
Mesh Arrangements for Solid Geometry

Qingnan Zhou1 Eitan Grinspun2 Denis Zorin1 Alec Jacobson2

1New York University 2Columbia University

Figure 1: Our method takes as input any number of meshes (three shown in this 2D illustration). We resolve intersections and assign a
winding number vector to every delineated cell. Different boolean results are extracted according to these winding number vectors.

Abstract

Many high-level geometry processing tasks rely on low-level con-
structive solid geometry operations. Though trivial for implicit rep-
resentations, boolean operations are notoriously difficult to execute
robustly for explicit boundary representations. Existing methods
for 3D triangle meshes fall short in one way or another. Some meth-
ods are fast but fail to produce closed, self-intersection free output.
Other methods are robust but place prohibitively strict assumptions
on the input, e.g., no hollow cavities, non-manifold edges or self-
intersections. We propose a systematic recipe for conducting a fam-
ily of exact constructive solid geometry operations. The two-stage
method makes no general position assumptions and does not resort
to numerical perturbation. The method is variadic, operating on
any number of input meshes. This generalizes unary mesh-repair
operations, classic binary boolean differencing, and n-ary opera-
tions such as finding all regions inside at least k out of n inputs.
We demonstrate the superior effectiveness and robustness of our
method on a dataset of 10,000 “real-world” meshes from a popu-
lar online repository. To encourage development, validation, and
comparison, we release both our code and dataset to the public.

Keywords: arrangements, constructive solid geometry, booleans

Concepts: •Computing methodologies→ Computer graphics;

1 Introduction

Geometric modeling tools are more accessible than ever, scanning
technologies are available at the commodity level, additive fabri-
cation technologies rapidly grow in popularity, and platforms have
emerged for sharing 3D models online. Unfortunately, the resulting
wealth of 3D models comes with a catch. The diversity of these
models coincides with unpredictable mesh quality and structure.
For example, manually sculpted models are created using a broad
range of software by designers with varying skill and intention.

Meanwhile, geometry processing operations increase in sophistica-
tion: from remeshing to physical simulation. Yet, many, if not most,

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org. © 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24 - 28, 2016, Anaheim, CA
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925901

available algorithms impose strict requirements on their inputs. As
the complexity and amount of 3D data grow, manual one-by-one
preprocessing is no longer acceptable. For example, cumbersome
mesh cleanup of solid mesh may take more time than a subsequent
physical simulation of it.

An important class of mesh repair and solid operations aims to
preserve input geometry as much as possible when recombining
it in new ways or converting it to suitable form for a downstream
application. These operations are elegantly viewed as operations
on space partitions defined by mesh arrangements. A mesh ar-
rangement, built from a collection of (possibly non-manifold, open-
boundary, self-intersecting, with degenerate triangles, etc.) meshes,
partitions space into a number of cells. This view unifies tasks often
viewed as distinct, such as mesh repair and boolean operations.

We introduce mesh arrangements constructed from a restricted
class of meshes: those with piecewise-constant winding number, or
PWN. By surveying 10,000 popular meshes, we show that PWN
meshes cover a large fraction of practically relevant situations.
An arrangements of a PWN mesh is a lightweight yet powerful
representation. Casually, a PWN mesh arrangement is composed
from possibly (self-)overlapping components bounding a number
of solids. These arrangements enable a set of highly robust and
conservative algorithms. By robust, we mean that algorithms suc-
cessfully produce output for all PWN meshes. By conservative, we
mean that arrangements preserve original mesh geometry exactly.

Our general approach can be separated into two stages: adding
meshes to an arrangement—independent of the desired operation—
and extracting the boundary of the result according to an extraction
function describing the desired boundary in terms of the winding
numbers of the region it bounds (see Figure 1).

The first stage, in turn, consists of resolving intersections, partition-
ing space into cells, and labeling each cell with winding numbers
with respect to each input mesh.

In the second stage, all classic boolean operations (e.g., union, in-
tersection, difference) have trivial extraction function definitions.
We also explore other interesting functions, such as extracting the

Figure 2: Self-intersections are not just “artifacts.” They also oc-
cur intentionally during modeling. A coffee mug handle is extruded
then curled inward on itself (blue). The self-intersections (orange)
do not prohibit constructing the shape’s underlying torus-topology
self-union with our algorithm (green).

http://dx.doi.org/10.1145/2897824.2925901

Figure 3: Simple and complex variadic operations cost the same
using our mesh arrangements. Converting variadic operations to a
cascade of binary operations is worst-case exponential in time.

“self-union” of a single, overlapping input mesh or extracting all
regions of space inside at least two of many input meshes.

Our method guarantees as output a solid mesh. Informally, a solid
mesh is the non-degenerate boundary of a solid subregion of R3.
Our method also guarantees that the output is exact, i.e., interpret-
ing the input positions as exact rationals, all intersections result
from exact construction. The output coordinates may optionally
be converted to floating point in a post-process.

We validate our method on the 10,000 triangle meshes from the
online 3D printing repository Thingiverse, as well as benchmarks
of previous work. We present extensive comparisons with state-of-
the art methods, all of which fail with significant frequency, either
rejecting the input, failing to produce any output, or producing an
output that is not a solid mesh. We also evaluate the conversion of
our exact results to floating-point positions; in this case, we outper-
form existing floating point methods along the same criteria.

2 Related work

Most previous work separate into two broad groups: boolean opera-
tions on different classes of objects and “mesh repair”, in particular,
elimination of self-intersections, computing outer hulls and similar
operations. While both require intersecting meshes or surfaces, in
most cases the problems have been treated disjointly.

Boolean operations Previous boolean methods define a restric-
tive class of input 3D pointsets that are closed with respect to set
operations. The methods output a restrictive class of boundary rep-
resentation or spatial partition. In almost all cases, it is assumed
that creating a valid boundary representation from a broader class
of inputs is a separate task, delegated to the user or preprocessing.
Inputs not meeting the strict requirements are not handled directly.

Previous works differ by generality of input/output representations
and tradeoffs between performance and robustness. We compare
directly to the state of the art in Sections 5 and 7. For now, we cate-
gorize approaches, highlighting salient similarities and distinctions.

The current standard in robustness is CGAL’s exact-arithmetic im-
plementation [Granados et al. 2003] of Nef polyhedra [Bieri & Nef
1988]. CGAL’s implementation requires a valid Nef polyhedron
data structure (Sphere Maps and Selective Nef Complexes) as in-
put. Current tools in CGAL and OPENSCAD (a modeling tool
bootstrapping CGAL) only construct this form via embedded poly-
hedra, excluding inputs with self-intersections, non-manifold fea-
tures, and inner cavities, although the latter two could be repre-
sented by the Nef representation. More fundamentally, the gen-
erality of the representation requires a complex heavy-weight data
structure and has a significant impact on performance.

On the other extreme, Douze et al. [2015] restrict inputs to embed-

Figure 4: Combinatorially, the multi-component shapes on the left
and right are the same, though their outer hulls (thick) differ.

ded polyhedra with vertices in general position, but is extremely
efficient and is capable of handling very large meshes. Douze et
al. introduce the concept of variadic boolean operations: immedi-
ately evaluating boolean operations involving many inputs rather
than decomposing into a tree of binary operations (see Figure 3).

Recently, Barki et al. [2015] use a more general yet lightweight
representation and exact rational arithmetic to handle a variety of
near degeneracies. Their efficient algorithm maintains robustness
on a 26-model benchmark.

All methods so far are similar to ours in that they add intersections
of boundary representations, and proceed to classify elements of the
boundary to construct the result. However, these algorithms assume
that input surfaces are free of self-intersections. Self-intersections
are not only a ubiquitous meshing artifact, but also a common way
to model interesting topologies Figure 2.

Many early methods based on intersection and classification suf-
fer from robustness problems, before exact-arithmetic based meth-
ods became practical. This leads to development of more robust
approaches, initially based on conversion to volumetric representa-
tions, starting from [Museth et al. 2002]. However, the approxima-
tion of the original meshes depends on the chosen resolution level
for the volume grid, and high accuracy requires high tessellation.
Different approaches accelerate this approach, reduce complexity
of the output (e.g., using adaptivity [Varadhan et al. 2004]), and
attempt to preserve the original mesh as much as possible [Pavic
et al. 2010; Wang 2011; Zhao et al. 2011]. The fundamental issue
with such techniques is the approximate and grid-dependent nature
of volumetric calculations: while increasing robustness, these may
lead to unwieldy topology changes and geometric deviations.

The space-partition view of boolean operations has appeared most
clearly in binary space partitioning (BSP) methods, starting with
[Thibault & Naylor 1987; Naylor et al. 1990]. Bernstein & Fussell
[2009] combined this with robust predicates to develop an efficient
and robust way to compute booleans on surfaces in BSP represen-
tation. As in most other works on booleans, conversion to this rep-
resentation is viewed as a preprocess, with the range of inputs this
preprocess can handle not precisely defined. While compared to
volumetric-grid approaches, BSP methods increase mesh complex-
ity more moderately and input geometry is better preserved, yet
significant refinement is still needed. Campen & Kobbelt [2010a]
localized their BSP-based method using an octree and perform re-
finement only locally near intersections. Importantly, this work

Figure 5: The outer-hull (e.g., [Attene 2014; Campen & Kobbelt
2010a] is simpler to extract, but not always appropriate. Hollow
cavities should be maintained for 3D printing not only to reduce
material costs, but to maintain functional properties like balancing.

points out that BSP trees provide a general representation of space
partition that flexibly performs both boolean operations, outer hull
computations, and other operations. We expand this idea, but use a
higher-level and more compact space partition.

