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Figure 1: Acoustic Tagging. By optimizing the structure of primitives (a), we control the acoustic response of an object when it is tapped (c)
and thereby tag the object acoustically. Given three objects with identical shapes (b), we can use a smartphone to read the acoustic tags in
realtime, by recording and analyzing the tapping sound, and thereby identify each object.

Abstract

Acoustic filters have a wide range of applications, yet customiz-
ing them with desired properties is difficult. Motivated by recent
progress in additive manufacturing that allows for fast prototyping
of complex shapes, we present a computational approach that au-
tomates the design of acoustic filters with complex geometries. In
our approach, we construct an acoustic filter comprised of a set of
parameterized shape primitives, whose transmission matrices can be
precomputed. Using an efficient method of simulating the transmis-
sion matrix of an assembly built from these underlying primitives,
our method is able to optimize both the arrangement and the param-
eters of the acoustic shape primitives in order to satisfy target acous-
tic properties of the filter. We validate our results against industrial
laboratory measurements and high-quality off-line simulations. We
demonstrate that our method enables a wide range of applications
including muffler design, musical wind instrument prototyping, and
encoding imperceptible acoustic information into everyday objects.

Keywords: Shape optimization, fabrication, computational design,
acoustic impedance, transmission loss

Concepts: •Computing methodologies → Physical simulation;
Parametric curve and surface models;

1 Introduction

Acoustic filters have numerous important applications, whether to
produce a desired sound pitch or to attenuate undesired noise. These
applications, ranging from wind instruments to mufflers and hear-
ing aids, all rely on the same fundamental physical principle: when
sound waves pass through a cavity, part of the waves reflect back
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and forth, effectively boosting or suppressing certain acoustic fre-
quencies. In this process, the filtered frequencies are largely affected
by the shape of the cavity.

However, for all but the simplest cavity shapes, the influence of the
shape on the filtered frequency bands is complicated and unintuitive.
Thus, the current process for improving the quality of acoustic filters
requires many trial-and-error iterations over the shape. Furthermore,
the design space is often limited to simple geometries such as pipes
(e.g., for making flutes, trumpets, and industrial mufflers) since the
acoustic behavior of only these simple shapes can be easily char-
acterized. Current computational design tools support only these
simple primitives and even then the design process requires strong
expertise in this domain.

Meanwhile, recent advances in additive manufacturing have signifi-
cantly facilitated rapid manufacturing of complex geometries. This
trend opens up new possibilities for expanding the design space of
acoustic filters, thus motivating the development of corresponding
computational methods that can efficiently simulate and optimize
the shape of the cavity in order to achieve desired acoustic filtering
effects. In light of this, the goal of our work is to expand the range
of acoustic filter design by employing complex cavity shapes com-
putationally optimized and then physically realized using additive
manufacturing.

We propose Acoustic Voxels, a computational method that assembles
basic shape primitives into a complex geometry, one that produces
the desired acoustic filtering. In particular, we consider a simple
type of shape primitive, a hollow cube with circular holes on some
of its six faces (Figure 4). We show that these primitives, albeit sim-
ple individually, offer a large design space for acoustic filters when
modularly joined at their faces into a complex assembly. This modu-
lar scheme also permits fast and accurate estimation of the acoustic
performance of a given assembly, thereby allowing automatically
optimizing its structure to achieve target acoustic filtering properties
while satisfying geometric constraints of inlet/outlet positions and
overall shapes.

Our approach starts with precomputing the acoustic transmission for
our parameterized shape primitives. At runtime, given an arbitrary
assembly of these primitive filters, our method estimates its acous-
tic transmission, predicting the boosted and suppressed frequency
regions. This, in turn, enables us to derive a formula to compute
the gradient of the acoustic transfer with respect to shape param-
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eters, and further develop an efficient combinatorial and continu-
ous optimization algorithm to design desired filter structures. Our
method combines a stochastic optimization method for computing
the topology of the assembly (i.e., the way of arranging and con-
necting the primitives) with a gradient-based quasi-Newton method
for computing the geometric parameters of each primitive shape in
the assembly. We validate our method by running finite-element off-
line acoustic simulation and industrial laboratory tests performed by
acoustic engineering professionals (§6).

Our proposed approach automates the design of acoustic filters.
This simplified design process allows casual users to produce ob-
jects with custom acoustic properties. Our method also expands the
range of acoustic filters that can be achieved, enabling exploration
of many different applications. In addition to designing different
types of noise attenuation components (e.g., mufflers), our method
can customize musical instruments with non-conventional shapes.
Furthermore, we can embed imperceptible acoustic information into
the fabricated objects, and thus opens up new types of interactions
with fabricated objects, extending current visually based design into
audiovisual design.

2 Related Work

Sound simulation. The computer graphics community has a
long history of simulating sound propagation in a virtual environ-
ment [Stettner and Greenberg 1989; Takala and Hahn 1992], start-
ing from the geometric acoustical methods [Funkhouser et al. 1998;
Funkhouser et al. 1999; Tsingos et al. 2001] which are fast but
less accurate at low frequencies, and evolving to the wave-based
methods [James et al. 2006; Raghuvanshi et al. 2010; Mehra et al.
2013; Raghuvanshi and Snyder 2014] to improve sound quality.
The goal of these work is to add realistic wave scattering and room
acoustic effects. These approaches have proven successful in many
virtual environment applications, but not for fabricating acoustic
structures. Moreover, the geometric scale in those simulations is
typically meters or tens of meters, whereas we are interested in the
sound propagation in small cavities at the centimeter scale.

Recently, Allen and Raghuvanshi [2015] proposed an interactive
method for simulating wave propagation in wind instruments, mod-
eled in 2D. This method produces realistic sound effects in realtime,
but is unclear how to apply it for solving our inverse problem. Aside
from requiring a physics-based 3D simulation and high accuracy for
predicting fabricated results, our method needs a well-defined rela-
tionship between the sound transmission and the boundary geometry
to formulate a tractable inverse problem.

Acoustic inverse problem. Acoustic inverse problems have in-
trigued scientists for decades, starting from Kac’s famous question:
“can one hear the shape of a drum?”[Kac 1966]. While Kac’s ques-
tion is about the vibrational patterns of a shape, similar questions
that infer shapes from sound propagation and scattering patterns
have been actively studied [Angell et al. 1997; Feijóo et al. 2004].
Monks et al. [2000] optimized room acoustics motivated by the ap-
plications in architectural design. Recently, Dokmanić et al. [2013]
showed an algorithm for computing a convex polyhedral room shape
using acoustic response recorded at multiple microphones. We also
address an acoustic inverse problem, but from a different perspective.
Our input is the acoustic response (i.e., impedance or transmission
loss) measured at a pair of locations (i.e., between the inlet and
the outlet), and our goal is not to reconstruct existing shapes but to
construct new structures.

