finitely zooming animations, with each image containing pixels at
1/16th the scale of the one to its left. Notice that texture character-
istics are consistently preserved across all scales. Each sequence
was created using a single exemplar with a single self-looping
edge. What we see here is an example-based approach to cre-
ating resolution-independent textures—previously attainable only
through procedural methods. Furthermore, our method can utilize
both artist-created (van Gogh’s The Starry Night, top) or captured
(a photograph of pebbles, bottom) data. Much longer versions of
these zooms and others can be viewed in the accompanying video.

Inconsistency correction In Fig. 5 we demonstrate that our in-
consistency correction method is able to compensate for color vari-
ations between exemplars. The graph shown prescribes a rainbow
stripe pattern at coarse scales, but only links to a black-and-white
texture for finer scales. As we see clearly in the left image, the
texels in the greyscale exemplar are unable to recreate the desired
colorful patterns. In contrast, our inconsistency correction method
is able to adjust the colors of fine texels (right inset) to match those
encountered at coarser levels in the synthesis.

Artist controllability Finally, we show two examples that
demonstrate the compact expressiveness of the exemplar graph rep-
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Figure 9: A simple chain. A texture created from a chain of exemplars,

exhibiting unique features at three different scales. Crafted in a matter

of minutes, this artist-created exemplar graph offers pleasing results that

would be much harder to develop using procedural techniques. Note that

inconsistencies in the input are repaired by inconsistency correction (§5).

resentation. The rusted metal surface shown in Fig. 8 was generated
using just four 128× 128 exemplars all taken from the same high-
resolution photograph. For essentially the cost of a single 256×256
exemplar, we can produce large, aperiodic, high-resolution textures
(a zoom-out is shown in the inset).

The texture in Fig. 9 was generated from an artist-created chain
of exemplars, exhibiting distinct features (yellow splotches, blue
dabs of paint, and a grainy surface) at three different scales. Note
that the tiny (1–2 pixel) specks in the root exemplar prescribe only
the rough placement of the blue dabs, while their wispy details
are contributed by the intermediate exemplar. Also notice that we
achieve this result despite the largely inconsistent input. The ex-
emplars were made in a matter of minutes, demonstrating the in-
tuitive user control made possible by the exemplar graph; it would
be much more difficult and time-consuming to create such effects
using procedural methods.

Synthesis performance The zooming animations in Fig. 3
were generated using our GPU implementation, which achieved a
synthesis throughput of 9.37M pixels/sec on a GeForce 8800 GTX.
In comparison, our implementation of Lefebvre and Hoppe’s algo-
rithm [2005] runs at about 15.30M pixels/second on the same ma-
chine. A multithreaded implementation of our CPU algorithm runs
at about 100k pixels/sec on an 8-core machine.

8 Limitations

Despite inconsistency correction, our method is still sensitive to
poorly designed input graphs. It is possible for exemplar regions
(or even entire exemplars) to be ignored by the preprocess if there
are preferable correspondences present elsewhere in the exemplar
graph. Likewise, exemplar regions can be overused if an input con-
tains many identical neighborhoods (e.g., the solid blue region in
Fig. 10a). Since we compute our transfer functions after finding

3
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b

Figure 10: Failure modes. An example illustrating current limitations of

our method. For extremely inconsistent inputs, (a) the candidate neighbor-

hood search (§4.4) may fail to find coherent matches; such cases cannot be

repaired by inconsistency correction. (b) Linear interpolation of transfer

functions can lead to a smearing effect around hard edges. Additionally, (c)

semantic structures—such as text—are generally not preserved.

closest-match neighborhoods, particularly bad cases may not be
reparable through simple inconsistency correction alone.

Because we linearly interpolate cumulative transfer functions
during upsampling, colors can “bleed” into neighboring areas, es-
pecially in regions requiring stronger inconsistency correction. This
problem is illustrated in Fig. 10b: at coarser levels, inconsistency
correction is able to approximate the text/gutter boundary; how-
ever, the hard edge is gradually lost as we continue to refine into
finer resolutions.

Another current limitation of our work is that we can often fail to
capture semantic structures, particularly if the jitter parameter is set
too strongly (Fig. 10c). This is generally an inherent weakness of
the pixel-based parallel synthesis approach that we adopt. As with
previous such works [Lefebvre and Hoppe 2005], our GPU algo-
rithm can allow for real-time tuning of synthesis parameters. Fur-
thermore, we anticipate that it will be useful to extend other synthe-
sis paradigms, such as patch- [Wu and Yu 2004] or optimization-
[Kwatra et al. 2005] based methods, to the multiscale setting in
order to inherit their desirable qualities (e.g., feature preservation).

9 Conclusion and Future Directions

We have introduced the multiscale setting for example-based tex-
ture synthesis, enabling the creation of textures spanning large or
infinite ranges of scale. Our exemplar graph representation and ac-
companying synthesis framework provide an intuitive method for
generating multiscale textures. Furthermore, we show how to opti-
mize for efficient and even real-time GPU synthesis.

Multiscale textures offer many exciting new paths for further re-
search. Particularly, we feel that there are several open directions
in multiscale texture analysis. We typically arrived at our exam-
ples through careful design and iteration, but in the future we an-
ticipate significant research towards user-friendly exemplar graph
editing and preview applications. A better understanding of con-
sistency, for instance, could lead to automatic tuning of exemplar



graph edges; one might even imagine applications where exemplar
graphs are automatically constructed from large datasets.

In the future, we expect that the multiscale approach will be
useful for other classes of textures besides color, such as normal
maps [Han et al. 2007] or appearance vectors [Lefebvre and Hoppe
2006]. Other interesting ideas include the synthesis of multiscale
textures directly on large meshes, or in application to solid texture
synthesis [Kopf et al. 2007]. In summary, we feel that multiscale
texture synthesis is simple in concept but powerful in application; it
directly provides novel and useful applications, while introducing a
host of new avenues for investigation.
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Appendix: superexemplar, formalized

The superexemplar is a tree with root E0
0

and directed red and black

edges. Each vertex, (i,k, t) ∈ V∗, points to a stack level, Ei
k
, and its

name includes a red depth counter, t. We build the superexemplar
from the exemplar graph by induction:

Base step: the root vertex is (0,0,0) ∈ V∗.

Inductive step 1 (black edge): The admissible destinations of a
correction step for stack level Ei

k
are determined by the directed

edges, and associated scaling relations, of the exemplar graph:

A∗(i,k, t) = { ( j, l, t) | ∃ (i, j,k− l) ∈ E, 0 ≤ l ≤ L } ,

(i,k, t) ∈ V∗ −→A∗(i,k, t) ⊂ V∗ .

Inductive step 2 (red edge): The upsampling step maps a texel in
stack level Ei

k
to a texel in stack level Ei

k+1
, for k < L:

(i,k, t) ∈ V∗ −→ (i,k+1, t+1) ∈ V∗ , for 0 ≤ k < L .