Mesh repair Mesh repair techniques historically deviate from
boolean operations by focusing on converting a maximally broad
range of input meshes to a normalized representation (e.g., closed
manifold meshes without self-intersections). These methods often
rely on volumetric approximation and for certain problems (e.g.,
hole-filling) this may be unavoidable. If possible, preserving orig-
inal geometry is desirable. A common example of mesh repair of
this type is computation of the outer hull, though both state-of-the-
art methods [Campen & Kobbelt 2010a; Attene 2014] do not appear
to disambiguate nested and non-nested components (see Figure 4).
For example, when preparing models for 3D printing, the outer hull
may be inappropriate as it removes inner cavities (see Figure 5).

Approaches to robustness, and sources of non-robustness
Many implementations (e.g., [Bernstein 2013; Mei & Tipper 2013;
Douze et al. 2015]) explicitly assume general position of inputs
(no four points on a circle, no co-planar intersections, etc.) and
do not attempt to handle numerical non-robustness. The develop-
ment of new boolean and mesh repair techniques was driven, to a
large extent, by robustness considerations. We consider more ex-
plicitly how robustness was addressed in different contexts, and the
unresolved problems we are addressing in our approach.

The most comprehensive approach is to represent all objects us-
ing exact arithmetic. With advances in filtered predicates for ef-
ficiency, this approach is increasingly preferred. We (like others
[Granados et al. 2003; Barki et al. 2015]) largely follow it. Ear-
lier BSP-based work used the observation [Sugihara & Iri 1992]
that representing points as the intersection of original planes elimi-
nates the need for exact computations (only exact predicates). This,
in principle makes it possible to do most computations robustly in
floating point, but some constructions or rounding still inevitably
appear in all methods, and lead to non-robustness, often subtly.

For example, Banerjee & Rossignac [1996] and later Xu & Keyser
[2013] build exact topologies but fixed-precision floating point ver-
tex positions, leading to self-intersections, inversions (see Figure 6)
and degeneracies in the output. Campen & Kobbelt [2010a] round
all input vertices aggressively to ensure exact plane intersections
for a BSP-representation. We discuss several other problems in ex-
isting techniques in greater detail as we describe our method. For
our approach (and all exact methods), conversion of the output to a
floating point (if such a conversion is desired) is a potential source
of problems, although we have observed it in a very small propor-
tion of cases and attack it with an additional heuristic utilizing our
core method in Section 6.1.

Figure 6: By outputting an exact solid mesh, our method ensures
there are no inversions (illustrated as correct signed distance on
left). Previous methods may create inversions, and even small inver-
sions catastrophically affect signed distance to the output (right).

3 Concepts

The crux of our method is construction of the mesh arrangement
data structure, consisting of cells annotated with winding numbers,
patches and their adjacency graph, that allows us to extract results
of a variety of operations from the arrangement.

This structure is a relatively lightweight representation of a space
partition (cf. BSP trees). Based on compound surface objects
(patches), it allows for complex cells (does not require them to be
convex or even topological balls). Yet, it allows us to perform all
operations robustly and efficiently.

The inputs to our arrangement creation algorithm are n piecewise-
constant winding number triangle meshes A1, . . . ,An. For ex-
traction of the results of specific operations from the arrange-
ment, we use a variadic extraction function f to determine the
solid mesh boundary of which region(s) of space carved out by
A1, . . . ,An to output.

3.1 Piecewise-constant winding number meshes

A triangle mesh is a set of 3D vertices (some of which may be ge-
ometrically coinciding) and a set of triangles connecting these ver-
tices, each triangle represented by a triplet of vertices, with orien-
tation implied by the vertex order for non-degenerate triangles. We
may view triangles combinatorially as triplets of vertices as well as
geometrically as pointsets in 3D.

Effectively, any valid triangular mesh in Wavefront OBJ-like for-
mat, is a valid input, subject to one general condition: we require
that triangle meshes Ai induce a piecewise-constant integer gen-
eralized winding number (PWN) field wi [Jacobson et al. 2013]:

wi(p) ∈ Z ∀ p ∈ R \ |Ai|, (1)

where |Ai| denotes the union of all triangles of Ai viewed as point
sets. For a triangle mesh, this is simply the sum of the signed solid
angles Ωt(p) of each oriented triangle t:

wi(p) =
1

4π

∑
t∈Ai

Ωt(p). (2)

We call meshes with this property piecewise-constant winding num-
ber meshes or PWN meshes.

A PWN mesh Ai can be interpreted as dividing all of R3 into re-
gions that are outside (wi = 0) or inside (wi 6= 0) of the “solid
implied by Ai.” This allows multiplicity (|wi| > 0) for parts of

Method CAVITIES NON-MANIFOLD MULTI-COMP. EXACT SEAMS DEGENERACIES SELF-INTER. |w| > 1

CGAL X X • • X X X X

[Campen... 2010a] X X X X X X • X

QUICKCSG • X X X X X X X

CARVE • • • X X X X X

CORK • • • X X X X X

[Bernstein... 2009] • • X • • X X X

[Barki et al. 2015] • • • • • • X X

Our method • • • • • • • •

Table 1: Mesh boolean algorithm input preconditions feature chart: Previous techniques have severe input restrictions.

space considered to be twice, thrice, etc.
inside and also allows for negative insid-
eness (wi < 0) for parts of space inside
an inverted part of Ai (see inset).

PWN meshes may exhibit commonly witnessed “artifacts” making
them unsuitable for previous algorithms (see Table 1 and Figure 7).

NON-MANIFOLD: PWN mesh connectivity may be non-manifold
at vertices or edges.

COPLANAR, DUPLICATE: Co-planar and duplicate facets (i.e., ge-
ometrically identical, but logically distinct: either belonging to dif-
ferent meshes, or using vertices with the same positions) do not
necessarily invalidate a PWN mesh. For example, the conjoining of
two cubes abutting along a triangle is a PWN mesh. The conjoin-
ing of two entirely identical cubes is also a PWN mesh. However,
a cube with a single duplicated triangle is not a PWN mesh.

CAVITIES, MULTI-COMP., |w| > 1: The winding number ele-
gantly handles correctly oriented boundaries of multiple connected
components or nested shells, such as a hollowed-out sphere with an
outer boundary and inversely oriented boundary of the inner cavity.
If the inner boundary were not inversely oriented then the core has
w = 2 > 1 and is considered twice inside.

SEAMS: A mesh with a combinatorially open boundary does not
necessarily imply that it is not PWN. Open boundaries are permis-
sible so long as they meet up geometrically along seams.

EXACT: As discussed in Section 5, the vertices of PWN mesh may
be defined with rational coordinates, not just floating-point.

SELF-INTER.: A PWN mesh may have structured self-
intersections. For example, two overlapping spheres constitute a
valid PWN mesh. Similarly, a vertex-displacement of a PWN mesh
without seams is also a PWN mesh regardless of any incurred self-
intersections [Sacht et al. 2013]. We will say that a mesh is free
of self-intersections if any two geometric triangles of the mesh in-
tersect only over a (combinatorially) shared edge or vertex, or are
combinatorially identical. We allow combinatorially duplicate tri-
angles and exploit these to cope with degenerate configurations.

DEGENERACIES: Geometrically degenerate triangles (zero area)
do not affect the winding number. This implies that one-
dimensional “needles” will be ignored entirely. One can formalize
ignoring degenerate triangles as reconstructing a discretization of
the discontinuity sheets of the winding number field. For boolean
set operations, we operate on open-set interiors without boundary.

Verification We may verify whether a mesh Ai is PWN by re-
solving self-intersections (see Section 5.1) and then checking that
the total signed incidence of every edge in the result is zero. For any
edge e = {i, j} an oriented triangle f = {i, j, k} contributes +1

Figure 7: Our assumptions allow a wide class of inputs with self-
intersections, multiple components and non-manifold connections,
but does not include open boundaries or non-manifold flaps.

to the total signed incidence of e. An oppositely oriented triangle
g = {j, i, `} contributes −1.

3.2 Variadic extraction function

In general, the extraction function f takes as input a winding num-
ber vector w = [w1, . . . , wn] corresponding to the winding number
of each input mesh at the points of a given cell of the space partition
defined by the mesh arrangement. The function f returns “true” if
a region with this winding number vector is to be included in the
output solid, and “false” otherwise.

For example, to implement n-way union, one would provide:

funion (w) =

true if

inside any︷ ︸︸ ︷
∃ i | wi 6= 0,

false otherwise.
(3)

When n = 1, this function will identify a mesh’s self-union. Simi-
larly for n-way intersection:

fintersect (w) =

true if

inside all︷ ︸︸ ︷
wi 6= 0 ∀ i,

false otherwise.
(4)

Some extractions are asymmetric, e.g., subtraction (A1 \ A2):

fminus (w) = w1 6= 0︸ ︷︷ ︸
inside ofA1

and w2 = 0︸ ︷︷ ︸
outside ofA2

(5)

One can also design more esoteric functions, such as extracting all
parts of space inside at least two of the inputs:

fmin-2 (w) =

{
true if ∃ i and j 6= i | wi, wj 6= 0,

false otherwise.
(6)

Changing the two-sided inequalities above (e.g., wi 6= 0) to single-
sided inequalities (e.g., wi > 0) results in orientation-sensitive op-

erations [Campen & Kobbelt 2010a; Jacobson et al. 2013]. Ori-
entation sensitivity is useful in some cases, where inversion more
intuitively denotes the exterior or void space of an input shape.