Transmission Line Matrix. Based on Huygens’ model of wave
propagation and the analogy between wave propagation and trans-
mission lines, the Transmission Line Method has been widely
used for computing electromagnetic waves [Caloz and Itoh 2005;

Christopoulos 2006] and acoustics [Munjal 2014]. It first discretizes
the computational domain into interconnected nodes. On the con-
necting interface, field information is propagated and coupled be-
tween adjacent nodes. By breaking down the whole domain into
basic nodes, the computational performance can be significantly im-
proved. Our method shares the similar idea, but a key difference lies
in the new optimization framework. Our method optimizes the con-
figuration of the nodes both geometrically and topologically, aiming
to realize the desired acoustic filtering properties.

Muffler design. Noise attenuation is an important topic in many
engineering fields. There has been a well established theory for
modeling noise reduction in a cavity structure [Ingard 2009; Munjal
2014], and numerous approaches for improving a standard muffler
have been developed with sub-chamber structures [Selamet et al.
2003], varying inlet and outlet sizes [De Lima et al. 2011], or perfo-
rated liners [Chiu 2010; Munjal 2014]. However, the optimization
for desired target performance is not straightforward. Traditionally,
mufflers are often analyzed using finite element methods and then
used in a sensitivity analysis to compute the derivatives of the muf-
fler metric with respect to shape parameters. In general, this is a
computationally expensive process.

The application of our method for muffler design takes a different
approach, namely tiling simple resonator shapes, without choos-
ing a specific parametric shape a priori. Meanwhile, precomputed
filtering properties of primitive resonators sidestep the expensive
finite-element solves during the optimization and thus allows us to
optimize for complex structures.

Computational design of music instruments. Our method can
be applied to customize wind instruments, although that is not a
primary goal of our work. Related to this aspect, existing work
has explored the optimization of the bore shapes for brasswind in-
struments [Kausel 2001; Noreland et al. 2010]. Similar to our op-
timization target, Braden et al. [2009] use the input impedance of
the instrument in the objective function to optimize bore shapes.
These methods typically focus on a specific family of shapes and
thereby formulate a continuous optimization problem. Our method,
in contrast, aims to create acoustic filters using an arbitrary shape
for a range of applications beyond wind instruments. More recently,
Zoran [2011] has demonstrated the use of 3D printers for creating
plausible wood instruments and for exploring new designs without
any numerical optimization.

In computer graphics, Umetani et al. [2011] have develop the first
interactive tool for designing metallophones. The tool aims for in-
teractivity but not for solving the inverse problem. Recently, Bharaj
et al. [2015] have explored the inverse computational design of met-
allophones and have proposed a stochastic optimization method for
this purpose. Unlike ours, both approaches focus on the modal vi-
brational sounds from solid vibrations but not the sound propagation
inside a chamber.

Microstructure design. Recently in computer graphics, there
has been a variety of work on designing macroscopic mechani-
cal material properties through controlling their microscopic struc-
tures, based on the inverse homogenization theory [Sigmund 1994].
Along this line of research, existing work has used a data-driven
approach to control nonlinear elasticity [Bickel et al. 2010] with
multi-material 3D printing, while others tile precomputed structural
patterns [Panetta et al. 2015; Schumacher et al. 2015] to obtain user-
specified elastic properties. While we also combine small-scale
primitives, in order to affect sound waves, the geometric size of our
primitives is of a few centimeters, much larger than the microstruc-
ture scales in these approaches. Furthermore, rather than the elastic
behaviors of microstructures, we focus on the sound propagation
through the primitives.
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Figure 2: Overview. Our method exploits precomputed transmission matrices of the primitives and uses a combinatorial and continuous
optimization to construct the assembly of filters. Please refer to §3.1 for an outline of each step.

Acoustic in HCI. Recent development in passive acoustic sens-
ing inspired new HCI applications, such as the recent tangible in-
put devices by analyzing the sound produced by a comb-like struc-
ture [Savage et al. 2015]. More relevant to our method, Laput et
al. [2015] proposed Acoustruments to recover information from au-
dio signals recorded through ducts. None of these previous works
considers the inverse problem of acoustic optimization. Our method
complements to those work and offers a computational tool to de-
velop new HCI applications, as we will demonstrate in §6.4.

Contributions. Compared to previous work, our method has the
following contributions: (i) We propose to construct acoustic fil-
ters using primitive resonators. (ii) With modular assemblies, we
develop a numerical optimization method to construct desired acous-
tic filters while sidestepping expensive finite-element solves. (iii)
We demonstrate the use of our primitives and optimization method
in the context of different applications including a new application
that embeds acoustic signatures into 3D printed objects.

3 Background and Overview

We start by briefly reviewing the theory of acoustic filters and refer
to the textbooks [Ingard 2009; Munjal 2014] for more details. A
typical acoustic filter has a cavity structure connecting an inlet and
an outlet— trumpets and motorcycle mufflers are classic examples.
When sound waves enter into the inlet, travel through the cavity, and
leave from the outlet, their frequency components are altered. In
most applications, the physical size of a filter ranges from centime-
ters to tens of centimeters and their operating frequencies are up to
thousands of Hz. To evaluate the performance of acoustic filters, the
following two quantities are often used (Figure 3):

• Input impedance. Consider a steady-state sound transmission
through a filter. In the frequency domain, the sound pressure
and acoustic velocity at a location x are denoted as p(x, ω) and
v(x, ω), respectively; both are complex values. The acoustic
impedance, defined as Z(x, ω) = p(x,ω)

v(x,ω)
, indicates how much

sound pressure is generated by a given air vibration of frequency
ω at position x. Particularly, we are interested in the impedance
value at the inlet xi, ZIN(ω) = Z(xi, ω), called input impedance
(Fig. 3). ZIN(ω) usually varies strongly with respect to the fre-
quency and has multiple local minima and maxima, which corre-
spond to the sound frequencies that are the easiest and the most
difficult to transmit through the filter. For example, the playing
frequencies of a trumpet are very close to the local maxima of its
input impedance.

• Transmission loss. To design acoustic filters for noise reduc-
tion, a widely used measure is the transmission loss [Munjal
2014], defined as the ratio, expressed in decibels (dB), of the
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Figure 3: Acoustic filters examples. (a) a duct as part of a wood
instrument is measured using the input acoustic impedance; (b)
Mufflers are often evaluated using transmission loss.

acoustic power incident to the muffler to the power transmitted
downstream into the environment. Concretely, if the inlet and the
outlet of an acoustic filter are sufficiently small, its transmission
loss is described as:

LTL(ω) = 10 log10

∣∣∣∣Sip
2
i+(ω)

Sop2o (ω)

∣∣∣∣ ,
where Si and So are the cross-sectional area of the inlet and the
outlet, respectively; po(ω) is the frequency-domain acoustic pres-
sure of the transmitted sound wave at the outlet, away from the
filter; and pi+(ω) is the acoustic pressure of the incident wave
at the inlet, also in the frequency domain. In short, LTL(ω) mea-
sures how much the sound wave of frequency ω gets attenuated
when passing through the filter.

