Mesh Arrangements for Solid Geometry

Qingnan Zhou1 Eitan Grinspun2 Denis Zorin1 Alec Jacobson2

1New York University 2Columbia University

Figure 1: Our method takes as input any number of meshes (three shown in this 2D illustration). We resolve intersections and assign a winding number vector to every delineated cell. Different boolean results are extracted according to these winding number vectors.

Abstract

Many high-level geometry processing tasks rely on low-level constructive solid geometry operations. Though trivial for implicit representations, boolean operations are notoriously difficult to execute robustly for explicit boundary representations. Existing methods for 3D triangle meshes fall short in one way or another. Some methods are fast but fail to produce closed, self-intersection free output. Other methods are robust but place prohibitively strict assumptions on the input, e.g., no hollow cavities, non-manifold edges or self-intersections. We propose a systematic recipe for conducting a family of exact constructive solid geometry operations. The two-stage method makes no general position assumptions and does not resort to numerical perturbation. The method is \textit{variadic}, operating on any number of input meshes. This generalizes \textit{unary} mesh-repair operations, classic \textit{binary} boolean differentiating, and \textit{n}-ary operations such as finding all regions inside at least \(k\) out of \(n\) inputs.

We demonstrate the superior effectiveness and robustness of our method on a dataset of 10,000 “real-world” meshes from a popular online repository. To encourage development, validation, and comparison, we release both our code and dataset to the public.

Keywords: arrangements, constructive solid geometry, booleans

Concepts: Computing methodologies \rightarrow Computer graphics;

1 Introduction

Geometric modeling tools are more accessible than ever, scanning technologies are available at the commodity level, additive fabrication technologies rapidly grow in popularity, and platforms have emerged for sharing 3D models online. Unfortunately, the resulting wealth of 3D models comes with a catch. The diversity of these models coincides with unpredictable mesh quality and structure. For example, manually sculpted models are created using a broad range of software by designers with varying skill and intention.

Meanwhile, geometry processing operations increase in sophistication: from remeshing to physical simulation. Yet, many, if not most, available algorithms impose strict requirements on their inputs. As the complexity and amount of 3D data grows, one-by-one preprocessing is no longer acceptable. For example, cumbersome mesh cleanup of solid mesh may take more time than a subsequent physical simulation of it.

An important class of mesh repair and solid operations aims to preserve input geometry as much as possible when recombining it in new ways or converting it to suitable form for a downstream application. These operations are elegantly viewed as operations on space partitions defined by \textit{mesh arrangements}. A \textit{mesh arrangement}, built from a collection of (possibly non-manifold, open-boundary, self-intersecting, with degenerate triangles, etc.) meshes, partitions space into a number of cells. This view unifies tasks often viewed as distinct, such as mesh repair and boolean operations.

We introduce mesh arrangements constructed from a restricted class of meshes: those with \textit{piecewise-constant winding number}, or PWN. By surveying 10,000 popular meshes, we show that PWN meshes cover a large fraction of practically relevant situations. An arrangements of a PWN mesh is a lightweight yet powerful representation. Casually, a PWN mesh arrangement is composed from possibly (self-)overlapping components bounding a number of solids. These arrangements enable a set of highly \textit{robust} and \textit{conservative} algorithms. Robust, we mean that algorithms successfully produce output for all PWN meshes. By conservative, we mean that arrangements preserve original mesh geometry exactly.

Our general approach can be separated into two stages: adding meshes to an arrangement—independed of the desired operation—and extracting the boundary of the result according to an extraction function describing the desired boundary in terms of the winding numbers of the region it bounds (see Figure 1).

The first stage, in turn, consists of resolving intersections, partitioning space into cells, and labeling each cell with winding numbers with respect to each input mesh.

In the second stage, all classic boolean operations (e.g., union, intersection, difference) have trivial extraction function definitions. We also explore other interesting functions, such as extracting the

Figure 2: Self-intersections are not just “artifacts.” They also occur intentionally during modeling. A coffee mug handle is extruded then curled inward on itself (blue). The self-intersections (orange) do not prohibit constructing the shape’s underlying torus-topology self-union with our algorithm (green).
structure and has a significant impact on performance.

erality of the representation requires a complex heavy-weight data

generated by the Nef representation. More fundamentally, the gen-

tures, and inner cavities, although the latter two

ehedra, excluding inputs with self-intersections, non-manifold fea-

bootstrapping CGAL) only construct this form via embedded poly-

Current tools in CGAL and OPEN

e data structure (Sphere Maps and Selective Nef Complexes) as in-

1988]. CGAL's implementation requires a valid Nef polyhedron

implementation [Granados et al. 2003] of Nef polyhedra [Bieri & Nef

The current standard in robustness is CGAL’s exact-arithmetic im-

output that is not a solid mesh. We also evaluate the conversion of

of previous work. We present extensive comparisons with state-of-

the art methods, all of which fail with significant frequency, either

rejecting the input, failing to produce any output, or producing an

output that is not a solid mesh. We also evaluate the conversion of

our exact results to floating-point positions; in this case, we outper-

form existing floating point methods along the same criteria.

2 Related work

Most previous work separate into two broad groups: boolean opera-

tions on different classes of objects and “mesh repair”. In particular,

elimination of self-intersections, computing outer hulls and similar

operations. While both require intersecting meshes or surfaces, in

most cases the problems have been treated disjointly.

Boolean operations Previous boolean methods define a restric-

tive class of input 3D pointsets that are closed with respect to set

operations. The methods output a restrictive class of boundary rep-

resentation or spatial partition. In almost all cases, it is assumed

that creating a valid boundary representation from a broader class

of inputs is a separate task, delegated to the user or preprocessing.

Inputs not meeting the strict requirements are not handled directly.

Previous works differ by generality of input/output representations

and tradeoffs between performance and robustness. We compare

directly to the state of the art in Sections 5 and 7. For now, we cate-

gorize approaches, highlighting salient similarities and distinctions.

The current standard in robustness is CGAL’s exact-arithmetic im-

plementation [Granados et al. 2003] of Nef polyhedra [Bieri & Nef

1988]. CGAL’s implementation requires a valid Nef polyhedron

data structure (Sphere Maps and Selective Nef Complexes) as in-

put. Current tools in CGAL and OPENS CAD (a modeling tool

bootstrapping CGAL) only construct this form via embedded poly-

hedra, excluding inputs with self-intersections, non-manifold fea-

ures, and inner cavities, although the latter two could be re-

presented by the Nef representation. More fundamentally, the gen-

erality of the representation requires a complex heavy-weight data

structure and has a significant impact on performance.

On the other extreme, Douze et al. [2015] restrict inputs to embed-

ded polyhedra with vertices in general position, but is extremely

efficient and is capable of handling very large meshes. Douze et

al. introduce the concept of variadic boolean operations: immedi-

ately evaluating boolean operations involving many inputs rather

than decomposing into a tree of binary operations (see Figure 3).

Recently, Barki et al. [2015] use a more general yet lightweight

representation and exact rational arithmetic to handle a variety

of near degeneracies. Their efficient algorithm maintains robustness

on a 26-model benchmark.