3.3 Solid meshes

Our algorithm’s output meshes belong to a special subclass of PWN
meshes that we call solid meshes. Solid meshes are free of self-
intersections, degenerate triangles or duplicate triangles, and their
generalized winding number field is either zero or one.

Note that even if the input meshes A1

andA2 are manifold polyhedra, the out-
put of C = A1 ∪ A2 may be a non-
manifold solid mesh (e.g., if A1 bounds
the unit cube and A2 bounds the unit
cube offset by (1, 1, 0) then C will con-
tain a non-manifold edge where A1 and
A2 “kiss”, see inset).

4 Overview

Before worrying about details of the
method, we review the key aspects of
each stage. For now, we consider the
usual binary boolean operations on two
meshes A and B. The insets in this sec-
tion illustrate the stages of the computa-
tion of the asymmetric differenceA\B.

Arrangement construction In the
first stage, we resolve all intersections
between input meshes using exact arith-
metic. We add new triangles by subdi-
viding the inputs so that all intersections
occur exactly at edges and vertices. All
refined triangles retain references to the
original triangles of A and B.

In the second stage, we determine adja-
cency information between cells defin-
ing a space partition. We organize the
mesh resulting from resolving intersec-
tions in the first stage into patches of tri-
angles connected by manifold edges. By
definition, patches are incident to each
other along non-manifold mesh edges. Two cells are adjacent via
a shared oriented boundary patch. Two patches incident on the
same non-manifold edge may bound the same cell. We determine
the patch-cell relations by sorting facets from all incident patches
around this edge. In this way, we determine the cell adjacency for
each connected component of the adjacency graph of patches. To
ensure correct cell adjacency of nested components, we identify
a boundary facet of the ambient cell surrounding each component
and determine if it is contained in an interior (non-ambient) cell of
another component, via point location (see Section 5.5.1). After
merging the cell adjacency graphs across connected components,
there remains a single ambient cell outside of all components.

In the third stage, we assign winding
numbers with respect to A and B to
each cell, w = [wA, wB]. Having con-
structed the cell-patch adjacency infor-
mation in the previous stage, this step is
purely combinatorial. The ambient “0”-
cell is defined to [0, 0].

Figure 8: Alternative extractions (A∪B,A∩B, B \A) share the
same input mesh arrangement.

Remaining cells are labeled via a traver-
sal of the cells: we add +1 or −1 to
the winding number of the originating
mesh of the patch crossed between cells
depending on the patch orientation. For
example, consider an unlabeled cell ad-
jacent to a cell labeled [a, b] via a patch
originating from input A. That unla-
beled cell will receive [a+ 1, b] if cross-
ing into the oriented patch or [a− 1, b]
if crossing out.

Extracting the result We identify de-
sired output cells purely by their as-
signed winding numbers. For the dif-
ference A \ B, we collect the cells la-
beled [1, 0]. We return the facets of the
patches separating these desired cells from undesired cells, revers-
ing orientations if necessary. Different extractions reuse the same
intersection resolution, cell adjacency, and winding-number label-
ing of the first stage (see Figure 8).

5 Algorithms

In this section, we consider in detail the algorithms for each of the
steps overviewed in Section 4. We will break each stage into core
subroutines. For each subroutine, we will provide preconditions on
its input and postconditions on its output. We start with specifying
preconditions and postconditions of our method as a whole.

Preconditions The method accepts as input a sequence of PWN
meshes, and an extraction function whose arguments correspond to
the mesh sequence. The mesh vertex coordinates are assumed to be
rational coordinates, a property we call (EXACT). We review ex-
actness in the Appendix. In accepting as input the broader class of
exact coordinates rather than floating point values, we accommo-
date upstream operations, whose output is exact.

Postconditions The output of our algorithm is guaranteed to be
an exact solid mesh. As such it is a valid input to a downstream
application of our own algorithm or another module in CGAL. Ob-
serve that while our input preconditions permit self-intersections,
and co-planar/degenerate/duplicate facets—by design, these will
never occur in our output.

5.1 Intersection resolution

The first stage of arrangement construction resolves all triangle-
triangle intersections, enriching the mesh combinatorics so that all
intersections are exactly represented by shared vertices and edges.
We consider all input meshes as a single mesh, i.e., we make no
distinction between intersections and self-intersections.

Preconditions The input is an exact PWN mesh A.

Postconditions The output is an exact PWN mesh free of self-
intersections, co-incident vertices, and degenerate triangles, induc-
ing exactly the same winding number field as the input mesh.

Algorithm Self-intersection resolution consists of four steps: dis-
card exactly zero area input triangles as they do not affect the wind-
ing number, compute the intersection between every pair of trian-
gles, conduct a constrained Delaunay triangulation for every co-
planar cluster of intersections, and extract and replicate subtrian-
gles from each triangle’s cluster’s triangulation.

For now we set aside conservative culling for performance accel-
eration. We consider all pairs of triangles a and b in A. The in-
tersection intersect(a, b) between these triangles can be one of the
following four cases: empty, a single point, a line segment, or a
convex polygon (see Figure 9). This intersection must be computed
exactly, therefore intersect(a, b) commutes.

Figure 9: Blue triangles intersect the green at a point, segments
and a polygon (left, 3D). Subdivided constraints reduce to coplanar
points and segments (middle, 2D). The original green triangle is
replaced with replications of the green triangles of a constrained
Delaunay triangulation (CDT) of the coplanar cluster (right, 2D).

Next we replace each input triangle with a triangulation containing
those elements resulting from the intersections.

Previous methods construct this triangulation independently for
each triangle [Jacobson et al. 2013; Attene 2014; Barki et al. 2015],
but this approach may introduce inconsistencies between overlap-
ping triangles due to non-general position configurations (see Fig-
ure 10). Inconsistent triangulations of coplanar intersections result
in violating the precondition of the following stage that the mesh is
free of intersections as defined in Section 3.1.

Figure 10: Two overlapping, co-planar right triangles (left) admit
multiple constrained Delaunay triangulations (CDTs). Indepen-
dent triangulation could lead to inconsistency (middle and right).

Instead, we gather clusters of triangles connected via non-trivial
co-planar intersections (i.e., intersections resulting in convex poly-
gons). By construction all triangles in a cluster share the same
supporting plane. We compute a 2D constrained Delaunay trian-
gulation (CDT) of the convex hull of each cluster. The original
constraints collected from triangles in the cluster are the points,
segments and polygons resulting from intersections with all other
triangles in the input meshA, as well as the vertex points and edges
of the cluster triangles themselves. We further subdivide segment
constraints so that all intersections are resolved as constraint Steiner
points. Finally, we compute the CDT of the convex hull of these
points and segments; no additional Steiner vertices are required.

With CDTs constructed for each cluster, we iterate over each origi-
nal triangle t to collect its respective subdivisions. We select among

Figure 11: We retain the relationship between the output triangles
and the inputs. Because of our exactness, attributes like texture
coordinates are losslessly maintained.

the CDT cluster those sub-triangles {t1, t2, . . .} whose three ver-
tices, according to exact 2D predicates, are not strictly outside t.
We clone each sub-triangle ti and orient it to match t, again us-
ing exact 2D predicates. In order to label winding number vectors
(Section 5.3), the cloned oriented subtriangle stores a reference to t.
This reference is also useful for applications requiring interpolation
of texture coordinates, colors, or other attributes onto the boolean
output mesh (see Figure 11).

We clean up by purging geometrically duplicate vertices. As we are
using exact vertex representation, this can be done efficiently using
lexicographical sorting and unique entry extraction from the list of
vertices. The result is a possibly non-manifold mesh with possible
duplicate triangles, but no self-intersections.

Duplicate triangles need to be retained at this stage, as their removal
requires knowledge of the extraction function.

The output mesh has exactly the same
winding number field as the input. This
immediately follows from the fact that
in the result all non-zero area triangles
of the original meshes are retained, pos-
sibly in the subdivided form as a result
of intersection resolution. One aspect of
ensuring this is cloning sub-triangles at
co-planar intersections. In the inset fig-
ure, the orange and blue shapes share a
side. If only one set of faces is kept in
the output the result is not a PWN mesh.

5.2 Partitioning space into cells

The second stage explicitly constructs a
set of cells. We define a cell as a region bound by the union of
oriented patches forming a closed manifold mesh with no self-
intersections. The set of cells forms a space partition.

Each patch is a subset of triangles of the input mesh and inherits
their orientation; the patch is a maximal connected set of faces with
all edges shared by two faces from the set being manifold. The
condition implies that a boundary edge of a patch (if it exists) is a
non-manifold junction with neighboring patches.

Boundary patches of a cell may be geometrically coplanar, produc-
ing zero-volume cells; by the absence of self-intersections, such
patches must consist of single triangles sharing the same vertices.

Preconditions The input mesh is
PWN without degenerate triangles, self-
intersections, and co-incident vertices.

