
LayerCode: Optical Barcodes for 3D Printed Shapes

HENRIQUE TELES MAIA, Columbia University
DINGZEYU LI, Adobe Research
YUAN YANG, Columbia University
CHANGXI ZHENG, Columbia University

a c d f ig

b e h

Fig. 1. LayerCode tags are deployed in 3D printed objects through two-color printing (a), variable layer heights (d), and near-infrared steganography (g). In
the first case (a), the LayerCode tag is visible; in the second (d), the tag is less visible; and in the third (g) it is completely invisible, but still machine-readable.
Just like reading a barcode, we capture an image of each object, and our decoding algorithm processes the image to create a decoding graph (b, e, h), from
which a linear barcode is recovered (c, f, i). In this case, the corresponding LayerCode bit string reveals a 24-bit code repeated 3 times in (a), a 24-bit code
repeated once in (d), and a 12-bit code repeated once in (g).

With the advance of personal and customized fabrication techniques, the ca-

pability to embed information in physical objects becomes evermore crucial.

We present LayerCode, a tagging scheme that embeds a carefully designed

barcode pattern in 3D printed objects as a deliberate byproduct of the 3D

printing process. The LayerCode concept is inspired by the structural resem-

blance between the parallel black and white bars of the standard barcode

and the universal layer-by-layer approach of 3D printing. We introduce an

encoding algorithm that enables the 3D printing layers to carry information

without altering the object geometry. We also introduce a decoding algo-

rithm that reads the LayerCode tag of a physical object by just taking a photo.

The physical deployment of LayerCode tags is realized on various types of

3D printers, including Fused Deposition Modeling printers as well as Stere-

olithography based printers. Each oers its own advantages and tradeos.

We show that LayerCode tags can work on complex, nontrivial shapes, on

which all previous tagging mechanisms may fail. To evaluate LayerCode

thoroughly, we further stress test it with a large dataset of complex shapes

using virtual rendering. Among 4,835 tested shapes, we successfully encode

and decode on more than 99% of the shapes.

Authors’ addresses: Henrique Teles Maia, Columbia University, henrique@cs.columbia.

edu; Dingzeyu Li, Adobe Research, dinli@adobe.com; Yuan Yang, Columbia University,

yy2664@columbia.edu; Changxi Zheng, Columbia University, cxz@cs.columbia.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for prot or commercial advantage and that copies bear this notice and the full citation

on the rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specic permission and/or a

fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0730-0301/2019/7-ART1 $15.00

https://doi.org/10.1145/3306346.3322960

CCS Concepts: • Hardware→ Emerging interfaces; •Mathematics of
computing → Graph algorithms;

Additional Key Words and Phrases: 3D printing, information embedding,

fabrication, physical hyperlinks

ACM Reference Format:
Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng. 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes. ACM Trans. Graph. 38,
4, Article 1 (July 2019), 17 pages. https://doi.org/10.1145/3306346.3322960

1 INTRODUCTION
Invented 45 years ago, the optical barcode has become an indispens-

able minutiae in today’s digital era. The design is simple, e.g. black

and white bars printed on a at surface, but its use is ubiquitous.

From package delivery and airplane boarding to inventory manage-

ment and patient identication, the barcode serves as a link that

bridges physical artifacts to modern digital systems.

In this work, we rethink barcodes in the context of additive man-

ufacturing, popularly known as 3D printing. 3D printing oers a

quick way of making customized, complex shaped objects. Unlike a

mass-produced product which by design has a reserved at surface

region to host barcodes, 3D printed shapes are often complex and

curved: thin features, slender threads, and holes are not uncommon.

As a result, traditional barcodes cannot be placed on such objects.

Recent years have seen a few approaches proposed toward em-

bedding optical tags in 3D printed objects, on the surface [Kikuchi

et al. 2018], beneath the surface [Li et al. 2017] and inside the ob-

jects [Willis and Wilson 2013]. However, these approaches either

require specialized (and expensive) hardware to read the tags or

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322960
https://doi.org/10.1145/3306346.3322960

1:2 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

only work on a limited set of simple shapes (i.e., those with a at or

smooth surface). This limitation, in stark contrast to the complexity

of shapes that current 3D printers commonly produce, remains a

signicant open problem.

We introduce LayerCode, to bring the concept of optical barcodes
into 3D printed objects, especially those with curved shapes and ne

structures. Our key idea is inspired by the structural resemblance

between optical barcodes and 3D printed objects: essential in a

barcode are its black and white bars arranged in parallel; universal

in all 3D printed objects are printing layers introduced in a parallel

fashion. In fact, virtually all additive manufacturing uses a layer-

by-layer printing process [Livesu et al. 2017; Redwood et al. 2017].