All methods so far are similar to ours in that they add intersec-

tions of boundary representations, and proceed to classify elements of the

boundary to construct the result. However, these algorithms assume

that input surfaces are free of self-intersections. Self-intersections

are not only a ubiquitous meshing artifact, but also a common way

to model interesting topologies Figure 2.

Many early methods based on intersection and classification suf-

fer from robustness problems, before exact-arithmetic based meth-

ods became practical. This leads to development of more robust

approaches, initially based on conversion to volumetric representa-

ations, starting from [Museth et al. 2002]. However, the approxima-

tion of the original meshes depends on the chosen resolution level

for the volume grid, and high accuracy requires high tessellation.

Different approaches accelerate this approach, reduce complexity

of the output (e.g., using adaptivity [Varadhan et al. 2004]), and

attempt to preserve the original mesh as much as possible [Pavic

et al. 2010; Wang 2011; Zhao et al. 2011]. The fundamental issue

with such techniques is the approximate and grid-dependent nature

of volumetric calculations: while increasing robustness, these may

lead to unwieldy topology changes and geometric deviations.

The space-partition view of boolean operations has appeared most

clearly in binary space partitioning (BSP) methods, starting with

[Thibault & Naylor 1987; Naylor et al. 1990]. Bernstein & Fussell

[2009] combined this with robust predicates to develop an efficient

and robust way to compute booleans on surfaces in BSP represen-

tation. As in most other works on boolean, conversion to this rep-

resentation is viewed as a preprocess, with the range of inputs this

preprocess can handle not precisely defined. While compared to

volumetric-grid approaches, BSP methods increase mesh complex-

ity more moderately and input geometry is better preserved, yet

significant refinement is still needed. Campen & Kobbelt [2010a]

localized their BSP-based method using an octree and perform re-

finement only locally near intersections. Importantly, this work
points out that BSP trees provide a general representation of space partition that flexibly performs both boolean operations, outer hull computations, and other operations. We expand this idea, but use a higher-level and more compact space partition.

Mesh repair Mesh repair techniques historically deviate from boolean operations by focusing on converting a maximally broad range of input meshes to a normalized representation (e.g., closed manifold meshes without self-intersections). These methods often rely on volumetric approximation and for certain problems (e.g., hole-filling) this may be unavoidable. If possible, preserving original geometry is desirable. A common example of mesh repair of this type is computation of the outer hull, though both state-of-the-art methods [Campen & Kobelt 2010a; Attene 2014] do not appear to disambiguate nested and non-nested components (see Figure 4). For example, when preparing models for 3D printing, the outer hull may be inappropriate as it removes inner cavities (see Figure 5).

Approaches to robustness, and sources of non-robustness

Many implementations (e.g., [Bernstein 2013; Mei & Tipper 2013; Douze et al. 2015]) explicitly assume general position of inputs (no four points on a circle, no co-planar intersections, etc.) and do not attempt to handle numerical non-robustness. The development of new boolean and mesh repair techniques was driven, to a large extent, by robustness considerations. We consider more explicitly how robustness was addressed in different contexts, and the unresolved problems we are addressing in our approach.

The most comprehensive approach is to represent all objects using exact arithmetic. With advances in filtered predicates for efficiency, this approach is increasingly preferred. We (like others [Granados et al. 2003; Barki et al. 2015]) largely follow it. Earlier BSP-based work used the observation [Sugihara & Iri 1992] that representing points as the intersection of original planes eliminates the need for exact computations (only exact predicates). This, in principle makes it possible to do most computations robustly in floating point, but some constructions or rounding still inevitably appear in all methods, and lead to non-robustness, often subtly.

For example, Banerjee & Rossignac [1996] and later Xu & Keyser [2013] build exact topologies but fixed-precision floating point vertex positions, leading to self-intersections, inversions (see Figure 6) and degeneracies in the output. Campen & Kobbelt [2010a] round all input vertices aggressively to ensure exact plane intersections for a BSP-representation. We discuss several other problems in existing techniques in greater detail as we describe our method. For our approach (and all exact methods), conversion of the output to a floating point (if such a conversion is desired) is a potential source of problems, although we have observed it in a very small proportion of cases and attack it with an additional heuristic utilizing our core method in Section 6.1.

3 Concepts

The crux of our method is construction of the mesh arrangement data structure, consisting of cells annotated with winding numbers, patches and their adjacency graph, that allows us to extract results of a variety of operations from the arrangement.

This structure is a relatively lightweight representation of a space partition (cf. BSP trees). Based on compound surface objects (patches), it allows for complex cells (does not require them to be convex or even topological balls). Yet, it allows us to perform all operations robustly and efficiently.

The inputs to our arrangement creation algorithm are n piecewise-constant winding number triangle meshes A_1, \ldots, A_n. For extraction of the results of specific operations from the arrangement, we use a variadic extraction function f to determine the solid mesh boundary of which region(s) of space carved out by A_1, \ldots, A_n to output.

3.1 Piecewise-constant winding number meshes

A triangle mesh is a set of 3D vertices (some of which may be geometrically coinciding) and a set of triangles connecting these vertices, each triangle represented by a triplets of vertices, with orientation implied by the vertex order for non-degenerate triangles. We may view triangles combinatorially as triplets of vertices as well as geometrically as pointsets in 3D.

Effectively, any valid triangular mesh in Wavefront OBJ-like format, is a valid input, subject to one general condition: we require that triangle meshes A_i induce a piecewise-constant integer generalized winding number (PWN) field ω_i [Jacobson et al. 2013]:

$$\omega_i(p) \in \mathbb{Z} \quad \forall p \in \mathbb{R} \setminus |A_i|,$$

where $|A_i|$ denotes the union of all triangles of A_i viewed as point sets. For a triangle mesh, this is simply the sum of the signed solid angles $\Omega_t(p)$ of each oriented triangle t:

$$\omega_i(p) = \frac{1}{4\pi} \sum_{t \in A_i} \Omega_t(p).$$

We call meshes with this property piecewise-constant winding number meshes or PWN meshes.

A PWN mesh A_i can be interpreted as dividing all of \mathbb{R}^3 into regions that are outside ($\omega_i = 0$) or inside ($\omega_i \neq 0$) of the “solid implied by A_i.” This allows multiplicity ($|\omega_i| > 0$) for parts of
We may verify whether a mesh \(A_i \) is PWN by resolving self-intersections (see Section 5.1) and then checking that the total signed incidence of every edge in the result is zero. For any edge \(e = \{i, j\} \) an oriented triangle \(f = \{i, j, k\} \) contributes +1 to the total signed incidence of \(e \). An oppositely oriented triangle \(g = \{j, i, \ell\} \) contributes -1.

3.2 Variadic extraction function

In general, the extraction function \(f \) takes as input a winding number vector \(w = [w_1, \ldots, w_n] \) corresponding to the winding number of each input mesh at the points of a given cell of the space partition defined by the mesh arrangement. The function \(f \) returns “true” if a region with this winding number vector is to be included in the output solid, and “false” otherwise.