Postconditions The output is a bi-
partite directed graph encoding of cell-
patch incidences. Each patch node has
one incoming and one outgoing edge to
cell nodes, representing the volumetric

regions on the positive and negative sides of the (oriented) patch, re-
spectively, which we call above and below cells. In the following,
we refer to “patch” (the combinatorial and geometric data struc-
ture) and “patch node” (the bipartite graph node) interchangeably,
and likewise for cells.

The output also includes mutual references between patches and in-
put mesh triangles, i.e., each patch node contains a list of triangles,
and each triangle has a pointer to the patch it is contained in.

Geometrically, the cells cover all R3.
Some cells will have zero geometric vol-
ume. These cells are always bound by
exactly two clones of the same geomet-
ric triangle: i.e., two patches, each with
one triangle. There may be many such
degenerate cells stacked on the same
multiply cloned triangle.

When the input to this stage is the resolved intersection (see Sec-
tion 5.1) of n piecewise-constant winding number inducing meshes,
then the output is denoted a valid cell-patch data structure.

Algorithm Our cell partitioning algorithm first separates the input
mesh into connected components of triangles. Two triangles are
considered connected if and only if they share an edge.

For each such connected component, we construct a cell-patch
graph independently of the other components. First, we cluster tri-
angles into patches. Starting with any unassigned triangle we grow
a new patch traversing across manifold edges until the boundary of
the patch is either empty or consists only of non-manifold edges.

During clustering, we record, for each non-manifold edge, its inci-
dent patches.

The adjacency between patches is encoded as a matrix A, setting
A(p, q) = e. which means that patch p is incident to patch q shar-
ing with it a representative non-manifold edge e. Incident patches
p and q may share multiple non-manifold edges, and the choice of
representative A(p, q) is arbitrary.

We now construct the bipartite graph of cells and patches encoding
the volumetric partition: while the patches have already been estab-
lished above, it remains to construct the cells and to add, for each
patch p, one outgoing edge to C↑(p) and one incoming edge from
C↓(p), the cells above and below p, respectively.

We will traverse all patch-patch incidences in arbitrary order.

When visiting an incident pair (p, q),
we retrieve the representative edge e =
A(p, q). As detailed in Section 5.5.3,
we sort the e-incident patches cyclically
around e, with respect to p’s orientation.

Suppose the sort results in the ordering
[p, r1, r2, . . . , rk], so that r1 and rk are
immediately “above” and “below” p, re-
spectively (see inset).

If we think of this sorting order as “upward,” then each patch’s
own orientation is either consistent or inconsistent with the sorting
order (e.g. in inset, r2 is inconsistent). Let C+(ri) ≡ C↑(ri) and
C−(ri) ≡ C↓(ri) if patch ri is oriented consistently with the sort,
otherwise let C+(ri) ≡ C↓(ri) and C−(ri) ≡ C↑(ri).

We now propagate cell assignments by iterating over each consec-
utive pair of e-incident patches in order, beginning with (p, r1) and
ending with (rk, p). Visiting the pair (ri, ri+1), our task is to iden-
tify the cell references C+(ri) ≡ C−(ri+1). If both C+(ri) and

C−(ri+1) are unassigned, we assign them both to a newly created
cell node. If only one is unassigned, we set it to the other cell node.
If both are assigned to distinct cell nodes, we merge the two nodes
in the bipartite graph. After visiting all patch-patch incidences, the
graph for one connected component is complete.

After completing each connected com-
ponent, it remains to merge the bipartite
graphs. In particular, the ambient cell of
a nested component must be equated to
the corresponding internal cell of the en-
closing component (see inset). As a spe-
cial case, the ambient cells of all non-
nested components must be equated.

As detailed in Section 5.5.2, for each componentKi, we identify its
ambient cell A(Ki).

We now iterate over each component, determine whether it is
nested, and find the cell to which its ambient cell should be equal.
Visiting component Ki, we select an arbitrary point p ∈ Ki. We
build a set of candidates E = {Kj | j 6= i,p 6∈ A(Kj)} consisting
of every component Kj 6= Ki whose ambient cell does not contain
p. To determine whether a cell contains p, we use point location
(Section 5.5.1): given a point p and component Kj find the con-
taining cell L(Kj ,p) and distance from p to Kj .

If the setE is not empty, thenKi is a nested component. Among the
candidates E, we select the one (and only) component Kj closest
to p. We merge the bipartite graph nodes A(Ki) and L(Kj ,p),
equating the ambient cell of the nested component to the interior
cell of its enclosing component, respectively.

If the set E is empty, then Ki is not a nested component. In this
case, we equate its ambient cell A(Ki) with the universal ambient
cell C0, defined as the cell containing “all points at infinity”, by
merging these two nodes in the bipartite graph.

After we have processed all components, the ambient cell of each
nested component has been equated with the interior cell of its en-
closing component, and the ambient cell of all non-nested compo-
nents is C0. The bipartite graph is now connected; each patch is
incident to two cells in a consistent manner.

5.3 Winding number labeling

In the third stage, we compute the winding number of each cell with
respect to each input mesh.

Preconditions The input is a valid cell-patch graph. The univer-
sal ambient cell is seeded with a known winding number vector;
by default w = [0, . . . , 0], signifying that infinity lies outside all
shapes. Only the combinatorial (not geometric) aspects of the in-
put are considered by this algorithm: instead of computing winding
numbers geometrically, we use property that the winding number
changes by 1 or−1, whenever a surface is crossed, and thus can be
computed by propagation along the cell-patch bipartite graph.

Postconditions The output is a valid cell-patch data structure
with consistently labeled winding number vector for each cell.
Neighboring cells will differ in winding number vector by exactly
+1 or −1 in a single entry corresponding to the originating mesh
of the patch between them, signed according to its orientation.

This process assigns winding numbers to zero-volume cells, formed
by duplicate triangles; although no points have this winding num-
ber, this records what interior points would have if the cell bound-
aries were separated consistently with patch ordering.

Algorithm Given cell C with a known winding number vector
wc, we assign the winding number vector of neighboring cells via
breadth first traversal. For each oriented patch p separating cell
C from neighbor cell N , if the winding number vector wn is still
unknown we set it to wc adjusted to account for crossing patch p,
originating from mesh Ai:

wn ← wc + sp[δi1 . . . δin], (7)

where sp is +1 if cell C lies above p and N below and −1 if vice
versa, and δij is Kronecker’s delta. We then add cellN to the queue
of cells to process later. When the queue is empty, all cells have
been labeled, and the algorithm has completed.

Complements By default, all input meshes Ai are assumed to
represent bounded solids. Under this convention, the winding num-
ber at infinity is zero, wj(∞) = 0. Winding numbers elegantly
handle complements by subtraction from 1. If Aj is the comple-
ment of Ai = Ac

i , then

wj = 1− |wi| or wj = 1− wi, (8)

depending on whether the complement operator is orientation-
insensitive or -sensitive, respectively (see inset).1

As a consequence, if Aj represents the unbounded complement of
some bounded solid, then the seeded winding number vector at in-
finity should be wj(∞) = 1.

In this way the winding number elegantly captures set identities. In
particular, we produce exactly the same result forA\B andA∩Bc.

5.4 Operation result extraction

With the arrangement data structure constructed, we may perform
arbitrary extraction operations. We extract the triangulated bound-
ary of all cells for which an extraction function f is true.

Preconditions Inputs are a valid cell-patch data structure with
consistently labeled winding number vectors and a function f(w)
returning true or false for a given winding number vector w. As in
the previous stage, this stage makes use only of combinatorial (not
geometric) aspects of the input.

Postconditions The output is a solid mesh.

Algorithm We flag all cells that pass f , collecting all patches sep-
arating a flagged cell from an unflagged cell, and then collecting all
triangles of those patches, flipping the orientation of triangles from
patches with a flagged cell above and unflagged cell below. We
then purge possible boundaries arising from zero-volume symbolic
cells. Since these always occur as perfect combinatorial duplicates
of single triangles, we need only remove all triangles with zero total
signed occurrence: sum of +1 if oriented i, j, k and −1 if k, j, i.

5.5 Core low-level subroutines

The robustness of our method rests on the correctness of several
core low-level subroutines.

1In the orientation-insensitive case, the complement of the complement
results in taking the absolute value of the winding number w, preserving
orientation-insensitive insideness defined as w 6= 0.

5.5.1 Point location

We are asked to locate in which cell a given point lies. This is a
special case of the fundamental point location problem in computa-
tional geometry. We take special care to solve this problem robustly
and in the presence of zero-volume cells (e.g., due to resolved co-
planar intersections).

Preconditions Inputs are a query point q ∈ R3 and a valid cell-
patch data structure. The query must not lie exactly on any patch.

Postcondition The output is the unique cell containing the query.

Algorithm Searching over all triangles, we find a triangle t con-
taining the point c on the input mesh closest to the query point q.
Point c lies either exactly at a vertex v of t, or else along an edge
e, or else within the interior of t (but not on its boundary). None
of these cases is trivial. The vertex v or edge e could be a non-
manifold junction of many cells, and the triangle t could lie deep in
a “stack” of zero-volume cells due to duplicated faces.

In fact, only at edges can we robustly determine the symbolic and
geometric cell arrangement. The cyclic ordering of cells incident
on an edge e is consistent, and since q does not lie on the input
mesh it must lie in one of the incident cells. We insert a dummy
facet connecting e and q into the sorted list of facets incident on e.
The next facet after the dummy (or previous facet before) must be
part of a patch bounding the cell containing q.