Thus, if we could interleave two “types” of layers in a 3D printing

process, we would be able to embed a barcode everywhere along a

3D printed object.

Materializing this idea faces two challenges. The rst is algorith-

mic. Due to an object’s complex shape, its layering structure may

appear curved, disconnected, or shadowed when captured by a cam-

era. We therefore seek a robust encoding and decoding algorithm

that embeds information in printing layers and later retrieves this

information from the images of a conventional camera. The second

challenge rests in practical realization. In various types of 3D print-

ers, including those that support only a single material, we need to

introduce two distinguishable layer types.

We address the rst challenge by introducing a new coding al-

gorithm. Unlike the standard barcode that maps every bit to a bar

thickness, we encode individual bits based on the local change of

layer thickness, which, as we will show, is invariant under dierent

surface orientations and curvatures. At decoding time, we exploit

a key observation that each layer spans the entire cross-section of

the object. This suggests that there exist many image-plane paths

along which we can decode. The rich set of decoding paths is advan-

tageous, enabling us to sidestep shadows, highlights, and uncertain

image regions to decode robustly.

We address the second challenge by developing software and

hardware updates for printers. For printers that support two mate-

rials (such as the Makerbot Replicator 2 and PolyJet), distinct layer

types are naturally introduced by assigning dierent materials. For

fused deposition modeling (FDM) printers with only a single mate-

rial (such as the Ultimaker 2), we propose to change the lament

deposition height during printing to indicate dierent layer types.

Last but not least, for stereolithography printers (such as an Au-

todesk Ember), we propose to mix near infrared (NIR) dye in the

printing resin to create the second type of layers. This unobtrusive

and machine-readable tagging is similar in spirit to [Li et al. 2017]

and nds many applications.

Our proposed LayerCode approach features a number of attributes

desired for tagging 3D printed objects:

Robustness on complex shapes. LayerCode tags can be applied to

objects with complex shapes (e.g., see Figure 3), and are signicantly

more versatile than existing approaches. Besides demonstrating our

algorithm with real-world examples, we also test it exhaustively

using rendered images on Thingi10k [Zhou and Jacobson 2016], a

dataset with 4,835 printable meshes across a wide range of shapes.

take a photo decoding (§4)

Fig. 2. Use scenario. A LayerCode-tagged object is captured by a conven-
tional camera. Our graph-based algorithm then decodes the embedded
information from the image.

Ease with a conventional camera. LayerCode tags can be read by

a conventional camera, without resorting to expensive hardware

(Figure 2). Even for the NIR tags, the only additional hardware

needed for decoding is a NIR lter and a NIR light source (e.g., TV

remote); both are low-cost and easily accessible.

Compatibility with 3D printers. LayerCode tags can be used in

various types of 3D printers, whether they are single material or

multi-material FDM or stereolithography printers. Additionally, we

show how even a single-material stereolithography printer like the

Autodesk Ember can support the requisite two types of layers.

Structural preservation. Since LayerCode tags are built upon the

layer-by-layer 3D printing process without modifying the original

shapes; they have a minimal, if not negligible, impact on the print’s

mechanical properties. This feature contrasts starkly to previous

approaches, as they all alter the shapes to a certain extent.

Appearance preservation. LayerCode tags, when fabricated using

two materials of dierent colors, change the appearance of the

object. However the object appearance is preserved in the other two

3D printing approaches, namely by changing the FDM deposition

thickness and using resins mixed with NIR dyes (Figure 14 and 16).

Ubiquitous tagging of an object. Embedded in 3D printed layers,

LayerCode tags span over the entire object body, both inside and on

the surface. Such ubiquity of a tag is benecial: tags can be decoded

along many surface paths, which makes the decoding process robust.

This redundancy also renders the tag readable from multiple camera

view angles or within a broken or damaged object (Figure 17).

Depth information for free. The interleaving parallel layers of a
LayerCode tag can be reinterpreted as an ideal parallel light pattern
projected on the object. Thus, using the structured light technique

of computer vision, even from a single image of the tagged object,

we are able to estimate the depth of the object from the camera

(Figure 10). In other words, every LayerCode tag automatically

conveys shape information of its carrier object for free.

In summary, we highlight the following contributions:

• A new feature-rich tagging mechanism that exploits the layer-

ing structures employed in additive manufacturing processes.

• A decoding algorithm that is robust against high curvatures,

rough surfaces, thin features, occlusions, and other factors

that limit the use of previous approaches.

• We propose three distinct methods that achieve LayerCode

tags in various types of 3D printing processes.