For example, to implement \(n \)-way union, one would provide:

\[
\text{union}(w) = \begin{cases}
\text{true} & \text{if } \exists i \mid w_i \neq 0, \\
\text{false} & \text{otherwise.}
\end{cases}
\]

When \(n = 1 \), this function will identify a mesh’s self-union. Similarly for \(n \)-way intersection:

\[
\text{intersect}(w) = \begin{cases}
\text{true} & \text{if } w_i \neq 0 \forall i, \\
\text{false} & \text{otherwise.}
\end{cases}
\]

Some extractions are asymmetric, e.g., subtraction \((A_1 \setminus A_2)\):

\[
\text{minus}(w) = \begin{cases}
w_1 \neq 0 \text{ and } w_2 = 0 & \text{inside of } A_1 \text{ outside of } A_2
\end{cases}
\]

One can also design more esoteric functions, such as extracting all parts of space inside at least two of the inputs:

\[
\text{min-2}(w) = \begin{cases}
\text{true} & \text{if } \exists i \text{ and } j \neq i \mid w_i, w_j \neq 0, \\
\text{false} & \text{otherwise.}
\end{cases}
\]

Changing the two-sided inequalities above (e.g., \(w_i \neq 0 \)) to single-sided inequalities (e.g., \(w_i > 0 \)) results in orientation-sensitive op-
Overview

In the second stage, we determine adjacency information between intersections, degenerate triangles or duplicate triangles, and their generalized winding number field is either zero or one. Note that even if the input meshes A_1 and A_2 are manifold polyhedra, the output of $C = A_1 \cup A_2$ may be a non-manifold solid mesh (e.g., if A_1 bounds the unit cube and A_2 bounds the unit cube offset by $(1, 1, 0)$ then C will contain a non-manifold edge where A and A_2 “kiss”; see inset).

3.3 Solid meshes

Our algorithm’s output meshes belong to a special subclass of PWN meshes that we call solid meshes. Solid meshes are free of self-intersections, degenerate triangles or duplicate triangles, and their generalized winding number field is either zero or one.

Note that even if the input meshes A_1 and A_2 are manifold polyhedra, the output of $C = A_1 \cup A_2$ may be a non-manifold solid mesh (e.g., if A_1 bounds the unit cube and A_2 bounds the unit cube offset by $(1, 1, 0)$ then C will contain a non-manifold edge where A and A_2 “kiss”; see inset).

4 Overview

Before worrying about details of the method, we review the key aspects of each stage. For now, we consider the usual binary boolean operations on two meshes A and B. The insets in this section illustrate the stages of the computation of the asymmetric difference $A \setminus B$.

Arrangement construction In the first stage, we resolve all intersections between input meshes using exact arithmetic. We add new triangles by subdividing the inputs so that all intersections occur exactly at edges and vertices. All refined triangles retain references to the original triangles of A and B.

In the second stage, we determine adjacency information between cells defining a space partition. We organize the mesh resulting from resolving intersections in the first stage into patches of triangles connected by manifold edges. By definition, patches are incident to each other along non-manifold mesh edges. Two cells are adjacent via a shared oriented boundary patch. Two patches incident on the same non-manifold edge may bound the same cell. We determine the patch-cell relations by sorting facets from all incident patches around this edge. In this way, we determine the cell adjacency for each connected component of the adjacency graph of patches. To ensure correct cell adjacency of nested components, we identify a boundary facet of the ambient cell surrounding each component and determine if it is contained in an interior (non-ambient) cell of another component, via point location (see Section 5.5.1). After merging the cell adjacency graphs across connected components, there remains a single ambient cell outside of all components.

In the third stage, we assign winding numbers with respect to A and B to each cell, $w = [w_A, w_B]$. Having constructed the cell-patch adjacency information in the previous stage, this step is purely combinatorial. The ambient “0” cell is defined to $[0, 0]$.

4 Algorithms

In this section, we consider in detail the algorithms for each of the steps overviewed in Section 4. We will break each stage into core subroutines. For each subroutine, we will provide preconditions on its input and postconditions on its output. We start with specifying preconditions and postconditions of our method as a whole.

Preconditions The method accepts as input a sequence of PWN meshes, and an extraction function whose arguments correspond to the mesh sequence. The mesh vertex coordinates are assumed to be rational coordinates, a property we call (EXACT). We review exactness in the Appendix. In accepting as input the broader class of exact coordinates rather than floating point values, we accommodate upstream operations, whose output is exact.

Postconditions The output of our algorithm is guaranteed to be an exact solid mesh. As such it is a valid input to a downstream application of our own algorithm or another module in CGAL. Observe that while our input preconditions permit self-intersections, and co-planar/degenerate/duplicate facets—by design, these will never occur in our output.

5.1 Intersection resolution

The first stage of arrangement construction resolves all triangle-triangle intersections, enriching the mesh combinatorics so that all intersections are exactly represented by shared vertices and edges. We consider all input meshes as a single mesh, i.e., we make no distinction between intersections and self-intersections.
Preconditions The input is an exact PWN mesh \(A \).

Postconditions The output is an exact PWN mesh free of self-intersections, co-incident vertices, and degenerate triangles, inducing exactly the same winding number field as the input mesh.

Algorithm Self-intersection resolution consists of four steps: discard exactly zero area input triangles as they do not affect the winding number, compute the intersection between every pair of triangles, conduct a constrained Delaunay triangulation for every co-planar cluster of intersections, and extract and replicate subtriangles from each triangle’s cluster’s triangulation.

For now we set aside conservative culling for performance acceleration. We consider all pairs of triangles \(a \) and \(b \) in \(A \). The intersection \(\text{intersect}(a, b) \) between these triangles can be one of the following four cases: empty, a single point, a line segment, or a convex polygon (see Figure 9). This intersection must be computed exactly, therefore \(\text{intersect}(a, b) \) commutes.

![Figure 9: Blue triangles intersect the green at a point, segments and a polygon (left, 3D). Subdivided constraints reduce to coplanar points and segments (middle, 2D). The original green triangle is replaced with replications of the green triangles of a constrained Delaunay triangulation (CDT) of the coplanar cluster (right, 2D).](image)

Next we replace each input triangle with a triangulation containing those elements resulting from the intersections.

Previous methods construct this triangulation independently for each triangle [Jacobson et al. 2013; Attene 2014; Barki et al. 2015], but this approach may introduce inconsistencies between overlapping triangles due to non-general position configurations (see Figure 10). Inconsistent triangulations of coplanar intersections result in violating the preconditions of the following stage that the mesh is free of intersections as defined in Section 3.1.