Depending on specific applications, our goal is to optimize the inter-
nal structure of a filter in order to obtain target input impedance or
transmission loss in a frequency range. In general, accurately pre-
dicting these quantities requires solving the acoustic wave equation
or, in the frequency domain, the Helmholtz equation [Pierce et al.
1991; Allen and Raghuvanshi 2015]. Either approach is computa-
tionally expensive, especially for complex filter structures. Notably,
the relationship between the geometry of the filter and the resulting
impedance or transmission loss function is rather complex, obstruct-
ing us from formulating a well-defined optimization problem of this
geometry. Therefore, we take a different approach by leveraging the
concept of the transmission matrix.

Transmission matrix. If both the inlet and the outlet have a small
cross-section, much smaller than the wavelength of the operated
sound waves, one can reasonably assume that the acoustic pres-
sure and velocity are both distributed uniformly over the cross-



section [Ingard 2009; Rienstra and Hirschberg 2003]. In our ex-
amples, the highest frequency that we modeled is 4500Hz, having
a wavelength around 7.6cm. And our cross section radius ranges
from 3mm to 1cm. We validated this assumption with industrial lab
measurements (§6.1) and physical fabrication (§6.2-§6.4).

Let (pi(ω), vi(ω)) and (po(ω), vo(ω)) denote the complex-valued
acoustic pressure and velocity in frequency domain, at the cross-
sections of the inlet and the outlet, respectively (Figure 3-a). Their
relationship can be approximated linearly,(

po(ω)
pi(ω)

)
=

(
Tω
11 Tω

12

Tω
21 Tω

22

)(
vo(ω)
vi(ω)

)
, (1)

where Tω
ij is i-th row and j-th column in the complex-valued trans-

mission matrix at frequency ω. In this paper, we also denote this ma-
trix as T(ω) to emphasize its frequency dependence. Transmission
matrices have been widely used in industrial muffler design [Ingard
2009], as it relates to the input impedance and transmission loss
through simple formulas:

ZIN(ω) =
Tω
11 + Tω

12T
ω
21 − Tω

11T
ω
22

1− Tω
22

and (2)

LTL(ω) = 20 log10
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22

Tω
21

∣∣∣∣)
(3)

where ρ is the air density and c is the sound speed.

Challenges. Unfortunately, computing the transmission matrix of
a filter structure is expensive. For each frequency ω, the standard ap-
proach first samples two sets of pressures, (pi1, po1) and (pi2, po2),
at the inlet and the outlet. Each set of pressures, together with the
zero-normal-velocity condition on the solid boundary of the filter,
forms a complete boundary condition that can be used to solve the
Helmholtz equation and uniquely determine the acoustic velocity
(vi1, vo1) (and (vi2, vo2)) at the inlet and outlet. Then, the transmis-
sion matrix can be computed by solving a 2× 2 linear system,(

po1(ω) po2(ω)
pi1(ω) pi2(ω)

)
=

(
Tω
11 Tω

12

Tω
21 Tω

22

)(
vo1(ω) vo2(ω)
vi1(ω) vi2(ω)

)
. (4)

This process needs to solve the Helmholtz equation twice for each
frequency ω. In addition, while it is straightforward to compute
impedance and transmission loss using the transmission matrix, it
remains hard, if not impossible, to compute the gradient of the
transmission matrix with respect to the geometric parameters of
the filter—this gradient is needed for optimizing the cavity shape of
the filter (§5). Our approach addresses all these challenges.

3.1 Method Overview

Our method automatically constructs the internal structure of an
acoustic filter that connects an inlet and an outlet of a 3D volume
(Figure 4-right). We aim to control its input impedance or the trans-
mission loss function as specified by the user.

System input and output. Concretely, out method takes as input
three components, (i) a 3D volume in which the acoustic filter is
placed, (ii) the positions of the inlet and the outlet, specified on the
surface of the 3D volume, and (iii) the frequency locations to be
boosted or suppressed. It then outputs the transmission geometry
that fits into the 3D volume and that can be fabricated to produce
the desired filtering effects (Figure 2).

To this end, we propose a primitive acoustic resonator, a family
of simple hollow shapes serving as building blocks to assemble a
complex acoustic filter. These primitives allow us to precompute
their transmission matrices, which in turn enable a fast runtime
algorithm to compute the acoustic impedance and transmission loss

2cm
Figure 4: Modular filter. Our primitive resonator is a single shape
bounded by a 2cm×2cm×2cm cube (left). A combination of the
primitives with varying shape parameters can form complex struc-
ture that connects an inlet to an outlet.

of any filters made from an assembly of the primitive resonators
(§4). Leveraging the fast computation of transmission matrices, we
further address the optimization of the inverse problem (§5), one that
finds an assembly of the primitive shapes to achieve a target acoustic
input impedance or transmission loss. To this effect, we formulate a
combinatorial and continuous optimization problem, combinatorial
in the sense of how to connect primitive shapes, and continuous in
the sense of determining geometric parameters of the primitives. To
solve it, we propose a hybrid method that interleaves a stochastic
optimization, namely the Sequential Monte Carlo method, with a
gradient-based quasi-Newton scheme.

4 Modular Acoustic Filter

4.1 Primitive Resonator

We propose to use a simple shape as our primitive resonator—a
hollow cube with extruded cylinders on its six faces (Figure 4-left).
All the cylindrical extrusions have the same radius and length and
therefore the bounding boxes of all primitives stay the same. They
can be composed together at their faces by connecting an inlet and
an outlet to form a complex structure (Figure 4-right). Furthermore,
the size of each hollow cube can change, providing one degree
of freedom per element as control variables to influence acoustic
filtering properties, in addition to the connectivity of the resonators.

Rationale. Using the simple primitives offers many advantages:
(i) They can fill the interior volume of virtually any shape, as long
as they are sufficiently small. This enables us to construct acoustic
filters subject to various shape constraints. (ii) Computing the trans-
mission matrix of any assembly becomes fast and accurate. (iii)
With a hollow cube of a variable size, the primitive is in a one-
dimensional shape space, which can be easily sample. For each
sample, we precompute its transmission matrices and interpolate
between neighboring transmission matrices. When composed into
an assembly, these primitives offer a large number of degrees of
freedom for controlling acoustic filtering properties. This idea is
also similar to the concept of 3D symmetric condensed nodes for
the computation of electromagnetic fields [Christopoulos 2006].

In this section, we describe how we compute the transmission matrix
of an arbitrary assembly of the primitive resonators. Ultimately, our
goal is to compute both the topology of the primitive assembly and
the geometric parameters (i.e., the cube size of each element) for a
desired input impedance or transmission loss.