The ambiguity in the case where c lies within the triangle t arises
in the presence of duplicates of the triangle t. Since all duplicates
share the same three edges, we choose one arbitrarily as the sorting
edge e, and insert a dummy as in the edge case above.

If the closest point c lies at a vertex v, we identify a good sorting
edge e (i.e., on the convex hull of v and its vertex neighbors) and
again insert a dummy as above. Identifying the containing cell of
a query whose point of closest approach is a vertex will also arise
when identifying the ambient cell of a component. In this case, we
project edges incident on v onto the plane formed by q−c and any
orthogonal vector (rather than the xy plane) and then follow the rest
of the ambient cell identification algorithm in Section 5.5.2.

5.5.2 Ambient cell identification

In this subroutine, we identify the ambient cell (containing all
points at infinity) of a given mesh.

Preconditions Inputs are a (non-manifold) self-intersection-free
triangle mesh and corresponding cell-patch data structure.

Postconditions The output is a facet guaranteed to contain an
outer vertex (a vertex on the convex hull of the vertices) and partic-
ipate in a patch forming part of the boundary of the ambient cell of
this mesh containing all points at infinity.

Algorithm We could solve this problem by identifying the cell
containing some arbitrary far away point using the point location
algorithm of Section 5.5.1. However, we enjoy the performance
benefits of avoiding closest point computation by choosing a query
point with a vertex as its known closest point.

We locate a vertex v with the maximum x-coordinate magnitude,
breaking ties arbitrarily. It follows immediately that q = v +
(1, 0, 0) lies in the desired ambient cell and that v is the point of
closest approach of q to the input mesh.

Figure 12: Consider a tetrahedron (orange) inside a wedge (blue),
connected at a non-manifold vertex. One face normal of the interior
tetrahedron (orange) has a larger x-component than the normals of
exterior triangles (blue) incident on this non-manifold outer vertex.

We will identify the ambient cell by finding a facet incident on v
that is part of a patch on the ambient cell’s boundary. To find an
incident outer facet, we first select an edge incident on this vertex
that also lies on the convex hull. Then we sort facets cyclically
around this edge and select one of the two facets that are part of
ambient-cell boundary patches.

Sorting facets around an edge is discussed in Section 5.5.3, so it
remains to identify an edge of the convex hull edge on the vertex
with maximal x-coordinate. We rely on our exact representation
of the input mesh and the ability to determine predicates exactly
(e.g., is a point below, on, or above a plane?). We sort incident
edges with respect to their projection on the xy-plane. We select
the edge whose projected edge-vector e = (ex, ey) is most orthog-
onal to the x-axis. Our particular exact representation kernel allows
construction of quotients (but not square roots), so we identify the
edge with maximum slope as a line function of x: that is, according
to |ey/ex|. We may break ties arbitrarily because all edges with
maximum slope must lie on the convex hull.

Remark Attene [2014] proceeds in a similar way by finding a max-
imal x-coordinate vertex and then chooses the incident triangle
whose normal has the largest magnitude x-component. This cri-
terion cannot be applied if the vertex is non-manifold: an inner
“flap” might have a more outward-pointing normal than the true
outer facets. For a concrete counterexample, consider extruding
the triangle {(0, 0), (1, 1), (0, 2)} two units in the z-direction, then
move the lower-right corner to (2, 1, 0) and add a inner tetrahedron
connecting that vertex to the top-left corners and any interior vertex
floating below (see Figure 12).

5.5.3 Cyclical sort triangles about a common edge

The cell partitioning, point location, and ambient cell identification
subroutines depend on the ability to sort triangles about a common
edge robustly. We sort only at one representative edge between
incident patches, rather than at every edge of the triangulation (cf.
[Attene 2014; Barki et al. 2015]).

Sorting triangles around a common edge is misleadingly innocu-
ous. This subroutine must (and will) ensure consistent ordering of
exactly duplicate triangles (e.g., resulting from resolved co-planar
input triangles) and geometrically correct ordering of numerically
nearly co-planar triangles.

Preconditions The input is a set of m non-degenerate triangles
t1, . . . , tm incident on a mutual (non-degenerate) edge {i, j}. Each
triangle tk is endowed with a globally assigned index εk (e.g., its
index in the non-manifold output mesh after resolving all intersec-

Figure 13: Consider five co-planar facets (lines) incident on two
oriented edges (dots). Using the edge orientation to sign these in-
dices during sorting ensures that orderings from either edge are
consistent (left). Otherwise the sort is the same regardless of the
edge orientation leading to inconsistent ordering.

tions). It is assumed that if two triangles are coplanar, then either
they intersect only along the edge {i, j} (their dihedral angle is
180◦) or they are geometrically identical (same third vertex posi-
tion and their dihedral angle is 0◦).

Postconditions This subroutine outputs a sorted (clockwise) or-
dering of the triangles, looking down the edge {i, j}. Geometri-
cally distinct triangles are sorted cyclically according to their dihe-
dral angle with the first triangle t1. Duplicate triangles—without
loss of generality all are {i, j, k}—are sorted consistently in the
sense that their relative ordering is maintained when sorting around
{i, j}, {j, k}, or {k, i} and their ordering is reversed when sorting
around {j, i}, {k, j}, or {i, k}.

Algorithm Let each triangle t be positively incident on {i, j} if
t = {i, j, k} and otherwise negatively (i.e., if t = {k, j, i}).

Let pk refer to the vertex position of triangle tk’s third “flap” ver-
tex not lying on the shared edge {i, j}. Our recursive divide-and-
conquer algorithm begins by selecting a starting triangle t = t0
and sorting each other triangle tk into one of four groups, based on
whether pk lies (1) co-planar with t0 and on the same side of {i, j}
as p0, (2) co-planar with t0, and on the opposite side of {i, j} as
p0, (3) below the plane of t0, (4) above the plane of t0.

We sort within groups (1) and (2) by simulating simplicity à la
[Edelsbrunner & Mücke 1990]. Duplicate triangles are sorted ac-
cording to their uniquely assigned index εk. To ensure that this or-
dering is consistent and not erroneously reversed when viewed from
a different edge incident on the same replicated triangles, we sign
these indices based on the signed incidence of each triangle with
respect to {i, j} (see Figure 13). This symbolic perturbation will
differ depending on input indices, but is always consistent. Only
the ordering of zero-volume cells are effected, so different order-
ings will always produce the same geometric result.

Triangles in groups (3) and (4) are sorted by recursive calls. The
complete output is then simply the merger of the four sorted groups.

6 Implementation

We implemented the algorithm in C++ utilizing the exact arith-
metic kernel of the popular CGAL library. We specifically use
its subroutines for: exact testing and construction triangle-triangle
intersections; 2D constrained Delaunay tessellation (CDT); point-
triangle closest point queries and point-plane predicates. We found
CGAL’s CDT implementation to be robust on all examples if con-
straints are subdivided at intersections as a preprocess.

We also use CGAL’s built-in bounding-box-based spatial accelera-
tion for collecting a list of candidate triangle-triangle intersections.
We further accelerate the exact triangle-triangle intersection detec-
tion and construction by processing candidates in parallel. Due to
the reference counting employed by CGAL’s deferred evaluation

Figure 14: We conduct extensive evaluation of the robustness of our method on a dataset of 10,000 popular real-world models.

exact number type (CGAL::Lazy_exact_nt), seemingly read-
only simultaneous access of triangle data is unsafe. Fortunately in-
tersection detection and construction is compute-bound, so despite
placing mutex locks around every mesh vertex leads to parallelism
performance gains.

We also use CGAL’s axis-aligned bounding-box hierarchy for
point to triangle-soup closest point querying. We further accelerate
the point location in Section 5.5.1 by culling points entirely outside
of the bounding box of a component (the query point must then lie
in that component’s ambient cell).

6.1 Converting to floating-point

While input meshes with floating-point vertex position coordinates
losslessly convert to our exact representation, the reverse is not true
about our output exact meshes. Naively rounding a solid exact mesh
to floating point may result in a non-solid mesh due to newly intro-
duced self-intersections. This occurs in 2.19% of our output meshes
in the Thingi10K dataset.

This problem is known as vertex rounding. Without allowing sub-
division of facets and insertion of new vertices, this problem is NP-
hard [Milenkovic & Nackman 1990]. Allowing for re-triangulation,
a robust—albeit slow and complicated—solution to this problem
exists in theory [Fortune 1997].

To fit into floating-point pipelines and fairly compare to previous
methods producing floating-point output meshes (e.g., [Bernstein
2013; Attene 2014; Douze et al. 2015]), we propose a heuristic for
rounding our exact output meshes to floating-point. Our heuristic is
related to the method proposed in [Sacks & Milenkovic 2014].

Preconditions We assume the input to be a solid triangle-mesh
with exact coordinates.

Postconditions Though we can make no guarantees of conver-
gence, our exact method equipped with this rounding heuristic
successfully finds self-intersection free floating-point meshes for
99.95% of the dataset. Otherwise, we can only claim the output to
remain a PWN mesh.

Heuristic Given a solid mesh with exact vertices, we iteratively
apply the following steps: (1) round all vertices to double preci-
sion floating-point coordinates, (2) find all triangles participating
in self-intersections (if none, then return), (3) round all vertices of
these triangles to single precision floating-point coordinates, and
(4) compute the self-union of the resulting mesh.