![Figure 10: Two overlapping, co-planar right triangles (left) admit multiple constrained Delaunay triangulations (CDTs). Independent triangulation could lead to inconsistency (middle and right).](image)

Instead, we gather clusters of triangles connected via non-trivial co-planar intersections (i.e., intersections resulting in convex polygons). By construction all triangles in a cluster share the same supporting plane. We compute a 2D constrained Delaunay triangulation (CDT) of the convex hull of each cluster. The original constraints collected from triangles in the cluster are the points, segments and polygons resulting from intersections with all other triangles in the input mesh \(A \), as well as the vertex points and edges of the cluster triangles themselves. We further subdivide segment constraints so that all intersections are resolved as constraint Steiner points. Finally, we compute the CDT of the convex hull of these points and segments; no additional Steiner vertices are required.

With CDTs constructed for each cluster, we iterate over each original triangle \(t \) to collect its respective subdivisions. We select among the CDT cluster those sub-triangles \(\{ t_1, t_2, \ldots \} \) whose three vertices, according to exact 2D predicates, are not strictly outside \(t \). We clone each sub-triangle \(t_i \) and orient it to match \(t \), again using exact 2D predicates. In order to label winding number vectors (Section 5.3), the cloned oriented subtriangle stores a reference to \(t \). This reference is also useful for applications requiring interpolation of texture coordinates, colors, or other attributes onto the boolean output mesh (see Figure 11).

![Figure 11: We retain the relationship between the output triangles and the inputs. Because of our exactness, attributes like texture coordinates are losslessly maintained.](image)

We clean up by purging geometrically duplicate vertices. As we are using exact vertex representation, this can be done efficiently using lexicographical sorting and unique entry extraction from the list of vertices. The result is a possibly non-manifold mesh with possible duplicate triangles, but no self-intersections.

Duplicate triangles need to be retained at this stage, as their removal requires knowledge of the extraction function.

The output mesh has exactly the same winding number field as the input. This immediately follows from the fact that in the result all non-zero area triangles of the original meshes are retained, possibly in the subdivided form as a result of intersection resolution. One aspect of ensuring this is cloning sub-triangles at co-planar intersections. In the inset figure, the orange and blue shapes share a side. If only one set of faces is kept in the output the result is not a PWN mesh.

5.2 Partitioning space into cells

The second stage explicitly constructs a set of cells. We define a cell as a region bound by the union of oriented patches forming a closed manifold mesh with no self-intersections. The set of cells forms a space partition.

Each patch is a subset of triangles of the input mesh and inherits their orientation; the patch is a maximal connected set of faces with all edges shared by two faces from the set being manifold. The condition implies that a boundary edge of a patch (if it exists) is a non-manifold junction with neighboring patches.

Boundary patches of a cell may be geometrically coplanar, producing zero-volume cells; by the absence of self-intersections, such patches must consist of single triangles sharing the same vertices.

Preconditions The input mesh is PWN without degenerate triangles, self-intersections, and co-incident vertices.

Postconditions The output is a bipartite directed graph encoding of cell-patch incidences. Each patch node has one incoming and one outgoing edge to cell nodes, representing the volumetric
regions on the positive and negative sides of the (oriented) patch, re-
sp ectively, which we call above and below cells. In the following,
we refer to “patch” (the combinatorial and geometric data struc-
ture) and “patch node” (the bipartite graph node) interchangeably,
and likewise for cells.

The output also includes mutual references between patches and in-
put mesh triangles, i.e., each patch node contains a list of triangles,
and each triangle has a pointer to the patch it is contained in.

Geometrically, the cells cover all \(\mathbb{R}^3 \). Some cells will have zero geometric vol-
ume. These cells are always bound by exactly two clones of the same ge-
ometric triangle: i.e., two patches, each with one triangle. There may be many such
degenerate cells stacked on the same multiply cloned triangle.

When the input to this stage is the resolved intersection (see Sec-
tion 5.1) of \(n \) piecewise-constant winding number inducing meshes,
then the output is denoted a valid cell-patch data structure.

Algorithm

Our cell partitioning algorithm first separates the input mesh into connected components of triangles. Two triangles are considered connected if and only if they share an edge.

For each such connected component, we construct a cell-patch graph independently of the other components. First, we cluster tri-
angles into patches. Starting with any unassigned triangle we grow
a new patch traversing across manifold edges until the boundary of
the patch is either empty or consists only of non-manifold edges.

During clustering, we record, for each non-manifold edge, its inci-
dences in arbitrary order.

The adjacency between patches is encoded as a matrix \(\mathbf{A} \), setting \(\mathbf{A}(p,q) = e \) which means that patch \(p \) is incident to patch \(q \) shar-
ing it a representative non-manifold edge \(e \). Incident patches
\(p \) and \(q \) may share multiple non-manifold edges, and the choice of
representative \(\mathbf{A}(p,q) \) is arbitrary.

We now construct the bipartite graph of cells and patches encoding
the volumetric partition: while the patches have already been estab-
lished above, it remains to construct the cells and to add, for each
incident patches.

The adjacency between patches is encoded as a matrix \(\mathbf{A} \), setting \(\mathbf{A}(p,q) = e \) which means that patch \(p \) is incident to patch \(q \) shar-
ing it a representative non-manifold edge \(e \). Incident patches
\(p \) and \(q \) may share multiple non-manifold edges, and the choice of
representative \(\mathbf{A}(p,q) \) is arbitrary.

We now construct the bipartite graph of cells and patches encoding
the volumetric partition: while the patches have already been estab-
lished above, it remains to construct the cells and to add, for each
patch \(p \), one outgoing edge to \(C^+(p) \) and one incoming edge from
\(C^-(p) \), the cells above and below \(p \), respectively.

We will traverse all patch-patch incidences in arbitrary order.

When visiting an incident pair \((p,q) \), we retrieve the representative edge \(e = \mathbf{A}(p,q) \). As detailed in Section 5.5.3,
we sort the \(e \)-incident patches cyclically around \(e \), with respect to \(p \)’s orientation.

Suppose the sort results in the ordering
\([p, r_1, r_2, \ldots, r_k] \), so that \(r_1 \) and \(r_k \) are immediately “above” and “below” \(p \), re-
spectively (see inset).

If we think of this ordering as “upward,” then each patch’s
own orientation is either consistent or inconsistent with the sorting
order (e.g. in inset, \(r_2 \) is inconsistent). Let \(C^+(r_i) \equiv C^+(r_{i-1}) \) and
\(C^+(r_i) \equiv C^+(r_{i+1}) \) if patch \(r_i \) is oriented consistently with the sort,
otherwise let \(C^+(r_i) \equiv C^+(r_{i+1}) \) and \(C^+(r_{i+1}) \equiv C^+(r_{i-1}) \).

We now propagate cell assignments by iterating over each conse-
cutive pair of \(e \)-incident patches in order, beginning with \((p,r_1) \) and
ending with \((r_k,p) \). Visiting the pair \((r_i, r_{i+1}) \), our task is to iden-
tify the cell references \(C^+(r_i) \equiv C^+(r_{i+1}) \). If both \(C^+(r_i) \) and
\(C^-(r_{i+1}) \) are unassigned, we assign them both to a newly created

After completing each connected component, it remains to merge the bipartite
graphs. In particular, the ambient cell of
a nested component must be equated to
the corresponding internal cell of the en-
closing component (see inset). As a spe-
cial case, the ambient cells of all non-
nested components must be equated.