Multi-port transmission matrix. We start by extending the con-
cept of transmission matrix in Eq. (1) into a six-port transmission
matrix. Since the radii of the six open ports of a primitive shape are



small, it remains valid to assume that the frequency-domain acoustic
pressure pi(ω) and velocity vi(ω) (i=1...6) are uniformly distributed
over the cross sections at each port. Then a linear relationship simi-
lar to Eq. (1) holds:p1(ω)

...
p6(ω)

 =

T
ω
11 . . . Tω

16

...
. . .

...
Tω
61 . . . Tω

66


v1(ω)

...
v6(ω)

 . (5)

In a way similar to Eq. (4), we compute for a given frequency ω
the six-port transmission matrix T by sampling six different sets
of pressures {pi, i = 1...6}. Each set of pressures establishes the
(Dirichlet) boundary condition that uniquely solves the Helmholtz
equation for sound propagation in the primitive resonator. After the
six Helmholtz solves, it produces six corresponding acoustic veloc-
ities {vi, i = 1...6}, which, together with {pi}, can be substituted
into Eq. (5) and uniquely determine the matrix T.

Precomputation. Given a primitive resonator shape with six
ports, precomputing the transmission matrix Tω amounts to solving
the Helmholtz equation 6 times, with different Neumann boundary
conditions. In particular, for the i-th solve, we set vi = 1 and vj = 0
for all j 6= i. The transmission matrix is calculated as Tω

ji = pij ,
where pij is the solution on face j under the i-th boundary condition.
This transmission matrix depends on not only the frequency but also
the shape parameter, the cube size. Therefore, we sample a set of
frequency values and cube sizes, precompute the T matrices, and
store them in a database. We also note that the precomputation step
can be accelerated using the recent asymptotic frequency sweeping
method [Li et al. 2015]. With these precomputed six-port transmis-
sion matrices, we are able to interpolate the matrix of a primitive
resonator of any frequency and cube size in the sampled range. This
interpolation will be used later in the optimization step (§5) to com-
pute optimal topology and geometry of the primitive assembly for a
target acoustic filtering property.

4.2 Transmission Matrix of Resonator Assembly

Now we compute the transmission matrix of a resonator assembly,
which consists of primitive resonators (the size of each resonator is
specified). Each of the six ports of a resonator is either joined with
a port of another resonator or closed with a solid wall. These ports
are connected (possibly through multiple paths) from an inlet to an
outlet. Our goal here is to compute the frequency-dependent 2× 2
transmission matrix that relates the acoustic pressure and velocity
at the outlet to those at the inlet, as described in Eq. (1).

We start with some notation. Consider an assembly composed of
N primitive resonators. We use j to index the primitives and k to
index the six ports of each primitive. Let pjk(ω) and vjk(ω) denote
respectively the frequency-domain acoustic pressure and velocity at
the k-th port of the j-th primitive. From the precomputation, for
each primitive resonator j we also have a six-port (6× 6) transmis-
sion matrix Tj(ω) that relates the pressures pjk(ω) with velocities
vjk(ω), k = 1...6 at its six ports.

Similarly to the method used in Eq. (4), we sample two sets of
pressures, (p̄i1, p̄o1) and (p̄i2, p̄o2), at the inlet and the outlet. We
seek a fast method to compute the corresponding acoustic velocity,
(v̄i1, v̄o1) and (v̄i2, v̄o2), without solving the expensive Helmholtz
equations. We observe that we can construct a sparse linear system
(visualized in Figure 5),

A(ω)x(ω) = b(ω), (6)

to solve for the pressures pjk(ω) and velocities vjk(ω) of all ports
(j = 1...N, k = 1...6). Here, x has 12N elements, stacking all

Figure 5: Linear solve of a filter assembly. The top orange part
refers to the transmission matrices related to each node in the as-
sembly. The middle blue part specifies the connection information
by mapping the velocity and pressure values. The bottom two green
rows are the given boundary conditions at the inlet and the outlet.

the pressures and velocities of frequency ω at all ports. Every res-
onator contributes a linear relationship (5), resulting in a 6 linear
equations which appears as a 6 × 12 submatrix (orange blocks in
Figure 5). All the resonators together form a 6N × 12N sub-block
matrix. In addition, for the two ports that connect to the inlet and
outlet, the pressures are the sampled values (i.e., the two green rows
in Figure 5); at the closed ports, the velocities vanish; at every pair
of connected ports, their pressures need to match and their veloci-
ties need to be additively inverse (e.g., the blue rows in Figure 5),
as the sound waves flow along the same direction. All these con-
straints result in another 6N linear equations. Putting together these
equations yield a full-rank sparse and 12N × 12N linear system.

We also note that the matrix A depends on the cube sizes of the prim-
itive resonators, as it is assembled using their transmission matrices
Ti, but b is a constant. Later when optimizing the cube sizes, we
will compute the derivative of A with respect to each cube size.

Computational efficiency. This process computes the transmis-
sion matrix at a frequency ω by solving the sparse linear system,
Ax = b, twice. Both have the same A matrix, so it only needs to
be factorized once. In addition, across all frequencies, the sparsity
pattern of A stays the same. To exploit this invariant, we use the
symbolic factorization (reordering) only once for the entire com-
putation and update the numerical data for each frequency sample,
all implemented using the Direct Sparse Solver provided in Intel
MKL. As a result, the computation of transmission matrices for all
frequency samples (nearly 1000 samples) typically finishes in a few
seconds.

5 Optimization

We now focus on the inverse problem: computing a structure of a
primitive assembly and the parameter of each primitive in the as-
sembly in order to realize a desired acoustic filtering property. We
formulate this problem as a combinatorial and continuous optimiza-
tion (§5.1). To address both the combinatorial and the continuous
aspects of the problem, our algorithm interleaves a stochastic opti-
mization method with a quasi-Newton method (§5.2 and §5.3).

5.1 Problem Formulation

Optimization objective. Our optimization goal, the acoustic fil-
tering property, depends on a specific application, whether it is a
target impedance ZIN(ω) (e.g., for wind instruments) or a target
transmission loss LTL(ω) (e.g., for engine mufflers) in a frequency
range [ωl, ωr]. Both quantities can be computed from the transmis-



sion matrix T(ω) of a given assembly using Eq. (2) and Eq. (3),
respectively. Thus, we discretize the frequency range using a set of
samples ωi ∈ [ωl, ωr], i = 1...Nω and define a unified objective
function in a least-squares form:

J =

Nω∑
i=1

(g(T(ωi))− ḡi)2 . (7)

Here, g(T(ωi)) is the acoustic filtering quantity depending on the
transmission matrix at a sampled frequency ωi. For instance, to
control the input impedance, we use g(T(ωi)) = log10 |ZIN(ωi)|;
to control the transmission loss, we use g(T(ωi)) = LTL(ωi). ḡi
is the target acoustic filtering quantity at the frequency ωi. These
values are user-controlled, e.g., by specifying a target curve in the
frequency domain.

We note that while this objective function suits well for our ap-
plications (§6), our optimization method does not depend on this
particular choice, as presented in the rest of this section.