Figure 15: Real-world meshes with real-world problems.

7 Experiments and results

Constructed or procedurally generated examples may help inves-
tigate corner cases, but do not necessarily report how robustly an
algorithm will perform in practice. To this end, we gather a dataset
of 10,000 meshes from “the wild,” and test our method and previ-
ous works against it. Considering these meshes as a representative
sampling of a general population of meshes encountered in practice,
we evaluate the restrictiveness of preconditions and the robustness
of claimed postconditions across methods.

7.1 Thingi10K dataset

Contents and methodology The Thingi10K dataset contains
the first 10,000 meshes of “Featured” models on thingiverse.com, a
popular shape repository. These models are heavily biased toward
models designed by amateurs or semi-professionals for 3D printing
(though there is no official restrictive policy). We therefore inter-
pret these models as a representative sampling of the population of
meshes intended to model a solid 3D object.

Each “thing” featured on thingiverse.com may contain several
distinct mesh files. We collected the first 2011 things, to-
talling 10,000 meshes (see Figure 14). All things have free li-
censes (GPL, LGPL, CC, BSD, or public domain). The orig-
inal meshes came in a biased variety of file formats: 9956
.stl, 42 .obj, one .off, and one .ply. The vast ma-
jority of meshes have single-precision vertex-coordinates. Since
.stl files store triangle streams rather than meshes, we
immediately merge exactly duplicate
corners. The number of faces in each
mesh follows a log-normal distribution
with geometric mean and standard devi-
ation 5077.6± 8.5 (see inset).

thingiverse.com
thingiverse.com

Figure 16: Previous methods frequently failed to produce an out-
put without self-intersections, without open boundaries, and with
piecewise-constant winding number.

Comparing preconditions Of the
10,000 meshes, 8616 meet our PWN
precondition. Of these, 5113 are solid;
of those 4963 are manifold polyhedra.

The 10,000 meshes exhibit a variety of
typical problematic cases: open bound-
aries, self-intersections, non-manifold
elements, multiple components, etc. (see Figure 15). Among the
4524 meshes containing self-intersections, 3082 contain coplanar
self-intersections. This quantifies an approximation of the fraction
of models deviating from the general positioning assumption.

Many “problematic” meshes seem to result from modeling with
self-intersections (see Figure 2) and overlapping, independently
modeled components or from previous failed boolean operations.

7.2 Testing self-union

Assuming each mesh in the Thingi10K dataset to represent an in-
tended solid, we compare extracting a valid boundary of this solid
with available implementations of five previous works: “CGAL”
[CGAL 2015], “Carve” [CARVE 2014], “Cork” [Bernstein 2013],
“QuickCSG” [Douze et al. 2015], and “Attene” [Attene 2014].

We emphasize that this experimental comparison reflects both algo-
rithmic limitations and implementation deficiencies, so a different
implementation of any given method could potentially and perform
better. The no-longer-maintained implementation of [Bernstein &
Fussell 2009] failed on most examples. Similarly, the web-service
implementation of [Campen & Kobbelt 2010a] failed to produce a
result roughly 40% of the time. We are unable to obtain implemen-
tations or outputs for other methods (e.g., [Barki et al. 2015]).

We limit our comparison to the 8616 PWN meshes. Of these, only
3413 contain self-intersections. Nonetheless, we consider all 8616
PWN meshes as implementations relying on internal rounding (e.g.
[Attene 2014; Bernstein 2013]) often also stumble on nearly self-
intersecting meshes.

Attene’s mesh repair method computes the outer hull, rather than
the self-union [2014]. The other implementations do not provide
an explicit API for conducting self-union, so we intersect the input
model with its conservative bounding box.

Figure 17: The performance of our method is competitive with ex-
isting floating-point methods and faster than the state-of-the-art ex-
act method [CGAL 2015]. Geometric means given for each method.
Unequal histogram areas correspond to success rate.

Figure 18: The main bottleneck of our algorithm is triangle-
triangle intersection resolution. Within this major stage, the in-
tersection detection and exact construction dominate.

Comparing postconditions Self-union should output a solid
mesh. We report whether a method successfully produced any out-
put and if it met certain necessary postconditions. Strictly testing
solidity requires a correct implementation of cyclic facet ordering
around a non-manifold edge to determine that all incident cells are
alternating zero/one winding number. Absent trusted third-party
code, we test necessary (but not sufficient) conditions: lack of self-
intersections, open boundaries, and non-zero total signed incidence
edges. Such meshes form a strict subclass of PWN meshes, but a
superclass of solids. Our exact method succeeds with 100% suc-
cess across all criteria (see Figure 16). Previous methods fall short
in at least one criteria. This unique success places our exact method
robustly into the exact geometry pipeline.

In a floating-point context, our method also out-performs all oth-
ers. Our heuristic for converting our exact outputs to floating-point
meshes in Section 6.1 succeeds in removing new self-intersections
all but five cases out of the 8616. These meshes fail to converge
after 20 iterations. Rates of closedness and total signed edge-
incidence are—by construction—maintained at 100%.

The specific causes of failure of the previous methods are difficult to
determine. We can identify robustness flaws associated with char-
acteristics of the input meshes. Methods assuming general position-
ing or resorting to numerical perturbation [Bernstein 2013; Douze
et al. 2015] will struggle in the presence of coplanar intersections.

Figure 19: Self-intersections confuse per-vertex ambient occlusion
and sharp-line detection. Rendering the outerhull ameliorates this.

Figure 20: David emerges from a block by repeatedly subtracting
the Minkowski sum of a drill bit along piecewise-linear paths.

Attene assumes accurate floating-point nor-
mals during self-intersection culling and outer
hull extraction [2014], but inputs may contain
degenerate or nearly degenerate triangles with
untrustworthy normals. The inset highlights
self-intersections (orange) and an open bound-
ary (red) on a problematic output of Attene’s.

Performance We collected timing infor-
mation across the 8616 self-unions for our
method and four others (CGAL, Carve,
QuickCSG, Cork) locally on a machine with
an 8-core Intel Xeon 3GHz processor with
16GB of memory.2 The violin histograms of
running timings in Figure 17 show that while
ours is not the fastest, it is competitive.

The Thingi10K dataset also provides means to further examine the
performance of our individual subroutines. The profile in Figure 18
reveals that resolving intersections is the dominating bottleneck.

7.3 General discussion

Outer hull The outer hull of an input triangle mesh is defined
as those triangles reachable from infinity by some (possibly non-
straight) path that does not intersect the mesh [Campen & Kobbelt
2010b; Attene 2014]. In general, the outer hull cannot be catego-
rized in terms of the winding number: boundaries with inner hollow
cavities with zero winding number are not part of the outer hull. For
some applications, retaining these inner cavities is crucial (see Fig-
ure 5). For other applications, such as rendering, the outer hull may
be appropriate and desired (see Figure 19). We can easily adapt
our algorithm to compute outer hulls. We construct cell partition
according to Section 5.2, find the ambient cell according to Sec-
tion 5.5.2, and simply extract its boundary as per Section 5.4.

2Attene provided results independently.

Figure 21: Numerical perturbation can produce spurious artifacts.

Figure 22: We reproduce and exhaustively expand the pairwise
testing in [Barki et al. 2015] (see supplemental material).

Minkowski sums The Minkowski sum of a solid mesh A along
a segment {s,d} can be computed as the union of A at s, A at d,
and the union of all prisms formed by triangles ofA along {s,d}:

A+ {s,d} =
⋃(

A+ s,A+ d,
⋃
t∈A

t+ {s,d}

)
. (9)

Explicitly computing the union of all triangular prisms via our mesh
boolean algorithm would produce the correct result but after too
much unnecessary computation: most neighboring prisms are ex-
act duplicates. We cull the union of prisms with a pre-process, re-
moving all facets with zero total signed occurrence, replacing all
instances of facets with±2k total signed occurrences with±k pos-
itive/negative clones. This proof-of-concept inherits the robustness
of our method, but is likely suboptimal in terms of performance
compared to specialized methods [Campen & Kobbelt 2010b]. In
Figure 20, we simulate a CNC-milling tool.

Traditional binary boolean tests A traditional test for a boolean
algorithm is to select two meshes, randomly rotate them, then con-
duct a binary operation (union, intersection, difference, etc.) and
investigate the result for artifacts or errors. This type of testing en-
courages the general positioning assumption and may give a false
sense of robustness in cases with coplanar intersections and exact
co-incidences. An extreme case is taking the intersection of an ob-
ject with a clone of itself (see Figure 21). Methods based on numer-
ical perturbation, such as [Bernstein 2013], panic in the presence of
so many co-planar intersections.

For completeness, we reproduce and expand the testing in [Barki
et al. 2015]. Barki et al. compute the union and intersection for 22
pairs of meshes from a collection of 26 standard computer graphics
meshes (Armadillo, Dino, etc.). We exhaustively compute union,
intersection, and both asymmetric differences for all pairs (see Fig-
ure 22). All 4(26(26 + 1))/2 = 1404 tests result in valid solid
meshes. For two of these meshes, Barki et al. also compute the
union and intersection of the mesh and a clone rotated by random

Figure 23: We reproduce and expand upon the A-union-rotated-A
style test in [Barki et al. 2015].