As detailed in Section 5.5.2, for each component \(K_i \), we identify its
ambient cell \(A(K_i) \).

We now iterate over each component, determine whether it is
nested, and find the cell to which its ambient cell should be equal.
Visiting component \(K_i \), we select an arbitrary point \(p \in K_i \). We
build a set of candidates \(E = \{ K_j \mid j \neq i, p \notin A(K_j) \} \) consisting
of every component \(K_j \neq K_i \) whose ambient cell does not contain
\(p \). To determine whether a cell contains \(p \), we use point location
(Section 5.5.1): given a point \(p \) and component \(K_j \) find the con-
taining cell \(L(K_j, p) \) and distance from \(p \) to \(K_j \).

If the set \(E \) is not empty, then \(K_i \) is a nested component. Among the
candidates \(E \), we select the one (and only) component \(K_j \) closest to
\(p \). We merge the bipartite graph nodes \(A(K_i) \) and \(L(K_j, p) \), equating
the ambient cell of the nested component to the interior cell
of its enclosing component, respectively.

If the set \(E \) is empty, then \(K_i \) is not a nested component. In this
case, we equate its ambient cell \(A(K_i) \) with the universal ambient
cell \(C_0 \), defined as the cell containing “all points at infinity”, by
merging these two nodes in the bipartite graph.

After we have processed all components, the ambient cell of each
nested component has been equated with the interior cell of its en-
closing component, and the ambient cell of all non-nested compo-
nents is \(C_0 \). The bipartite graph is now connected; each patch is
incident to two cells in a consistent manner.

5.3 Winding number labeling

In the third stage, we compute the winding number of each cell with
respect to each input mesh.

Preconditions The input is a valid cell-patch graph. The univer-
sal ambient cell is seeded with a known winding number vector;
by default \(w = [0, \ldots, 0] \), signifying that infinity lies outside
all shapes. Only the combinatorial (not geometric) aspects of the
input are considered by this algorithm: instead of computing winding
numbers geometrically, we use property that the winding number
changes by \(1 \) or \(-1 \), whenever a surface is crossed, and thus can
be computed by propagation along the cell-patch bipartite graph.

Postconditions The output is a valid cell-patch data structure
with consistently labeled winding number vector for each cell.
Neighboring cells will differ in winding number vector by exactly
\(1 \) or \(-1 \) in a single entry corresponding to the originating mesh
of the patch between them, signed according to its orientation.

This process assigns winding numbers to zero-volume cells, formed
by duplicate triangles; although no points have this winding num-
ber, this records what interior points would have if the cell bound-
aries were separated consistently with patch ordering.
Algorithm Given cell \(C \) with a known winding number vector \(w_c \), we assign the winding number vector of neighboring cells via breadth first traversal. For each oriented patch \(p \) separating cell \(C \) from neighbor cell \(N \), if the winding number vector \(w_n \) is still unknown we set it to \(w_c \) adjusted to account for crossing patch \(p \), originating from mesh \(A_1 \):

\[
w_n \leftarrow w_c + s_p(\delta_{i1} \ldots \delta_{in}],
\]

where \(s_p \) is +1 if cell \(C \) lies above \(p \) and \(N \) below and -1 if vice versa, and \(\delta_{ij} \) is Kronecker’s delta. We then add cell \(N \) to the queue of cells to process later. When the queue is empty, all cells have been labeled, and the algorithm has completed.

Complements By default, all input meshes \(A_i \) are assumed to represent bounded solids. Under this convention, the winding number at infinity should be \(w_j(\infty) = 0 \). Winding numbers elegantly handle complements by subtraction from 1. If \(A_j \) is the complement of \(A_i = A_i^c \), then

\[
w_j = 1 - \lvert w_i \rvert \quad \text{or} \quad w_j = 1 - w_i,
\]

depending on whether the complement operator is orientation-insensitive or -sensitive, respectively (see inset).\(^1\)

As a consequence, if \(A_j \) represents the unbounded complement of some bounded solid, then the seeded winding number vector at infinity should be \(w_j(\infty) = 1 \).

In this way the winding number elegantly captures set identities. In particular, we produce exactly the same result for \(A_1 \setminus B \) and \(A_1 \cap B^c \).

5.4 Operation result extraction

With the arrangement data structure constructed, we may perform arbitrary extraction operations. We extract the triangulated boundary of all cells for which an extraction function \(f \) is true.

Preconditions Inputs are a valid cell-patch data structure with consistently labeled winding number vectors and a function \(f(w) \) returning true or false for a given winding number vector \(w \). As in the previous stage, this stage makes use only of combinatorial (not geometric) aspects of the input.

Postconditions The output is a solid mesh.

Algorithm We flag all cells that pass \(f \), collecting all patches separating a flagged cell from an unflagged cell, and then collecting all triangles of those patches, flipping the orientation of triangles from patches with a flagged cell above and unflagged cell below. We then purge possible boundaries arising from zero-volume symbolic cells. Since these always occur as perfect combinatorial duplicates of single triangles, we need only remove all triangles with zero total signed occurrence: sum of +1 if oriented \(i, j, k \) and -1 if \(j, i, k \).

5.5 Core low-level subroutines

The robustness of our method rests on the correctness of several core low-level subroutines.

5.5.1 Point location

We are asked to locate in which cell a given point lies. This is a special case of the fundamental point location problem in computational geometry. We take special care to solve this problem robustly and in the presence of zero-volume cells (e.g., due to resolved coplanar intersections).

Preconditions Inputs are a query point \(q \in \mathbb{R}^3 \) and a valid cell-patch data structure. The query must not lie exactly on any patch.

Postcondition The output is the unique cell containing the query.

Algorithm Searching over all triangles, we find a triangle \(t \) containing the point \(q \) on the input mesh closest to the query point \(q \). Point \(q \) lies either exactly at a vertex \(v \) of \(t \), or else along an edge \(e \), or else within the interior of \(t \) (but not on its boundary). None of these cases is trivial. The vertex \(v \) or edge \(e \) could be a non-manifold junction of many cells, and the triangle \(t \) could lie deep in a “stack” of zero-volume cells due to duplicated faces.

In fact, only at edges can we robustly determine the symbolic and geometric cell arrangement. The cyclic ordering of cells incident on an edge \(e \) is consistent, and since \(q \) does not lie on the input mesh it must lie in one of the incident cells. We insert a dummy facet connecting \(e \) and \(q \) into the sorted list of facets incident on \(e \). The next facet after the dummy (or previous facet before) must be part of a patch bounding the cell containing \(q \).

The ambiguity in the case where \(e \) lies within the triangle \(t \) arises in the presence of duplicates of the triangle \(t \). Since all duplicates share the same three edges, we choose one arbitrarily as the sorting edge \(e \), and insert a dummy as in the edge case above.

