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S1 SURFACE POTENTIAL OF WET HAIR

We can derive the surface potential energy used for the cohesion
force in the main paper as follows. Given the surface tension coef-
ficient between the liquid-air interface σLA, the solid-air interface
σSA, and the liquid-solid interface σLS , the surface tension energy
is the surface area times the corresponding coefficients

dEs = [σLAlLA(s) + σSAlSA(s) + σLS lLS(s)] ds, (S1)

Applying the Young’s equation (Young 1805),

σSA − σLS − σLAcosθ = 0 (S2)

where θ is the equilibrium contact angle, we have

dEs = [σLA (lLA(s) − lLS(s)cosθ ) + σSA (lSA(s) + lLS(s))] ds . (S3)

The sum of the length of the solid-air and liquid-solid interfaces is
exactly the length of the solid interface, which is a constant value
and does not affect the potential gradient. For our purpose we can
simply set σSA = σLAcosθ and thus the term lLS(s) can be cancelled
out. Hence we have

dEs = [σLA (lLA(s) + lSA(s)cosθ )] ds, (S4)

which matches the form given in the paper, up to minor notational
changes.

S2 REDUCED LIQUID MODEL ON HAIR

The derivation for our 1D reduced-liquid model generally follows
the strategy used for the classical shallow water equation (Barré de
Saint-Venant 1871), with differences that account for the cylindrical
geometry. We first parameterize the variables on the tangential
direction of a hair segment.

u = u(x),h = h(x),AL = AL(x) (S5)

where u is the velocity in the frame of a hair segment, and AL is the
area of the cross section.
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Consider the mass flux passing through a point on the hair seg-
ment. For a point x the mass flux is ρAL(x)u(x)δt , and the flux pass-
ing through its neighbor coordinate x+dx is ρAL(x+dx)u(x+dx)dt .
Hence we have

dm = ρAL(x)u(x)dt − ρAL(x + dx)u(x + dx)dt
dm
dt = −ρ

AL(x + dx)u(x + dx) −AL(x)u(x)

dx dx
(S6)

Since dm = ρdALdx , the factors of ρdx cancel on both sides leaving
us with

dAL
dt = −

AL(x + dx)u(x + dx) −AL(x)u(x)

dx (S7)

Taking the limit of dx → 0 and dt → 0, we have
∂AL
∂t
= −
∂(ALu)

∂x
(S8)

We also have AL = π
[
(h + r )2 − r2

]
. Thus we have the equation

of continuity for reduced liquid on cylindrical hair segments by
canceling π

∂

∂t

[
(h + r )2

]
+
∂

∂x

[(
(h + r )2 − r2

)
u
]
= 0. (S9)

Since the hairs themselves are moving, we also need momen-
tum conservation in 3D for the system including both hairs and
liquid, and we argue that the momentum transfer equation (14) is a
direct result from the momentum conservation of this Eulerian-on-
Lagrangian (Fan et al. 2013) system.

As an observer following the hair velocityvH , for any variable υ
of the liquid on hair whose tangential direction is denoted by e we
have the following momentum conservation from the Navier-Stokes
equation

∂υ

∂t
+ (ue) · ∇υ =

(
−

1
ρL

∂p

∂x
+ aext

)
e (S10)

whose right hand side only performs in the direction of e .
Here υ = ue + vH is simply the liquid flow velocity in the 3D

space. By substitution and expansion we have
∂u

∂t
e + u(e · ∇u)e +

∂vH
∂t
+ ue · ∇vH =

(
−

1
ρL

∂p

∂x
+ aext

)
e (S11)

Since e · ∇ is simply the directional derivative in e , we rewrite it
with the derivative in x which is

∂u

∂t
e + u

∂u

∂x
e +
∂vH
∂t
+ u
∂vH
∂x
= (−

1
ρL

∂p

∂x
+ aext)e (S12)

Since we also have the momentum conservation on hair which is
∂u
∂t = −u

∂u
∂x −

1
ρL

∂p
∂x + aext, by substitution we have

∂vH
∂t
+ u
∂vH
∂x
= 0 (S13)
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Next we move the liquid velocity u into the derivative. Firstly we
multiply the equation with cross section area AL and manipulate
the terms as

AL
∂vH
∂t
+
∂AL
∂t
·vH +ALu

∂vH
∂x
−
∂AL
∂t
·vH = 0. (S14)