Figure 24: The letters are separated overlapping components on
the cryptex. Exact union reveals disjoint rings, shown in different
colors, but small tolerances between parts cause inexact methods
to merge over zealously.

Figure 25: A popular commercial app produces three different re-
sults (presumably due to randomization), yet all are incorrect.

rotation. For all 26 meshes, we compute the union of the mesh and
10 clones rotated by π/10, 2π/10, . . . , π about the same axis (see
Figure 23). All our results are valid solid meshes.

The robustness of several previous works rely on the assumption
that input vertices lie on a regular grid [Campen & Kobbelt 2010a]
or at general positions [Bernstein 2013; Douze et al. 2015]. How-
ever, input rounding or perturbation—no matter how subtle—may
introduce unnecessary intersections that merge disjoint components
(see Figure 24) or cause numerical problems (see Figure 21). In
contrast, the exact nature of our approach allows us to only resolve
intersections already present in the inputs.

Others (e.g., [Barki et al. 2015]) have demonstrated robustness is-
sues with boolean implementations in commercial software such
as MAYA. We add to this by comparing to Trimble’s SKETCHUP
PRO. SKETCHUP PRO consistently fails to intersect four randomly
rotated icosahedra (see Figure 25). We also attempted to union each
of the 26 models of [Barki et al. 2015] with a clone rotated by π/10
(a simplified version of Figure 23). After a day of computation,
only 12 produced an output, and none were without flaws (all were
combinatorially open, only two were without self-intersections).

Although very common, inputs with multiple, possibly nested,
components are overlooked in previous works. The implementa-
tion of [Campen & Kobbelt 2010a] assumes single component in-
put, and [CGAL 2015] does not detect nested voids automatically.
Our algorithm correctly handles both cases (see Figure 26).

Stress tests In addition to standard tests on common computer
graphics models, we also stress test our algorithm on challenging
examples. Our algorithm is robust for carrying out consecutive
boolean operations because the output solid mesh is trivially a valid
PWN input for the following operations (see Figure 27).

Figure 26: Disconnected stars and overlapping spike components
correctly unites with a nested turtle (slice view above).

Figure 27: We reproduce the carving example of [Bernstein &
Fussell 2009] by subtracting 10,000 dodecahedra from a box.

An interesting and challenging application of booleans is to “undo”
boolean subtractions given only the argument and the result, pro-
duced by an unknown boolean implementation (see Figure 28).

Generality Besides conventional boolean operations, the space
partition defined by mesh arrangement is useful for many impor-
tant geometry processing applications. In Figure 29, the outer hull
computation is a necessary preprocessing step for generating a vol-
umetric discretization for structural analysis [Zhou et al. 2013]. The
outer hull is also useful for culling extra internal complexity (see
Figure 30).

Our variadic formulation also allows us to compute regions inside
at least k of the input meshes without the combinatorial explosion
associated with binary boolean operations (see Figure 31). Fig-
ure 3 considers ten intersecting tetrahedra. Our variadic union of
all ten tets is roughly twice as fast as decomposing the union into
a cascading tree of binary union operations (and 6.5× faster than a
linear chain of binary unions). Intuitively, this is because our inter-
section resolution is the most economical for this arrangement. In
contrast, repeated unions will require resolving intersections with
previous results, aggregating unnecessary complexity: though ge-
ometrically identical, our result has 384 triangles, compared to the
cascading tree’s 1000. We also construct extraction of the region
inside at least five input tetrahedra. Decomposing this task into a
binary tree of cascading operations leads to an exponential number
of operations in the number of tets (5

(
10
5

)
− 1 = 1259 binary oper-

ations for ten tets). The aggregation of complexity is catastrophic,
leading to performance measured in weeks. Instead, extracting this
result from our arrangement requires the same cost as extracting the
union: just a few seconds.

Lastly, the cell data structure used by our algorithm can be easily
extended for customized applications. For example, it is easy to
eliminate small cells immersed inside a shape (see Figure 32).

8 Limitations and future work

A limitation of this method is the requirement that the input mesh
have no open boundaries or non-manifold “flaps”. Of the 10,000
meshes in our Thingi10K dataset, 18% did not meet our precon-

Figure 28: The groved, yellow frog is the result of subtracting the
stripy, blue flog from an unknown (presumably solid) frog using
some boolean implementation (not ours). Our robust union recov-
ers the original frog (blue and yellow).

Figure 29: Tetrahedralization of the input foot mesh fails due to
overlapping input components, but succeeds after self-union. The
volume mesh helps analyze the shapes structure.

ditions. While repairing invalid input meshes is beyond the scope
of this method, many previous works are available [Attene 2010;
Campen et al. 2012; Jacobson et al. 2013]. On the other hand, the
high-level structure of our approach would clearly extend to meshes
with boundaries and unstructured non-manifoldness via the gener-
alized winding number [Jacobson et al. 2013]. However, our low-
level combinatorial and sorting based subroutines would need to be
replaced with robust or exact evaluations of the generalized wind-
ing number. While Barki et al. [2015] provide a partial solution for
simple cases (e.g., clipping a closed model with a plane), a robust
solution for arbitrary geometrically open models is elusive.

Our method is variadic, but does not optimize operations based on
the requested extraction and inputs. For example, consider con-
ducting the 1000-way union of 999 overlapping spheres enclosed
and their conservative bounding box. Clearly resolving the inter-
sections between the 999 spheres is overkill. It would be interesting
to explore conservative optimization.

In the hopes of fostering continued work and more exhaustive test-
ing in geometry processing at large, we release our code (now in
LIBIGL [Jacobson et al. 2016]) and our Thingi10K dataset.

Acknowledgments

We thank G. Bernstein for sharing code and M. Attene for testing on
the Thingi10K dataset. We thank M. Campen, A. Fleming H. Maia,
J. Panetta, R. Sawhney, O. Stein, P. Thamjaroenporn, O. Winn, and
E. Yao for early feedback and proofreading. Funded in part by NSF
grants CMMI-11-29917, IIS-14-09286, and IIS-17257.

References

ATTENE, M. 2010. A lightweight approach to repairing digitized
polygon meshes. The Visual Computer.

ATTENE, M. 2014. Direct repair of self-intersecting meshes.
Graphical Models.

Figure 30: The coin mesh has been modeled with many overlap-
ping components (gold). Constructing the outer hull adds many
new vertices, but removes hidden interior geometry. After decima-
tion, the few triangles are well spent on the visible surface (silver).
Naive decimation wastes precious triangles on the hidden interior
(bronze).

Figure 31: Our method supports n-ary operations. For example,
extracting all regions inside at least k of the input spheres centered
at each corner of the unit cube.

Figure 32: The self-union of a wheel of cheese retains its internal
bubbles after slicing (intersecting) with a knife (blue wedge). Slic-
ing the outer hull reveals no bubbles. Eliminating small volumes
cells in the self-union before extraction, produces a few bubbles.

BANERJEE, R. P., AND ROSSIGNAC, J. R. 1996. Topologically
exact evaluation of polyhedra defined in CSG with loose primi-
tives. Comput. Graph. Forum.

BARKI, H., GUENNEBAUD, G., AND FOUFOU, S. 2015. Exact,
robust, and efficient regularized booleans on general 3d meshes.
Computers and Mathematics with Applications.

BERNSTEIN, G., AND FUSSELL, D. 2009. Fast, exact, linear
booleans. In Proc. SGP.

BERNSTEIN, G., 2013. Cork boolean library .
https://github.com/gilbo/cork.

BIERI, H., AND NEF, W. 1988. Elementary set operations with
d-dimensional polyhedra. In Proc. IWCGA.

CAMPEN, M., AND KOBBELT, L. 2010. Exact and robust
(self-)intersections for polygonal meshes. Comput. Graph. Fo-
rum.

CAMPEN, M., AND KOBBELT, L. 2010. Polygonal Boundary
Evaluation of Minkowski Sums and Swept Volumes. Comput.
Graph. Forum.

http://www.google.com/search?q=A+lightweight+approach+to+repairing+digitized+polygon+meshes
http://www.google.com/search?q=A+lightweight+approach+to+repairing+digitized+polygon+meshes
http://www.google.com/search?q=Direct+repair+of+self-intersecting+meshes
http://www.google.com/search?q=Topologically+exact+evaluation+of+polyhedra+defined+in+CSG+with+loose+primitives
http://www.google.com/search?q=Topologically+exact+evaluation+of+polyhedra+defined+in+CSG+with+loose+primitives
http://www.google.com/search?q=Topologically+exact+evaluation+of+polyhedra+defined+in+CSG+with+loose+primitives
http://www.google.com/search?q=Exact,+robust,+and+efficient+regularized+booleans+on+general+3d+meshes
http://www.google.com/search?q=Exact,+robust,+and+efficient+regularized+booleans+on+general+3d+meshes
http://www.google.com/search?q=hypertargetbernstein09Fast,+exact,+linear+booleans
http://www.google.com/search?q=hypertargetbernstein09Fast,+exact,+linear+booleans
http://www.google.com/search?q=Cork+boolean+libraryhfill
http://www.google.com/search?q=Elementary+set+operations+with+d-dimensional+polyhedra
http://www.google.com/search?q=Elementary+set+operations+with+d-dimensional+polyhedra
http://www.google.com/search?q=hypertargetcampen2010frExact+and+robust+mbox(self-)intersections+for+polygonal+meshes
http://www.google.com/search?q=hypertargetcampen2010frExact+and+robust+mbox(self-)intersections+for+polygonal+meshes
http://www.google.com/search?q=Polygonal+Boundary+Evaluation+of+Minkowski+Sums+and+Swept+Volumes
http://www.google.com/search?q=Polygonal+Boundary+Evaluation+of+Minkowski+Sums+and+Swept+Volumes

CAMPEN, M., ATTENE, M., AND KOBBELT, L., 2012. A practical
guide to polygon mesh repairing. Eurographics Tutorial.