If the closest point \(c \) lies at a vertex \(v \), we identify a good sorting edge \(e \) (i.e., on the convex hull of \(v \) and its vertex neighbors) and again insert a dummy as above. Identifying the containing cell of a query whose point of closest approach is a vertex will also arise when identifying the ambient cell of a component. In this case, we project edges incident on \(v \) onto the plane formed by \(q - e \) and any orthogonal vector (rather than the \(xy \) plane) and then follow the rest of the ambient cell identification algorithm in Section 5.5.2.

5.5.2 Ambient cell identification

In this subroutine, we identify the ambient cell (containing all points at infinity) of a given mesh.

Preconditions Inputs are a (non-manifold) self-intersection-free triangle mesh and corresponding cell-patch data structure.

Postconditions The output is a facet guaranteed to contain an outer vertex (a vertex on the convex hull of the vertices) and participate in a patch forming part of the boundary of the ambient cell of this mesh containing all points at infinity.

Algorithm We could solve this problem by identifying the cell containing some arbitrary far away point using the point location algorithm of Section 5.5.1. However, we enjoy the performance benefits of avoiding closest point computation by choosing a query point with a vertex as its known closest point.

We locate a vertex \(v \) with the maximum \(x \)-coordinate magnitude, breaking ties arbitrarily. It follows immediately that \(q = v + (1, 0, 0) \) lies in the desired ambient cell and that \(v \) is the point of closest approach of \(q \) to the input mesh.
We will identify the ambient cell by finding a facet incident on \(v\) that is part of a patch on the ambient cell’s boundary. To find an incident outer facet, we first select an edge incident on this vertex that also lies on the convex hull. Then we sort facets cyclically around this edge and select one of the two facets that are part of ambient-cell boundary patches.

Sorting facets around an edge is discussed in Section 5.5.3, so it remains to identify an edge of the convex hull edge on the vertex with maximal \(x\)-coordinate. We rely on our exact representation of the input mesh and the ability to determine predicates exactly (e.g., is a point below, on, or above a plane?). We sort incident edges with respect to their projection on the \(xy\)-plane. We select the edge whose projected edge-vector \(e = (e_x, e_y)\) is most orthogonal to the \(z\)-axis. Our particular exact representation kernel allows construction of quotients (but not square roots), so we identify the edge with maximum slope as a line function of \(x\): that is, according to \(|e_y/e_x|\). We may break ties arbitrarily because all edges with maximum slope must lie on the convex hull.

Remark Attene [2014] proceeds in a similar way by finding a maximal \(x\)-coordinate vertex and then chooses the incident triangle whose normal has the largest magnitude \(x\)-component. This criterion cannot be applied if the vertex is non-manifold: an inner “flap” might have a more outward-pointing normal than the true outer facets. For a concrete counterexample, consider extruding the triangle \([(0, 0), (1, 1), (0, 2)]\) two units in the \(z\)-direction, then move the lower-right corner to \((2, 1, 0)\) and add a inner tetrahedron connecting that vertex to the top-left corners and any interior vertex floating below (see Figure 12).

5.5.3 Cyclical sort triangles about a common edge

The cell partitioning, point location, and ambient cell identification subroutines depend on the ability to sort triangles about a common edge robustly. We sort only at one representative edge between incident patches, rather than at every edge of the triangulation (cf. [Attene 2014; Barki et al. 2015]).

Sorting triangles around a common edge is misleadingly innocuous. This subroutine must (and will) ensure consistent ordering of exactly duplicate triangles (e.g., resulting from resolved co-planar input triangles) and geometrically correct ordering of numerically nearly co-planar triangles.

Preconditions The input is a set of \(m\) non-degenerate triangles \(t_1, \ldots, t_m\) incident on a mutual (non-degenerate) edge \((i, j)\). Each triangle \(t_k\) is endowed with a globally assigned index \(\varepsilon_k\) (e.g., its index in the non-manifold output mesh after resolving all intersections). It is assumed that if two triangles are coplanar, then either they intersect only along the edge \((i, j)\) (their dihedral angle is 180°) or they are geometrically identical (same third vertex position and their dihedral angle is 0°).

Postconditions This subroutine outputs a sorted (clockwise) ordering of the triangles, looking down the edge \((i, j)\). Geometrically distinct triangles are sorted cyclically according to their dihedral angle with the first triangle \(t_1\). Duplicate triangles—without loss of generality all are \((i, j, k)\)—are sorted consistently in the sense that their relative ordering is maintained when sorting around \((i, j), (j, k), (k, i)\) and their ordering is reversed when sorting around \((j, i), (k, j), (i, k)\).

Algorithm Let each triangle \(t\) be positively incident on \((i, j)\) if \(t = (i, j, k)\) and otherwise negatively (i.e., if \(t = (k, j, i)\)).

Let \(p_0\) refer to the vertex position of triangle \(t_0\’s\) third “flap” vertex not lying on the shared edge \((i, j)\). Our recursive divide-and-conquer algorithm begins by selecting a starting triangle \(t = t_0\) and sorting each other triangle \(t_k\) into one of four groups, based on whether \(p_k\) lies (1) co-planar with \(t_0\) and on the same side of \((i, j)\) as \(p_0\), (2) co-planar with \(t_0\), and on the opposite side of \((i, j)\) as \(p_0\), (3) below the plane of \(t_0\), (4) above the plane of \(t_0\).

We sort within groups (1) and (2) by simulating simplicity à la Edelsbrunner & Mücke 1990. Duplicate triangles are sorted according to their uniquely assigned index \(\varepsilon_k\). To ensure that this ordering is consistent and not erroneously reversed when viewed from a different edge incident on the same replicated triangles, we sign these indices based on the signed incidence of each triangle with respect to \((i, j)\) (see Figure 13). This symbolic perturbation will differ depending on input indices, but is always consistent. Only the ordering of zero-volume cells are effected, so different orderings will always produce the same geometric result.

Triangles in groups (3) and (4) are sorted by recursive calls. The complete output is then simply the merger of the four sorted groups.

6 Implementation

We implemented the algorithm in C++ utilizing the exact arithmetic kernel of the popular CGAL library. We specifically use its subroutines for: exact testing and construction triangle-triangle intersections; 2D constrained Delaunay tessellation (CDT); point-triangle closest point queries and point-plane predicates. We found CGAL’s CDT implementation to be robust on all examples if constraints are subdivided at intersections as a preprocess.

We also use CGAL’s built-in bounding-box-based spatial acceleration for collecting a list of candidate triangle-triangle intersections. We further accelerate the exact triangle-triangle intersection detection and construction by processing candidates in parallel. Due to the reference counting employed by CGAL’s deferred evaluation
exact number type (CGAL::Lazy_exact_nt), seemingly read-only simultaneous access of triangle data is unsafe. Fortunately intersection detection and construction is compute-bound, so despite placing mutex locks around every mesh vertex leads to parallelism performance gains.

We also use CGAL’s axis-aligned bounding-box hierarchy for point to triangle-soup closest point querying. We further accelerate the point location in Section 5.5.1 by culling points entirely outside of the bounding box of a component (the query point must then lie in that component’s ambient cell).