By substitution with (S8), we have

AL
∂vH
∂t
+
∂AL
∂t
·vH +ALu

∂vH
∂x
+
∂

∂x
(ALu) ·vH = 0, (S15)

where the derivatives can be combined as
∂

∂t
(ALvH ) +

∂

∂x
(ALuvH ) = 0. (S16)

By substitution where AL = π
[
(h + r )2 − r2

]
we have (14)

∂

∂t

[
((h + r )2 − r2)vH

]
+
∂

∂x

[
((h + r )2 − r2)uvH

]
= 0. (S17)

S3 PRECOMPUTATION FOR COHESION MODEL

Since R(di j ,ALi j ) and αk (di j ,ALi j ) are implicitly defined by di j and
ALi j , we precompute ∂dEs ,i j

∂d and store its values into a table for
efficiency. At run-time we can interpolate from the table to get
∂dEs ,i j
∂d .
The first step of precomputation is building the table ofALi j (di j ,αk )

for all combinations of a uniformly sampled set of values of di j and
αk , following (6). Since di j < dmax, where the latter is computed
with (9), the range of possible di j values is bounded.

After we have the table of AL , we uniformly discretize the range
of resulting AL values to compute a mesh grid for α1 and α2: for
each sample (d,AL) on the mesh grid, we search for the closest AL
in the table with binary search and linearly interpolate to get the
inverse mapping α(AL,d). Then we solve (7) for each sample of
(d,AL) to get ∂R(d ,AL )

∂d and ∂α (d ,AL )
∂d .

Finally, using the derivatives of (20) and (21), we can find the
gradient of (19) as

∇dET (d,AL) = σ


∂lA(d,AL)

∂d
+

∑
k=1,2

cosθk
∂lSk(d,AL)

∂d

 , (S18)

which gives us the table of ∇dET (d,AL) for each sample of (d,AL).

S4 PRECONDITIONED TIME INTEGRATION OF HAIR

For the dynamics of elastic rods, we extend the work of Tournier
et al. (2015) who proposed a stable and efficient constrained solver.
We employ this solver since it is linear, stable at moderate time step,
and is effective for constraints with a large range of stiffnesses.
In the following we first present our extended version of their

method, which supports viscous drag and damping forces, and a
novel preconditioner to boost the solver’s efficiency for large sys-
tems with many inter-hair constraints.
We use ϕ to denote the constraints on positions (for example

ϕi j = ∥qi −qj ∥ − l0 for a spring with rest-length l0), where q refers
to the configuration (position). Ûϕ for viscous constraints on velocity,
for example ϕv = Ûq − Ûq0 for the drag force whose target velocity
is Ûq0; C for the diagonal positional compliance matrix, which is
the inverted stiffness matrix for positional constraints; and Cv for

the diagonal viscous compliance matrix, which stores the inverted
viscous drag coefficients.

The energy of positional constraints is

E =
1
2ϕ

TC−1ϕ, (S19)

and of viscous constraints is

Ev =
1
2ϕ

T
vC
−1
v ϕv . (S20)

We denote the states at the next time step with a subscript “+”.
By linearization we have

ϕ+ ≈ ϕ + hJ Ûq (S21)

where h is the time step and J := ∂ϕ
∂q , and

ϕv ,+ ≈ ϕv + hJxv Ûq+ + Jv ( Ûq+ − Ûq) (S22)

where Jxv := ∂ϕv
∂q and Jv := ∂ϕv

∂ Ûq .
Since the constraint forces are conservative, they arise as the

negative gradient of the corresponding potentials, giving the form

fc = −
∂E

∂q

T
= −
∂ϕ

∂q

T ∂E

∂ϕ

T
= JT λ

fcv = −
∂E

∂ Ûq

T
= −
∂ϕv
∂ Ûq

T ∂Ev
∂ϕv

T
= JTv λv

(S23)

where λ and λv are the Lagrange multipliers of the positional and
viscous constraints.

