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Muffler Design
- suppress peak frequencies 
from automobile/airplane 
engines

- optimize the impedance curve to 
reach desired peaks for lip-reed in-
struments

- identify tapped objects via 
controlling the tapping sound
- encode bit strings by optimiz-
ing for the transmission loss

Motivation

Acoustic background

Methods
To construct acoustic filters, we propose 3 key steps:
  (1) use modular primitive resonators

Validation via industrial laboratory test

Application 1: Muffler Design

Application 2: Wind Instruments Prototyping

Application 3: Acoustic Signatures Results
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Wind Instrument Prototyping Acoustic Signatures

Yet,
it is difficult 
to customize 
with desired 
properties.

Acoustic filters have a 
lots of applications:
car/airplane mufflers,
passtive ear aids,
wood-wind instruments, 
acoustic tagging/signature, 
and etc...
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At frequency ω,  the ratio of the sound pressure and 
acoustic velocity at a location x.

At frequency ω,  the ratio of the acoustic power in-
cident to the muffler to the power transmitted 
downstream into the environment. 

We use a simple shape as our primitive resonator hollow cube with extruded cylin-
ders on its six faces. All the cylindrical extrusions have the same radius and length 
and therefore the bounding boxes of all primitives stay the same.

We fabricated our designs using Stratasys uPrint SE Plus, a filament-based 3D printer with a layer res-
olution at 0.254mm. We use ABS-P430 plastic as the model material and a dissolvable support mate-
rial which can be washed away upon finish. The fabrication time varies from a few hours to a day.

We demonstrate the possibility of controlling muffler behavior 
at finer granularity using our modular filter, because of its ability 
to construct complex muffler structures. We aim to construct 
mufflers that selectively attenuate sound near a set of discrete 
frequency values. Our first example is to attenuate a recorded 
engine noise, which has peaks in frequency domain at 850Hz, 
1550Hz, and 2100Hz. 

Acoustic resonator is a key part of wind instruments.We applied our method to customize trumpets, for 
which the customization is twofold: control the set of notes that a trumpet can play and customize its 
shape, which in our case is a cartoon hippopotamus shape. The resulting trumpet relies on the standard 
mouthpiece for excitation. We define an objective functions that maximizes the impedance values at the 
frequencies of those notes.

Acoustic encoding.

Acoustic tagging. We embed tags into the acoustic fil-
tering effects of a shape, by computationally optimiz-
ing its internal structure. We have implmened a simple 
iPhone application that decodes a recorded tapping 
sound and identifies the Piggy. Note the tapping 
sound corresponds to the resonant frequencies.

Acoustic encoding. Taking one step further, we demonstrate the ability to 
encode bit strings, akin to the idea of QR code but without visual distrac-
tion. We fabricated three Octopuses with identical surface shape, and 
use them to encode different 4-bit strings, including
0000, 1001, and 0111.  

We measured the transmission loss (TL) of our prints 
using Brüel & Kjær 4206-T measurement tubes with the 
4-microphone technique [Tao and Seybert 2003]. 

The primitives can be composed together at their faces by connecting an inlet and 
an outlet to form a complex structure. 

In the optimization, we take random samples for the connectivity of the resona-
tors. We also continuous change the size of each hollow cube. Our novel optimiza-
tion framework iterates between these two combinatorial (SMC) and continuous 
(BFGS) stages, in order to satisfy the desired acoustic goals.

Tranmission Matrices

2-port version generalize
n-port version

Assume the acoustic pressure and velocity are both distributed uniformly over the cross-section, their 
relationship can be approximated linearly.

4 microphone probes

Brüel & Kjær measurement tubes 

clay gaskets for sealing
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  (3) iteratively optimize the assembly connectivity
        and individual primitive parameters