6.1 Converting to floating-point

While input meshes with floating-point vertex position coordinates losslessly convert to our exact representation, the reverse is not true about our output exact meshes. Naively rounding a solid exact mesh to floating point may result in a non-solid mesh due to newly introduced self-intersections. This occurs in 2.19% of our output meshes in the Thingi10K dataset.

This problem is known as vertex rounding. Without allowing subdivision of facets and insertion of new vertices, this problem is NP-hard [Milenkovic & Nackman 1990]. Allowing for re-triangulation, a robust—albeit slow and complicated—solution to this problem exists in theory [Fortune 1997].

To fit into floating-point pipelines and fairly compare to previous methods producing floating-point output meshes (e.g., [Bernstein 2013; Attene 2014; Douze et al. 2015]), we propose a heuristic for rounding our exact output meshes to floating-point. Our heuristic is related to the method proposed in [Sacks & Milenkovic 2014].

Preconditions We assume the input to be a solid triangle-mesh with exact coordinates.

Postconditions Though we can make no guarantees of convergence, our exact method equipped with this rounding heuristic successfully finds self-intersection free floating-point meshes for 99.95% of the dataset. Otherwise, we can only claim the output to remain a PWN mesh.

Heuristic Given a solid mesh with exact vertices, we iteratively apply the following steps: (1) round all vertices to double precision floating-point coordinates, (2) find all triangles participating in self-intersections (if none, then return), (3) round all vertices of these triangles to single precision floating-point coordinates, and (4) compute the self-union of the resulting mesh.

7 Experiments and results

Constructed or procedurally generated examples may help investigate corner cases, but do not necessarily report how robustly an algorithm will perform in practice. To this end, we gather a dataset of 10,000 meshes from “the wild,” and test our method and previous works against it. Considering these meshes as a representative sampling of a general population of meshes encountered in practice, we evaluate the restrictiveness of preconditions and the robustness of claimed postconditions across methods.

7.1 Thingi10K dataset

Contents and methodology The Thingi10K dataset contains the first 10,000 meshes of “Featured” models on thingiverse.com, a popular shape repository. These models are heavily biased toward models designed by amateurs or semi-professionals for 3D printing (though there is no official restrictive policy). We therefore interpret these models as a representative sampling of the population of meshes intended to model a solid 3D object.

Each “thing” featured on thingiverse.com may contain several distinct mesh files. We collected the first 2011 things, totaling 10,000 meshes (see Figure 14). All things have free licenses (GPL, LGPL, CC, BSD, or public domain). The original meshes came in a biased variety of file formats: 9956 .stl, 42 .obj, one .off, and one .ply. The vast majority of meshes have single-precision vertex-coordinates. Since .stl files store triangle streams rather than meshes, we immediately merge exactly duplicate corners. The number of faces in each mesh follows a log-normal distribution with geometric mean and standard deviation 5077.6 ± 8.5 (see inset).
Comparing preconditions. Of the 10,000 meshes, 8616 meet our PWN precondition. Of these, 5113 are solid; of those 4963 are manifold polyhedra.

The 10,000 meshes exhibit a variety of typical problematic cases: open boundaries, self-intersections, non-manifold elements, multiple components, etc. (see Figure 15). Among the 4524 meshes containing self-intersections, 3082 contain coplanar self-intersections. This quantifies an approximation of the fraction of models deviating from the general positioning assumption.

Many “problematic” meshes seem to result from modeling with self-intersections (see Figure 2) and overlapping, independently modeled components or from previous failed boolean operations.

7.2 Testing self-union

Assuming each mesh in the Thingi10K dataset to represent an intended solid, we compare extracting a valid boundary of this solid with available implementations of five previous works: “CGAL” [CGAL 2015], “Carve” [CARVE 2014], “Cork” [Bernstein 2013], “QuickCSG” [Douze et al. 2015], and “Attene” [Attene 2014].

We emphasize that this experimental comparison reflects both algorithmic limitations and implementation deficiencies, so a different implementation of any given method could potentially and perform better. The no-longer-maintained implementation of [Bernstein & Fussell 2009] failed on most examples. Similarly, the web-service implementation of [Campen & Kobbelt 2010a] failed to produce a result roughly 40% of the time. We are unable to obtain implementations or outputs for other methods (e.g., [Barki et al. 2015]).

We limit our comparison to the 8616 PWN meshes. Of these, only 3413 contain self-intersections. Nonetheless, we consider all 8616 PWN meshes as implementations relying on internal rounding (e.g. [Attene 2014; Bernstein 2013]) often also stumble on nearly self-intersecting meshes.

Attene’s mesh repair method computes the outer hull, rather than the self-union [2014]. The other implementations do not provide an explicit API for conducting self-union, so we intersect the input model with its conservative bounding box.

Comparing postconditions. Self-union should output a solid mesh. We report whether a method successfully produced any output and if it met certain necessary postconditions. Strictly testing solidity requires a correct implementation of cyclic facet ordering around a non-manifold edge to determine that all incident cells are alternating zero/one winding number. Absent trusted third-party code, we test necessary (but not sufficient) conditions: lack of self-intersections, open boundaries, and non-zero total signed incidence edges. Such meshes form a strict subclass of PWN meshes, but a superclass of solids. Our exact method succeeds with 100% success across all criteria (see Figure 16). Previous methods fall short in at least one criteria. This unique success places our exact method robustly into the exact geometry pipeline.

In a floating-point context, our method also out-performs all others. Our heuristic for converting our exact outputs to floating-point meshes in Section 6.1 succeeds in removing new self-intersections all but five cases out of the 8616. These meshes fail to converge after 20 iterations. Rates of closedness and total signed edge-incidence are—by construction—maintained at 100%.

The specific causes of failure of the previous methods are difficult to determine. We can identify robustness flaws associated with characteristics of the input meshes. Methods assuming general positioning or resorting to numerical perturbation [Bernstein 2013; Douze et al. 2015] will struggle in the presence of coplanar intersections.
Attene assumes accurate floating-point normals during self-intersection culling and outer hull extraction [2014], but inputs may contain degenerate or nearly degenerate triangles with untrustworthy normals. The inset highlights self-intersections (orange) and an open boundary (red) on a problematic output of Attene’s.

Performance We collected timing information across the 8616 self-unions for our method and four others (CGAL, Carve, QuickCSG, Cork) locally on a machine with an 8-core Intel Xeon 3GHz processor with 16GB of memory. The violin histograms of running timings in Figure 17 show that while ours is not the fastest, it is competitive.

The Thingi10K dataset also provides means to further examine the performance of our individual subroutines. The profile in Figure 18 reveals that resolving intersections is the dominating bottleneck.

7.3 General discussion

Outer hull The outer hull of an input triangle mesh is defined as those triangles reachable from infinity by some (possibly non-straight) path that does not intersect the mesh [Campen & Kobbelt 2010b; Attene 2014]. In general, the outer hull cannot be categorized in terms of the winding number: boundaries with inner hollow cavities with zero winding number are not part of the outer hull. For some applications, retaining these inner cavities is crucial (see Figure 5). For other applications, such as rendering, the outer hull may be appropriate and desired (see Figure 19). We can easily adapt our algorithm to compute outer hulls. We construct cell partition according to Section 5.2, find the ambient cell according to Section 5.5.2, and simply extract its boundary as per Section 5.4.