Shape constraint. In many applications, filters are often embed-
ded in a limited space. To account for this requirement, we allow
the user to specify a 3D surface mesh to constrain the volume of
the assembly in the optimization process. Before the optimization
starts, we voxelize the 3D mesh into a lattice, where each grid cell
represents a possible placement of a primitive resonator, and the grid
connects an inlet and an outlet, both specified on the mesh boundary
(see video). By construction, the resulting assembly of resonators
are guaranteed to satisfy the shape constraint and connect the inlet
and outlet.

Optimization variables. We have two types of optimization vari-
ables: (i) a string of binary bits s indicating the lattice grid con-
nectivity and (ii) a vector u stacking the cube sizes of primitive
resonators used in the assembly. We index each grid cell interface
in the lattice. If two primitives are joined at an interface i, then the
corresponding bit in s is set to one. If a face of the grid cell is not
connected with its neighboring grid cell, the corresponding bit in
s is set to zero and the resonator port on that face is closed with a
solid boundary. As we will describe later, this bit string represen-
tation is particularly suitable for our stochastic sampling algorithm.
With these optimization variables, we rewrite the acoustic filtering
quantity g(T(ω)) in Eq. (7) as g(T(s,u, ωi)) and explicitly write
J as J(s,u) because the transmission matrix T depends on both
the topology (described by s) and the geometry (described by u) of
the primitive assembly.

Method rationale and overview. The optimization variables re-
flect the combinatorial and continuous nature of our problem. The
problem of determining the placement and connectivity of the prim-
itives in the lattice is combinatorial; and determining the cube sizes
of each primitive is continuous. A typical method of solving a com-
binatorial optimization relies on a Monte Carlo method to sample in
the parameter space and accept or reject samples probabilistically.
The efficiency of this method critically depends on the performance
of evaluating the objective function, as it often requires a large num-
ber of samples. From this perspective, our fast computation of the
transmission matrix (§4.2), a necessary component for evaluating
the objective function (7), lays out an important cornerstone for
using a stochastic optimization algorithm. Meanwhile, if the con-
nectivity is given, optimizing the cube sizes for each primitive is
a continuous problem, for which a gradient-based method is more
efficient.

We propose to use a stochastic optimization method to optimize
the connectivity of the primitives. When evaluating the objective
function of a sampled resonator structure (i.e., the s), we compute
the cube size for each primitive (i.e., the u) using a gradient-based

Algorithm 1 SMC for Resonator Assembly Optimization

1: procedure MODIFIED–SMC(GN , M , threshold)
2: while true do
3: for each topology in GN do
4: p̂n ←continuous optimization(pn) . §5.3
5: compute the objective Ji for p̂n
6: end for
7: if best objective > threshold then(end optimization)
8: weighted sample M topologies based on the objectives
9: for each topology in GN do . §5.2

10: if selected then
11: perturb connectivity of the current graph
12: else
13: resample a new random graph
14: MCMC step: probabilistically accept the sample
15: end for

continuous optimization method that minimizes the objective func-
tion with the fixed resonator structure. This is because continuous
optimization, leveraging gradient descent, is more efficient than
stochastically sampling cube sizes. Effectively, our method is a hy-
brid that interleaves a Monte Carlo sampling with a quasi-Newton
optimization scheme.

5.2 Combinatorial Optimization of Connectivity

To solve a combinatorial optimization problem, one simple and pop-
ular approach is to use simulated annealing [Kirkpatrick et al. 1983],
a method that can be interpreted as a single sequence of Markov-
Chain Monte Carlo (MCMC) sampling [Robert and Casella 2013].
One way of improving its efficiency is to use multiple sequences
of MCMC sampling, for which an efficient method is Sequential
Monte Carlo (SMC). In computer graphics, SMC has been applied
for rendering, character control, and procedural modeling [Pego-
raro et al. 2008; Hämäläinen et al. 2014; Ritchie et al. 2015]. In
numerical optimization, SMC methods have been used for optimiz-
ing non-convex, non-differentiable, and high-dimensional objective
functions [Mıguez et al. 2010]. In the following, we outline our
modified SMC algorithm, followed by highlighting the components
that are specifically tailored for our problem.

Modified SMC algorithm. As outlined in Algorithm 1, we main-
tain Ns different samples of the lattice connectivity, that is, a set of
binary-bit strings {si, i = 1...Ns}. At each iteration, the algorithm
performs the following steps:
1. Evaluate the objective function Ji for each sampled connectivity

si, i = 1...Ns (Line 3-6 in Algorithm 1).
2. Select the best M samples that produce the lowest objective

values and perturb them. The perturbation of bit strings is similar
to the mutation operation in a genetic algorithm.

3. Replace the rest of theNs−M samples with new samples using
an MCMC sampling step (Line 13-14 in Algorithm 1).

These steps repeat until the best objective value drops below a thresh-
old (Line 7 in Algorithm 1).

Evaluation of objective function. Given a sampled connectiv-
ity, we evaluate the objective function J defined in §5.1. Since J
depends on both the connectivity and the primitive cube sizes and
the latter has not yet been determined, we treat the evaluation as
another optimization problem, one that minimize the objective func-
tion over all possible cube sizes but with a fixed connectivity. This
is a continuous optimization problem, which we solve in §5.3.

Random sample of connectivity. To initialize the set of lattice
connectivities and to replace the worst Ns−M samples at the third
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Figure 6: Before and after BFGS optimization. Combinatorial
sampling is difficult to converge to the user-specified target quickly
due to its random nature. Enforcing local optimization for each
sample reaches the desired acoustic target faster.

step of the algorithm, we need to sample bit strings si. To this
end, we use a simple rejection sampling scheme, starting by random
sampling of a bit string. Since we must ensure the inlet and outlet
are connected through primitive resonators, after sampling a bit
string we verify whether the corresponding connectivity structure
connects the inlet with the outlet (e.g., using a depth-first search on
the lattice) and reject the sample if does not.

Connectivity perturbation. We perturb the connectivity string
si using a mutation. Specifically, we randomly select a bit in a
string si and flip it. In addition, this mutated string is subject to
two constraints: (i) the corresponding connectivity structure needs
to retain the connection between the inlet and the outlet; and (ii) the
mutated bit needs to influence the resonator paths that connect the
inlet and the outlet; otherwise, the mutation makes no difference
to the connected component between the inlet and the outlet. We
check the mutated bit string against both requirements and reject the
mutation if it fails the check.