By the elastic constitutive law of the constraint forces (Lacoursiere
2007; Servin et al. 2006), Cλ = −ϕ, we have

λ+ = −C
−1(ϕ + hJ Ûq+) (S24)

and
λv ,+ = −C

−1
v

[
ϕv + h(Jxv + h

−1 Jv ) Ûq+
]
+C−1v Jv Ûq. (S25)

Then with linearized implicit Euler (Baraff and Witkin 1998) we
have

(M −h2K) Ûq+ = M Ûq +h
[
fe − JTC−1ϕ − JTv C

−1
v (ϕv − Jv Ûq)

]
(S26)

where fe contains the constant external forces (gravity, etc.) and ve-
locity impulses fromfluid pressure (Section 4.3), andK = ∂(fc+fcv )

∂q +

∂fcv
∂ Ûq is the stiffness matrix. K can be re-formulated by substitution

into the form

K = −
[
JTC−1 J + JTv C

−1
v (Jxv + h

−1 Jv )
]

material stiffness

+

∂JT

∂q
: λ +

(
∂JTv
∂q
+ h−1

∂JTv
∂ Ûq

)
: λv

geometric stiffness

(S27)

where the notation “:” denotes the tensor product in the dimension
of the number of constraints. The material stiffness terms represent
the change of magnitude of constraint forces, while the geometric
stiffness terms encode the transverse variation in force direction.

During each time step, we first compute K with (S27) using λ and
λv computed from previous steps. We then solve (S26). After Ûq+ is
obtained, we update the Lagrange multipliers with (S24) and (S25).
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Remark. For the adhesive/repulsive force of (18), we divide its
intensity by the distance of the point-point pair to get the inverse
compliance, where the material stiffness is then computed as

JTi jC
−1
i j Ji j = n̂i j

∥ fs ,i j (di j )∥

di j − ri − r j
n̂Ti j , (S28)

and similarly for the geometric stiffness.
As described in the main text, we precondition via local hair

solutions. Recall that we partition the stiffness matrix into individual
hairs and a cohesive term:

Kx =
N∑
i
KiSix + KGx . (S29)

Since each Ki only a few degree of freedoms are involved, and
these smaller systems can be solved in parallel for all the hairs.
Using the locally-solved velocity as an initial guess, we begin the
preconditioned conjugate gradient method (PCG), using the local
matricesMi − h

2Ki for preconditioning. Each local matrix is small,
banded, and remains fixed between PCG iterations; it can therefore
be easily factored at the beginning of the PCG loop, and solved in
parallel with a fast banded solver (see Pseudocode S1).
In the pseudocode, we have denoted the left hand side of (S26)

as A, the left hand side of (S26) considering only the constraints
inside the i-th hair as A∗i , the right hand side of (S26) as b, and the
right hand side of (S26) considering only the constraints inside the
i-th hair as b∗i . We use the notation [·] for the assembly of the local
vectors into a global vector. Finally, we have defined the updated
generalized velocities for a particular hair i via Ûq+,i := Si Ûq+.
1: for all i do in parallel
2: Solve A∗i Ûq+,i = b

∗
i .

3: end for
4: r ← b −A[ Ûq+,i ]
5: for all i do in parallel
6: Solve A∗izi = Sib.
7: end for
8: z ← [zi ]
9: p ← z
10: while rT r > ϵ do
11: w ← M Ûq+ − h2(

∑N
i KiSi Ûq+ + KG Ûq+)

12: γ ← rT z

13: α ← r T z
pTw

14: Ûq+ ← Ûq+ + αp
15: r ← r − αw
16: for all i do in parallel
17: Solve A∗izi = Sir .
18: end for
19: z ← [zi ]

20: β ← zT r
γ

21: p ← z + βp
22: end while

Pseudocode S1. Locally-Preconditioned Solve

S5 CROSS-HAIR LIQUID SIMULATION

Asmentioned in §4.2, we simulate liquid flow not only along hairs (at
smaller time scales) but across hairs (at slower time scales). Because

cross-hair liquid flow operates at a slow time scale, it may have a
relatively less significant effect for many scenarios.

We begin with the potentially-connected vertex-hair pairs of the
cohesion graph (recall Fig. 15 and §4.1.1), from which we construct
vertex-vertex pairs: for each potentially-connected vertex-hair pair,
we connect the source vertex to either of the two endpoints of
the receiving edge, if the connection distance is within dmax, thus
producing up to two new vertex-vertex pairs.
Taking the union of all these vertex pairs and the vertices and

edges of all the individual hairs generates a (typically multiple com-
ponent) graph of all the connections between vertices along which
liquid can flow.
We model flow along this graph as follows. Different from (13),

in this case, the conservation law of mass is in 3D,
∂H

∂t
+ ∇ · (Hu) = 0,

where H = (h + r )2 − r2 is the local liquid thickness on hair.
We first compute the liquid velocity along the hair using (24)

and perpendicular to the hair using (16). Similar to simulating re-
duced liquid along the hair, we store Hj at hair vertex j. Then, the
conservation law of mass discretized in 3D becomes

(I + δtG)Hk+1 = Hk ,

where I is the identity operator, and
G =WF

V d(u
i )gF − d

−1(lj )gTF d(l
i )dT (ui ).