CARVE, 2014. CARVE: An efficient and robust library for boolean
operations on polyhedra. http://carve-csg.com/.

CGAL, 2015. CGAL, Computational Geometry Algorithms Li-
brary. http://www.cgal.org.

DOUZE, M., FRANCO, J.-S., AND RAFFIN, B. 2015. QuickCSG:
Arbitrary and faster boolean combinations of n solids. Tech. Rep.
01121419, Inria Research Centre Grenoble, Rhone-Alpes.

EDELSBRUNNER, H., AND MÜCKE, E. P. 1990. Simulation of
simplicity: A technique to cope with degenerate cases in geo-
metric algorithms. ACM Trans. Graph..

FORTUNE, S. 1997. Vertex-rounding a three-dimensional polyhe-
dral subdivision. Discrete Comput. Geom.

GRANADOS, M., HACHENBERGER, P., HERT, S., KETTNER, L.,
MEHLHORN, K., AND SEEL, M. 2003. Boolean operations
on 3d selective nef complexes: Data structure, algorithms, and
implementation. In Proc. ESA.

JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. 2013.
Robust inside-outside segmentation using generalized winding
numbers. ACM Trans. Graph..

JACOBSON, A., PANOZZO, D., ET AL., 2016. libigl: A simple
C++ geometry processing library. http://libigl.github.io/libigl/.

MEI, G., AND TIPPER, J. C. 2013. Simple and robust
boolean operations for triangulated surfaces. arXiv preprint
arXiv:1308.4434.

MILENKOVIC, V. J., AND NACKMAN, L. R. 1990. Finding com-
pact coordinate representations for polygons and polyhedra.

MUSETH, K., BREEN, D. E., WHITAKER, R. T., AND BARR,
A. H. 2002. Level set surface editing operators. ACM Trans.
Graph..

NAYLOR, B., AMANATIDES, J., AND THIBAULT, W. 1990. Merg-
ing bsp trees yields polyhedral set operations. In Proc. SIG-
GRAPH.

PAVIC, D., CAMPEN, M., AND KOBBELT, L. 2010. Hybrid
Booleans. Comput. Graph. Forum.

SACHT, L., JACOBSON, A., PANOZZO, D., SCHÜLLER, C., AND
SORKINE-HORNUNG, O. 2013. Consistent volumetric dis-
cretizations inside self-intersecting surfaces. Proc. SGP.

SACKS, E., AND MILENKOVIC, V. 2014. Robust cascading of
operations on polyhedra. Computer-Aided Design (Tech. Note).

SUGIHARA, K., AND IRI, M. 1992. Construction of the Voronoi
diagram for one million generators in single-precision arith-
metic. Proc. of the IEEE.

THIBAULT, W. C., AND NAYLOR, B. F. 1987. Set operations on
polyhedra using binary space partitioning trees. In Proc. SIG-
GRAPH.

VARADHAN, G., KRISHNAN, S., SRIRAM, T., AND MANOCHA,
D. 2004. Topology preserving surface extraction using adaptive
subdivision. In Proc. SGP.

WANG, C. C. L. 2011. Approximate boolean operations on large
polyhedral solids with partial mesh reconstruction. IEEE TVCG.

XU, S., AND KEYSER, J. 2013. Fast and robust booleans on poly-
hedra. Computer-Aided Design.

ZHAO, H., WANG, C. C., CHEN, Y., AND JIN, X. 2011. Parallel
and efficient boolean on polygonal solids. The Visual Computer.

ZHOU, Q., PANETTA, J., AND ZORIN, D. 2013. Worst-case struc-
tural analysis. ACM Trans. Graph..

Appendix: Exact representation

Since a computer cannot represent all
points in R3, we assume all vertices
of our input and output meshes are
given in the “exact” rational coordinate
space Q3. Exactness means that points,
line segments and convex polygons with
endpoints in Q3 form a group closed un-
der spatial intersection.

The space of the double precision floating-point coordinate space
F3 does not satisfy these criteria: e.g., the point of intersection
between line segments [(0, 0, 0), (2, 1, 0)] and [(1, 0, 0), (0, 1, 0)]
is the non-floating-point position (2/3, 1/3, 0), see inset. The ex-
act rational space Q3 contains the floating-point space as a subset:
F3 ⊂ Q3. So, if given a mesh Ai with floating-point vertex posi-
tions, we can losslessly cast them to our exact space.

http://www.google.com/search?q=A+practical+guide+to+polygon+mesh+repairing
http://www.google.com/search?q=A+practical+guide+to+polygon+mesh+repairing
http://www.google.com/search?q=textscCarve:+An+efficient+and+robust+library+for+boolean+operations+on+polyhedra
http://www.google.com/search?q=textscCarve:+An+efficient+and+robust+library+for+boolean+operations+on+polyhedra
http://www.google.com/search?q=textscCgal,+Computational+Geometry+Algorithms+Library
http://www.google.com/search?q=textscCgal,+Computational+Geometry+Algorithms+Library
http://www.google.com/search?q=QuickCSG:+Arbitrary+and+faster+boolean+combinations+of+n+solids
http://www.google.com/search?q=QuickCSG:+Arbitrary+and+faster+boolean+combinations+of+n+solids
http://www.google.com/search?q=Simulation+of+simplicity:+A+technique+to+cope+with+degenerate+cases+in+geometric+algorithms
http://www.google.com/search?q=Simulation+of+simplicity:+A+technique+to+cope+with+degenerate+cases+in+geometric+algorithms
http://www.google.com/search?q=Simulation+of+simplicity:+A+technique+to+cope+with+degenerate+cases+in+geometric+algorithms
http://www.google.com/search?q=Vertex-rounding+a+three-dimensional+polyhedral+subdivision
http://www.google.com/search?q=Vertex-rounding+a+three-dimensional+polyhedral+subdivision
http://www.google.com/search?q=Boolean+operations+on+3d+selective+nef+complexes:+Data+structure,+algorithms,+and+implementation
http://www.google.com/search?q=Boolean+operations+on+3d+selective+nef+complexes:+Data+structure,+algorithms,+and+implementation
http://www.google.com/search?q=Boolean+operations+on+3d+selective+nef+complexes:+Data+structure,+algorithms,+and+implementation
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=Simple+and+robust+boolean+operations+for+triangulated+surfaces
http://www.google.com/search?q=Simple+and+robust+boolean+operations+for+triangulated+surfaces
http://www.google.com/search?q=Finding+compact+coordinate+representations+for+polygons+and+polyhedra
http://www.google.com/search?q=Finding+compact+coordinate+representations+for+polygons+and+polyhedra
http://www.google.com/search?q=Level+set+surface+editing+operators
http://www.google.com/search?q=Merging+bsp+trees+yields+polyhedral+set+operations
http://www.google.com/search?q=Merging+bsp+trees+yields+polyhedral+set+operations
http://www.google.com/search?q=Hybrid+Booleans
http://www.google.com/search?q=Hybrid+Booleans
http://www.google.com/search?q=Consistent+volumetric+discretizations+inside+self-intersecting+surfaces
http://www.google.com/search?q=Consistent+volumetric+discretizations+inside+self-intersecting+surfaces
http://www.google.com/search?q=Robust+cascading+of+operations+on+polyhedra
http://www.google.com/search?q=Robust+cascading+of+operations+on+polyhedra
http://www.google.com/search?q=Construction+of+the+Voronoi+diagram+for+one+million+generators+in+single-precision+arithmetic
http://www.google.com/search?q=Construction+of+the+Voronoi+diagram+for+one+million+generators+in+single-precision+arithmetic
http://www.google.com/search?q=Construction+of+the+Voronoi+diagram+for+one+million+generators+in+single-precision+arithmetic
http://www.google.com/search?q=Set+operations+on+polyhedra+using+binary+space+partitioning+trees
http://www.google.com/search?q=Set+operations+on+polyhedra+using+binary+space+partitioning+trees
http://www.google.com/search?q=Topology+preserving+surface+extraction+using+adaptive+subdivision
http://www.google.com/search?q=Topology+preserving+surface+extraction+using+adaptive+subdivision
http://www.google.com/search?q=Approximate+boolean+operations+on+large+polyhedral+solids+with+partial+mesh+reconstruction
http://www.google.com/search?q=Approximate+boolean+operations+on+large+polyhedral+solids+with+partial+mesh+reconstruction
http://www.google.com/search?q=Fast+and+robust+booleans+on+polyhedra.
http://www.google.com/search?q=Fast+and+robust+booleans+on+polyhedra.
http://www.google.com/search?q=Parallel+and+efficient+boolean+on+polygonal+solids
http://www.google.com/search?q=Parallel+and+efficient+boolean+on+polygonal+solids
http://www.google.com/search?q=Worst-case+structural+analysis
http://www.google.com/search?q=Worst-case+structural+analysis