5.3 Local Continuous Optimization

Next we discuss how to evaluate the objective function after sam-
pling a lattice structure. This evaluation optimizes the cube sizes
u of each primitive in the lattice structure in order to compute the
minimal objective function value. To achieve this, we first compute
the gradient of J with respect to u from Eq. (7),

∂J(s,u)

∂u
= 2

Nω∑
i=1

(g(T(s,u, ωi))− ḡi)
∂g(T(s,u, ωi))

∂u
. (8)

The function g depends on the transmission matrix T, which further
depends on the acoustic pressures and velocities at every port of
all the primitive resonators, according to Eq. (6). To compute the
partial derivative of g, applying the chain rule yields:

∂g(T(s,u, ωi))

∂u
=

(
∂g

∂T

∂T

∂x

)
︸ ︷︷ ︸

mT

∂x

∂u
, (9)

where x, as used in Eq. (6), stacks frequency-domain pressures and
velocities of all the ports of the primitives. If N denotes the number
of primitive resonators of the assembly, then m is a vector of the
length 12N , independent of the cube sizes of the primitives. ∂x

∂u
is

a 12N × N matrix. To compute this matrix, recall that in Eq. (6),
the matrix A depends on the cube sizes of the primitives, and b is
a constant. Differentiating both sides of Eq. (6) with respect to u

4 microphone probes

Brüel & Kjær measurement tube 
clay gaskets for sealing

Figure 7: Industrial laboratory measurement setup.

yields:

A
∂x

∂u
+
∂A

∂u
= 0, (10)

which is a linear system with N right-hand-side vectors, − ∂A
∂u

.
Since A is assembled from the transmission matrices of all prim-
itives in the assembly(recall §4.2), ∂A

∂u
involves the derivatives of

the transmission matrices with respect to the cube sizes. We com-
pute them by interpolating our precomputed primitive transmission
matrices.

It seems straightforward to compute ∂x
∂u

by factorizing A only once
and solving the linear system N times, and use Eq. (9) and (8) to
compute the gradient of the objective function. However, if N is
large, even the repeated back substitutions for solving Eq. (10) are
slow. Especially when used in a Monte Carlo sampling step, this
would significantly reduce the efficiency of the overall optimization
algorithm.

Speedup with Adjoint Method. Fortunately, this computation
can be largely accelerated using the adjoint method, one that has
been applied in computer graphics mainly for animation control
problems [McNamara et al. 2004; Wojtan et al. 2006; Barbič et al.
2009]. The key idea is based on the observation that computing a
matrix-vector product, mTB such that AB = C, is equivalent to
computing tTC such that AT t = m. The advantage of the latter is
that only a single linear-system solve for the vector t is needed. In
our problem, this amounts to first solving

AT t =

(
∂g

∂T

∂T

∂x

)
, followed by computing

∂g

∂u
= tT

∂A

∂u
.

For all our examples, this method results in nearly 10× speedups
over the straightforward approach.

With the computation of the gradient ∂J
∂u

depicted, we apply it to a
quasi-Newton method to minimize J . In our implementation, we
use the Limited-memory BFGS Bounded (L-BFGS-B) method [Zhu
et al. 1997]. In practice we found local gradient descent step com-
plements the combinatorial sampling. Figure 6 illustrates the effec-
tiveness of the local optimization of the impedance curve.

6 Results

We now present the experiments we conducted to test our method.
In all examples, we sample the frequency range every 3Hz from
20Hz to 5kHz to precompute transmission matrices. The cube size
of the primitive resonator varies depending on specific applications:
For muffler design and acoustic signatures, the cube size is between
6mm and 2cm, sampled every 1mm. For laboratory tests and wind
instrument design, the cube size is between 25cm and 35mm, also
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Figure 8: Double muffler and cube measured by Brüel & Kjær .
Our method agrees closely with both the expensive FEM solve and
the lab measurement. There is a large difference around 1600Hz,
where the measurement input signal does not have sufficient power
to pass through. This is caused by the wide and high transmission
loss values around this region, according to the lab technicians.

sampled every 1mm. The precomputation takes a few hours on a
16-core cluster.

We fabricated our designs using Stratasys uPrint SE Plus, a filament-
based 3D printer with a layer resolution at 0.254mm. We use ABS-
P430 plastic as the model material and a dissolvable support mate-
rial which can be washed away upon finish. The fabrication time
varies from a few hours to a day, primarily depending on geometric
size of a given model.

6.1 Validation

The fundamental building block of our assembly structure optimiza-
tion is the fast computation of a transmission matrix for an assembly
(recall §4.2). We validate its accuracy using finite-element-method
(FEM) simulation and industrial laboratory tests.

Finite-element simulation. We compute the transmission loss us-
ing Code Aster [Aubry 2013], a well-developed and carefully tested
finite-element solver for mechanics. We follow the routine outlined
in §3, solving for the acoustic velocities with different boundary
conditions using Code Aster. We then compute the transmission
matrix by assembling and solving the Equation (4).

Industrial laboratory test. We sent fabricated samples to
Brüel & Kjær ’s acoustic laboratory for independent, third-party
tests conducted by their acoustic professionals. Brüel & Kjær is
the world’s largest manufacturer and supplier of acoustic measure-
ment equipment and solutions. They measured the transmission loss
of our samples using Brüel & Kjær 4206-T measurement tubes with
the 4-microphone technique [Tao and Seybert 2003], sweeping the
frequency range every 4Hz from 20Hz to 3500Hz under the condi-
tion of 21◦C (room temperature), 98.9kPa (pressure), and 44% of
relative humidity. To ensure best acoustic seal during the tests, clay
gaskets were also added between the measurement tubes and our
test samples (see Fig. 7).

Comparison. The comparison shows that our fast computation of
transmission loss agrees with both the finite-element simulation and
laboratory experiments closely, as in Figure 8. The top plot in Fig-
ure 8 validates the agreement between the finite-element simulation
and the laboratory tests using a double-chamber muffler, which is
known to be an effective broadband filter. It lacks the curve from our
computation model, simply because this model is not made from
our primitive resonators. We use this test to examine the use of the
numerical and experimental methods. The bottom plot reports the
transmission loss of an assembly muffler made of 3×3×3 primitive

resonators, comparing the results from finite-element simulation
(blue curve), Brüel & Kjær ’s laboratory measurement (orange
dots), and our fast computation (blue curve). They all agree with
each other closely. Particularly, our computational model is able to
predict the peaks and valleys on the transmission loss curve, with
the differences from the measurement less than 20Hz on average.
These peaks and valleys indicate the most and the least attenuated
frequencies when sound passes through the filter, and they will be
of practical importance to control when one designs a muffler, as
demonstrated later in §6.2.

We also run three validation tests on impedance curves to compare
the error of our fast computation and full FEM solve. Figure 9 shows
that our method robustly computes the impedance curve and intro-
duces slight numerial instability as the model gets more complicated.
In terms of computational performance, our method is much faster
than the finite-element simulation. For example, to compute the
transmission loss curve of this 3×3×3 resonator assembly, which
involves computation at 1000 frequency samples, our method takes
1.2 seconds, while the finite-element method takes around 22 hours,
resulting in 77k× speedup.