Here the notation are defined as follows: d(ui ) is an operator that
creates a block diagonal matrix using (ui )T as its diagonal element.
g is the finite different gradient operator over graph edges, and lastly
W F
V is the interpolation matrix that interpolate quantities defined

at vertices using quantities defined on edges. We note the similarity
of this approach to the earlier work of Azencot et al. (2015); our
network approach can be viewed as a graph-theoretic analogy to
their discrete surface based model.
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S6 NOTATIONS USED IN THIS PAPER

d differential operator
ds a small piece of hair segment
Es surface energy of liquid bridges
σ surface tension coefficient of the liquid-air interface
θ equilibrium contact angle
lA arc length of the liquid-air boundary
lS arc length of the hair-air boundary
ΩL the curve of a hair strand
R the radius of the liquid bridge
α the angle between the liquid-air interface and the centerline of

liquid bridge
r the reciprocal of the mean curvature of the solid surface / the

radius of hairs / the radius of capillarity
AL the cross-sectional area of the liquid region
d the distance between two hair segments
dmax the maximal distance allowing the formation of liquid bridge
k the stiffness of penalty force
u the liquid velocity
t the temporal variable
p the liquid pressure
a the external acceleration applied
ρL the mass density of liquid
h the liquid layer radius
vHi the i-th component of Lagrangian hair velocity
ω the angular velocity in the degree of freedom for hair twisting
ν the liquid viscosity
ϑ the angle between the hair strand direction and the direction

of relative velocity of the hair and the surrounding bulk
liquid.

N the number of hairs
d⊥ the perpendicular drag
d ∥ the longitudinal drag
ϕ the volume fraction of hairs
wFF the factor acts to smoothly disable the cohesion force if the

quadrature pair lies beneath the bulk liquid surface
mL,s ,i j the liquid particle mass interpolated at averaged position

of points i and j
m̂L a small positive threshold corresponding to average particle

mass just beneath the free surface
dcell width the length of a grid cell
li j the length of the source subdomain which contains point i and

is connected with point j
Es ,i j surface energy of liquid bridges between quadrature pair i

and j
K the stiffness matrix
KG the inter-hair coupling components
Si a diagonal selection matrix whose j-th term is one if the j-th de-

gree of freedom belongs to the i-th hair and zero otherwise
e(x) centerline unit tangent at x
{u1,u2, . . . ,uM−1} edge-based coefficients in reduced flow
{h1,h2, . . . ,hM } vertex-based coefficients in reduced flow
li the length of edge i
l i the vertex-based length for hair vertex
∆t the time step size

u j ,(k ) the liquid velocity for edge j at time step k
ũ j ,(k ) the backtraced liquid velocity for edge j at time step k
H
(k )
j the area of reduced liquid around a hair for vertex j at time

step k
⟨·⟩ij the operator that converts edge-based quantities into vertex-

based quantities
mn
ai the mass of liquid for grid node i in the a direction at time step

n
unai the velocity of liquid for grid node i in the a direction at time

step n
wn
aip the trilinear interpolation weight that transfers the informa-

tion on particle p to grid face i for direction a
ũnai the divergence-free velocity for grid node i in the a direction

at time step n
cnpa the vector introduced for the purpose of preserving the affine

velocity field
ρH the mass density of hair
mh the mass of a hair vertex including its reduced-liquid
Dn
ai the averaged drag force for grid node i in the a direction at

time step n
Mn

ai the reduced-liquid masses for grid node i in the a direction at
time step n

Tnai the momentum contributed from the reduced-liquid for grid
node i in the a direction at time step n

vn
H the Lagrangian hair velocity at time step n

V n
Hi

the volume of hair vertex i at time step n
V n
Li

the volume of reduced liquid around hair vertex i at time step
n

V n
i the volume of bulk liquid for particle i at time step n

I the identity matrix
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