Explicitly computing the union of all triangular prisms via our mesh boolean algorithm would produce the correct result but after too much unnecessary computation: most neighboring prisms are exact duplicates. We cull the union of prisms with a pre-process, removing all facets with zero total signed occurrence, replacing all instances of facets with $+k$ positive/negative clones. This proof-of-concept inherits the robustness of our method, but is likely suboptimal in terms of performance compared to specialized methods [Campen & Kobbelt 2010b]. In Figure 20, we simulate a CNC-milling tool.

Traditional binary boolean tests A traditional test for a boolean algorithm is to select two meshes, randomly rotate them, then conduct a binary operation (union, intersection, difference, etc.) and investigate the result for artifacts or errors. This type of testing encourages the general positioning assumption and may give a false sense of robustness in cases with coplanar intersections and exact coincidences. An extreme case is taking the intersection of an object with a clone of itself (see Figure 21). Methods based on numerical perturbation, such as [Bernstein 2013], panic in the presence of so many co-planar intersections.

For completeness, we reproduce and expand the testing in [Barki et al. 2015] (see supplemental material).
rotation. For all 26 meshes, we compute the union of the mesh and 10 clones rotated by \(\pi/10, 2\pi/10, \ldots, \pi\) about the same axis (see Figure 23). All our results are valid solid meshes.

The robustness of several previous works rely on the assumption that input vertices lie on a regular grid [Campen & Kobbelt 2010a] or at general positions [Bernstein 2013; Douze et al. 2015]. However, input rounding or perturbation—no matter how subtle—may introduce unnecessary intersections that merge disjoint components (see Figure 24) or cause numerical problems (see Figure 21). In contrast, the exact nature of our approach allows us to only resolve intersections already present in the inputs.

Others (e.g., [Barki et al. 2015]) have demonstrated robustness issues with boolean implementations in commercial software such as M AY A. We add to this by comparing to Trimble’s S K E T C H U P P R O. S K E T C H U P P R O consistently fails to intersect four randomly rotated icosahedra (see Figure 25). We also attempted to union each of the 26 models of [Barki et al. 2015] with a clone rotated by \(\pi/10\) (a simplified version of Figure 23). After a day of computation, only 12 produced an output, and none were without flaws (all were combinatorially open, only two were without self-intersections).

Although very common, inputs with multiple, possibly nested, components are overlooked in previous works. The implementation of [Campen & Kobbelt 2010a] assumes single component input, and [CGAL 2015] does not detect nested voids automatically. Our algorithm correctly handles both cases (see Figure 26).

Stress tests In addition to standard tests on common computer graphics models, we also stress test our algorithm on challenging examples. Our algorithm is robust for carrying out consecutive boolean operations because the output solid mesh is trivially a valid PWN input for the following operations (see Figure 27).

An interesting and challenging application of booleans is to “undo” boolean subtractions given only the argument and the result, produced by an unknown boolean implementation (see Figure 28).

Generality Besides conventional boolean operations, the space partition defined by mesh arrangement is useful for many important geometry processing applications. In Figure 29, the outer hull computation is a necessary preprocessing step for generating a volumetric discretization for structural analysis [Zhou et al. 2013]. The outer hull is also useful for culling extra internal complexity (see Figure 30).

Our variadic formulation also allows us to compute regions inside at least \(k\) of the input meshes without the combinatorial explosion associated with binary boolean operations (see Figure 31). Figure 3 considers ten intersecting tetrahedra. Our variadic union of all ten tets is roughly twice as fast as decomposing the union into a cascading tree of binary union operations (and 6.5 \(\times\) faster than a linear chain of binary unions). Intuitively, this is because our intersection resolution is the most economical for this arrangement. In contrast, repeated unions will require resolving intersections with previous results, aggregating unnecessary complexity: though geometrically identical, our result has 384 triangles, compared to the cascading tree’s 1000. We also construct extraction of the region inside at least five input tetrahedra. Decomposing this task into a binary tree of cascading operations leads to an exponential number of operations in the number of tets \((5^{(\binom{10}{5})} - 1 = 1250)\) binary operations for ten tets). The aggregation of complexity is catastrophic, leading to performance measured in weeks. Instead, extracting this result from our arrangement requires the same cost as extracting the union: just a few seconds.

Lastly, the cell data structure used by our algorithm can be easily extended for customized applications. For example, it is easy to eliminate small cells immersed inside a shape (see Figure 32).

8 Limitations and future work

A limitation of this method is the requirement that the input mesh have no open boundaries or non-manifold “flaps”. Of the 10,000 meshes in our Thingi10K dataset, 18% did not meet our precon-
Figure 28: The grooved, yellow frog is the result of subtracting the stripy, blue frog from an unknown (presumably solid) frog using some boolean implementation (not ours). Our robust union recovers the original frog (blue and yellow).

Figure 29: Tetrahedralization of the input foot mesh fails due to overlapping input components, but succeeds after self-union. The volume mesh helps analyze the shape's structure.

Our method is variadic, but does not optimize operations based on the requested extraction and inputs. For example, consider conducting the 1000-way union of 999 overlapping spheres enclosed and their conservative bounding box. Clearly resolving the intersections between the 999 spheres is overkill. It would be interesting to explore conservative optimization.

In the hopes of fostering continued work and more exhaustive testing in geometry processing at large, we release our code (now in LIBIGL [Jacobson et al. 2016]) and our Thingi10K dataset.

Acknowledgments

We thank G. Bernstein for sharing code and M. Attene for testing on the Thingi10K dataset. We thank M. Campen, A. Fleming H. Maia, J. Panetta, R. Sawhney, O. Stein, P. Thamjaroenporn, O. Winn, and E. Yao for early feedback and proofreading. Funded in part by NSF grants CMMI-11-29917, IIS-14-09286, and IIS-17257.

References

WANG, C. C. L. 2011. Approximate boolean operations on large polyhedral solids with partial mesh reconstruction. IEEE TVCG.

Appendix: Exact representation

Since a computer cannot represent all points in \(\mathbb{R}^3 \), we assume all vertices of our input and output meshes are given in the “exact” rational coordinate space \(\mathbb{Q}^3 \). Exactness means that points, line segments and convex polygons with endpoints in \(\mathbb{Q}^3 \) form a group closed under spatial intersection.

The space of the double precision floating-point coordinate space \(\mathbb{F}^3 \) does not satisfy these criteria: e.g., the point of intersection between line segments \([0,0,0], (2,1,0)\) and \([1,0,0], (0,1,0)\) is the non-floating-point position \((2/3, 1/3, 0)\), see inset. The exact rational space \(\mathbb{Q}^3 \) contains the floating-point space as a subset: \(\mathbb{F}^3 \subset \mathbb{Q}^3 \). So, if given a mesh \(\mathcal{A} \) with floating-point vertex positions, we can losslessly cast them to our exact space.