6.2 Application I: Muffler Design

Man-made mechanisms produce noise, with clear patterns exhibited
in the sound spectrum. For instance, the aircraft and automobile
engine noise have pronounced frequency components related to rev-
olutions per minute (RPM) of the engine cranks. The car horns
have particular frequency patterns regulated by local government
(i.e., 390Hz and its harmonics in U.S.). Traditionally, mufflers are
designed at a large granularity, aiming to filter sound in a wide band
of frequency range, partially because of its ease of control using
relatively simple muffler geometries.

Engine noise muffler. Here we demonstrate the possibility of
controlling muffler behavior at finer granularity using our modular
filter, because of its ability to construct complex muffler structures.
We aim to construct mufflers that selectively attenuate sound near
a set of discrete frequency values. Our first example is to attenuate
a recorded engine noise, which has peaks in frequency domain at
850Hz, 1550Hz, and 2100Hz. To filter these frequency components,
we uniformly sample frequencies ωi, i = 1..Nω , which include
the peak frequencies. We then define an objective function (7), in
which the g(T(ωi)) compute the transmission loss (using Equa-
tion (3)), and ḡi is a large value at the peak frequencies and zero
otherwise. The muffler structure is optimized with a combination
of 8 resonators, and the quantitative results is plotted in Figure 11
(orange curve). We also compare the result with a muffler that has
the same volume of the internal chamber but unoptimized structure
(blue curve), showing that the optimized muffler indeed attenuates
the unwanted frequency peaks. Please refer to the video for their
audible differences.

Acoustic earmuffs. Our next example of muffler design is for
acoustic earmuffs. There has been a variety of acoustic earmuffs
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Figure 9: Impedance comparison with Code Aster. In the se-
quence of three models with increasing complexity, our method
agrees with Code Aster closely.



sound absorbing foam

microphone speaker

Figure 10: Recording setup to record the sounds before and after
our filtering. The chamber inner surface is surrounded by sound
absorbing foam to minimize ambient noise from outside as well as
the wave reflection/refraction inside the chamber.

targeting at different application scenarios, such as hunting, con-
struction work, and riding motorcycles. While some earmuffs also
employ a microphone mounted in the headset to actively reduce
a broadband noise, many others reply on acoustic structures and
materials for noise reduction and have the advantage of robustness
and long working time (without any battery). Our method can also
design passive earmuffs, but complement this category by allowing
user customization.

We demonstrate two earmuffs that can be modularly mounted in the
headset (see video) and switch to different ones when needed. The
first one is customized to reduce engine noise having peak frequen-
cies at 1000Hz, 1600Hz, and 2200Hz (Figure 12-top). The second
one is designed for riding motorcycles (Figure 12-bottom). We aim
for reducing aerodynamic noise while allowing the rider to hear
car horns for the sake of safety. Therefore, the objective function
is to suppress a broadband noise without heavily filtering car horn
sound at 390Hz and its harmonics. Both earmuffs are computed
by optimizing the structure of 42 primitive resonators. As shown
in the plots of Figure 12, our mufflers indeed filter out frequency
components we desired.

6.3 Application II: Wind Instruments

Acoustic resonator is a key part of wind instruments. While nonlin-
ear excitation mechanism of a wind instrument (such as the mouth
piece) is also important [Allen and Raghuvanshi 2015], critically
affecting the timbre of the instrument, the acoustic resonator serves
to modulate the excitation and controls the pitch. In particular, it is
known that the playable notes of a wind instrument correspond to
the peaks of the resonator’s input impedance, except its first peak
(called pedal note).

Optimization
# DoFs type # targets avg. time

PIGGY 21 Z 3 9m
OCTOPUS 76 TL 8 2h10m
BOB 258 Z 13 7h
ENGINEMUFF 20 TL 3 15m
EARENGINE 51 TL 3 11m
EARHORN 127 TL 7 1h15m
HIPPO 122 Z 4 51m

Table 1: Optimization Statistics The number of DoFs is the sum
of number of feasible nodes and number of connecting faces. Opt-
mization time is averaged over all the optimized targets for each
example. The number of targets is the number of peaks and valleys
that we want to optimize in each example.
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Figure 11: Engine Muffler. We compare an unoptimized muffler
and an optimized one. The three noisy peaks are suppressed to lower
levels with the optimized muffler.
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Figure 12: Acoustic earmuff. We customized two earmuffs (top
and bottom) that can be modularly mounted in a headset. In the
plots on the left, the orange curves show the filtered sounds where
the peaks and valleys correspond to the purple points on the right.

We applied our method to customize trumpets. Our customization is
twofold: we wish to control the set of notes that a trumpet can play
while customizing its shape, which, in our case, a cartoon hippopota-
mus shape. The resulting trumpet still relies on the standard mouth-
piece for excitation. Given a set of notes, we define an objective
function (7) that maximizes the impedance values at the frequencies
of those notes. We customized 3 different trumpets, whose playable
notes are [G4,D5], [C4, G4, C5], and [G4, Bb4, C#5, E5], respec-
tively. As shown in Figure 13, our optimized primitive assembly
can be placed inside of the hippopotamus shape and are playable. In
the supplemental video, we demonstrate that the resulting musical
notes produced by our customized resonators are in tone, whereas
the unoptimized resonator deviates a lot from the desired notes. We
note that while it is known that the players can “bend” the notes by
around a semitone, it is difficult to rely on this controllability to play
in tune especially without our assembly optimization.

6.4 Application III: Acoustic Signatures

Our acoustic filter design opens up possibilities for new applications.
Inspired by the recent work on creating tangible input devices that
interact through acoustics [Laput et al. 2015; Savage et al. 2015], we
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Figure 13: Wind instrument. We optimize for 4 notes for the
HIPPO trumpet to play, located at the impedance maximums, the
first one being the pedal note, a sustained tone. The spectrogram of
our recording confirms the accuracy of our optimization framework.

demonstrate two examples, namely acoustic tagging and acoustic
encoding.

Acoustic tagging. Our method enables a new way of tagging 3D
shapes. This is similar in spirit to the recent work on tagging 3D
fabricated shapes by modulating material distribution and decod-
ing using Terahertz imaging [Willis and Wilson 2013], but from a
completely different perspective, the acoustics.

Our key idea is to embed tags into the acoustic filtering effects of a
shape, by computationally optimizing its internal structure without
largely changing its visual appearance, as long as the shape has two
holes serving as the inlet and outlet (Figure 1-a). Even with a single
tapping using a palm at a hole, one can produce an acoustic wave
passing through the internal structure and output a filtered noise.
A simple FFT-based algorithm can recognize the output sound and
decode the tags. Compared to the existing tagging approaches, this
method requires no electronics during installation and detection (un-
like Radio Frequency Identification tags) or multi-material fabrica-
tion (unlike [Willis and Wilson 2013]). It relies on our optimization
method to physically realize a specific acoustic signature that can be
reliably read by a computer program. In our examples, we choose
to make each tag to have distinct peaks of their impedance curves,
and thereby allowing for robust, FFT-based decoding.

We demonstrate this approach by fabricating three identical piggy
shapes (Figure 1-b), each with an target acoustic impedance curve
peaking at different frequency values (Figure 14). Using our Acous-
tic Voxels approach, we realize these impedance curves with our

im
pe

da
nc

e

101

500 Hz 1000 Hz 1500 Hz

102

103

104

105

305 Hz 836 Hz1 1200 Hz
250 Hz 890 Hz1 1300 Hz
338 Hz 1004 Hz 1607 Hz

Figure 14: Acoustic tagging. We optimize three identical piggy
shapes such that they all have different impedance curves. When
tapped with a palm on their nose, the filtered sounds are different.
The iPhone application used for recognition is shown in Fig. 1.
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Figure 15: BOB. In this example we optimize for two sets of fre-
quency peaks (top and bottom); each has more than 10 target fre-
quency peaks, indicated by the dotted vertically lines. For both
cases, out optimized acoustic filters are able to achieve the desired
peaks.

primitive assemblies. We have implemented a simple iPhone appli-
cation that decodes a recorded tapping sound and detect the reso-
nant frequencies which correspond to the local maximums on the
impedance curve. As shown in the video (and Figure 1), the iPhone
application can reliably detect the tags and identify the piggies.

To take the complexity of our optimized muffler further, we vox-
elized BOB, the duck-shaped lifesaver, with the inlet at the beak and
the outlet at the tail (Figure 15). We optimized for two sets of fre-
quency peaks on the impedance curve; each has more than 10 peaks.
We evaluated this example by comparing the target impedance
against the optimized impedance computed using our simulation
model without fabricating the models, because of the 3D printer’s
limitation on the geometric size of the fabricated shapes (Figure 15).
This example promises for tagging a large pool of objects or con-
trolling the filtering behaviors at a finer granularity in future.

Acoustic encoding. Taking one step further, we demonstrate the
ability to encode bit strings, which can be interpreted as virtually
any type of information, akin to the idea of QR code but visually
less distracting. The idea is again using acoustic filter to modulate
frequencies in a controlled way. Instead of controlling acoustic
impedance curves, here we explore the possibility of encoding in the
transmission loss curve, with a simple coding scheme: To encode
N bits of information, we evenly sample 2N frequency values and
group the samples pairwise. Let the frequencies are grouped as
(ω1, ω2), (ω3, ω4), ..., (ω2N−1, ω2N ). We encode a “1” at the i-th
bit if the transmission loss value at ω2i−1 is smaller than that at
ω2i, and encode a “0” if the value at ω2i−1 is larger than that at ω2i

(Figure 16-b). By setting an objective function that maximizes and
minimizes the transmission loss at corresponding frequencies, we
optimize for an acoustic filter that physically realizes this coding
scheme.

We fabricated three objects with an identical, octopus-like surface
shape (Figure 16), and use them to encode different 4-bit strings,
including “0000”, “1001”, and “0111”. As shown in the video, we
have implemented another iPhone application that plays a white
noise from its speaker while simultaneously recording from its mi-
crophone. When aligning the iPhone speaker and microphone with
two holes (i.e., the inlet and outlet) on the object, the white noise
passes through the internal structure of the shape and gets filtered.
By detecting the filtered amplitudes at the pre-specified frequencies
ωi, the application decodes the bit strings. In future, the application
can be made to interpret the bit strings in a specific context and
enable other new applications (§7).
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Figure 16: Acoustic encoding. By embedding more voxels in the
geometry, we achieve finer-grained control of the acoustic proper-
ties, exemplified by encoding 4 binary bits of information.

7 Conclusion and Future Work

Our method is mostly suitable for controlling impedance and trans-
mission loss at discrete frequencies, but has limited ability to control
a broadband of frequencies. For this purpose, the traditional muffler
design is more suitable. Currently, we use only one rigid material
and optimize the filter’s chamber shape, while automotive mufflers
often use composite materials. It is also less clear, when optimizing
for more acoustic properties, how much control can be exerted via
merely the assembly shape optimization. So far, we consider only a
single type of primitive resonators. Extending our method to more
primitive shapes and materials can offer a larger palette for better
acoustic filtering control. Practically, we have some difficulties to
ensure the internal structure of a filter being thoroughly cleaned after
3D printing, as it is hard to examine given its structural complexity.

So far, we have demonstrated the control transmission loss and
impedance curves up to 4500Hz. While this is motivated by the
fact that most muffler and instrument applications operate in this fre-
quency range, we are restricted by the precomputation time needed
for computing transmission matrices at higher frequencies, as it re-
quires significantly higher finite-element resolution and longer time
to solve the Helmholtz equation at higher frequencies. In the exam-
ple of BOB, we optimized for more then ten peaks in the impedance
curve. To control more peaks, a higher resolution of lattices is
needed, leading to a much longer optimization time. It is an inter-
esting future work to further speed up the optimization process for
more detailed control of acoustic filtering.

In conclusion, we present Acoustic Voxels, a computational method
that optimizes assembly of primitive resonators to realize a target
acoustic filtering property, described in acoustic impedance or trans-
mission loss. We demonstrated our algorithm with three types of
applications, including muffler design, wind instruments, and a new
way of customizing 3D-printed shapes with acoustic signatures. In
future, this idea can be carried over to design acoustic filters at dif-
ferent scales, such as at high frequencies for ultrasonic imaging and
at low frequencies for improving room acoustics. Further, we are
interested in exploring new HCI applications enabled by acoustic
signatures as well as new acoustic meta-materials enabled by com-
putational optimization.
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HÄMÄLÄINEN, P., ERIKSSON, S., TANSKANEN, E., KYRKI, V.,
AND LEHTINEN, J. 2014. Online motion synthesis using sequen-
tial monte carlo. ACM Trans. Graph. 33, 4 (July).

INGARD, U. 2009. Noise reduction analysis. Jones & Bartlett
Publishers.

JAMES, D. L., BARBIC, J., AND PAI, D. K. 2006. Precomputed
acoustic transfer: Output-sensitive, accurate sound generation for
geometrically complex vibration sources. ACM Trans. Graph. 25,
3 (July).

KAC, M. 1966. Can one hear the shape of a drum? American
Mathematical Monthly, 1–23.

KAUSEL, W. 2001. Optimization of brasswind instruments and
its application in bore reconstruction. Journal of New Music
Research 30, 1, 69–82.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. 1983.
Optimization by simulated annealing. Science 220, 4598, 671–
680.

LAPUT, G., BROCKMEYER, E., HUDSON, S. E., AND HARRISON,
C. 2015. Acoustruments: Passive, acoustically-driven, interac-
tive controls for handheld devices. In Proc. CHI 2015, ACM.

LI, D., FEI, Y., AND ZHENG, C. 2015. Interactive acoustic transfer
approximation for modal sound. ACM Trans. Graph. 35, 1 (Dec.).

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
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