• A comprehensive evaluation of 4,835 rendered images as well

as over 20 physical objects across three 3D printers.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:3

Table 1. A comparison of challenging design considerations and features across several tagging techniques.

barcode Printed InfraStructs Acoustic Acoustic Lamello RFID BlowHole AirCode LayerCode

Optics Barcodes Voxels based

[Willis et [Willis and [Harrison [Li et [Savage et [Iyer et al. [Tejada et [Li et

al. 2012] Wilson 2013] et al. 2012] al. 2016] al. 2015] 2018, 2017] al 2018] al. 2017]

unsmooth rough surfaces 7 3 3 7 3 7 3 3 7 3

thin shell or rod 7 7 7 3 7 3 7 7 7 3

accessible hardware decoding 3 7 7 3 3 3 3 3 3 3

tested on multiple 3D printers N/A 7 3 3 7 7 7 7 7 3

structural preservation 3 7 7 7 7 7 7 7 3 3

appearance preservation 7 3 3 7 7 7 3 7 3 3

ubiquitous tagging 7 3 3 7 7 7 3 7 7 3

depth estimation for free 7 7 7 7 7 7 7 7 7 3

2 RELATED WORK
The rich features of LayerCode set it apart from existing tagging

mechanisms. We now elaborate its dierences from existing ap-

proaches, and a summary is shown in Table 1.

Although traditional barcodes are robust, they are privy to certain

assumptions. Convention dictates that in order for a barcode towork,

it must be laid on a at surface, surrounded by two quiet zones of
empty space, and consist of evenly-spaced encoded digits composed

of xed length modules [Woodland and Bernard 1952]. The code

requires preservation of the ratios of these modules even when

scanned at an o-axis angle, which in turn demands a at surface

for tags in order to read correctly. The strict requirement on atness

signicantly limits the adoption of barcodes to arbitrary geometries.

In one of the early eorts to tag mass-produced printed ob-

jects, [Weigelt et al. 2010] extensively developed and discussed

printing electronics in the object’s interior. Since then, much of the

research along this direction has focused on embedding specialized

hardware inside the 3D printed objects. For example, magnets, Radio-

Frequency IDentication (RFID) chips, optical elements, circuits,

and extra support materials have since been utilized for tagging

purposes [Iyer et al. 2018; Kao et al. 2016; Willis et al. 2012; Willis

and Wilson 2013; Yoon et al. 2016]. However, these hardware com-

ponents not only lead to additional costs, but also require highly

specialized and usually expensive equipment for accessing the em-

bedded information. In comparison, LayerCode is a natural and

cost-free byproduct of the printing process that only needs a camera

for decoding.

Fig. 3. Challenging shapes. LayerCode tags can be embedded and de-
coded successfully in challenging shapes such as those with holes, thin
features, curved surfaces, and branching threads. To our knowledge, no
previous optical tagging mechanism can handle these challenging shapes.

In computer graphics and HCI, advances in fast and accurate

sound simulation enable acoustic sensing and tagging. Early pio-

neering work includes the appearance-altering Acoustic Barcodes

and Lamello [Harrison et al. 2012; Savage et al. 2015]. To better

maintain the exterior appearance, various methods were proposed

to optimize internal resonant chambers to achieve robust tagging

performance, including BlowHole [Tejada et al. 2018], Acoustic Vox-

els [Li et al. 2016], and SqueezaPulse [He et al. 2017]. Although

acoustic tagging approaches have shown promise, they share an

inherent limitation: they cannot handle arbitrary shapes, like thin

rod structures and thin shell objects, because of physical size con-

straints from the resonant chamber. LayerCode, on the other hand,

is capable of working on a wide range complex shapes, as shown in

Figures 3, 11, and 23.

Most related to our proposed method are AirCode and Optimal

Discrete Slicing. AirCode uses unnoticeable subsurface scattering to

embed a QR code-like pattern to preserve supercial appearances [Li

et al. 2017]. One key limitation is that the control of subsurface scat-

tering requires high-precision resin-based printers, which precludes

an application to consumer-level lament-based printers. This is be-

cause the layered nature of the printing process was not accounted

for when designing the subsurface tags. Alexa et al. [2017] proposed

variable layer deposition thickness (i.e. layer height) slicing to opti-

mize printing time. Instead of optimizing time, we leverage variable

layer slicing to encode information, making LayerCode available

to a wide range of 3D printers (see §5). Another advantage from

considering the printing process is the lack of compromise in cost

or fabrication/cleaning time, which introduce signicant tradeos

in hardware or acoustic-based methods.

We are not the rst to utilize controllable layer heights in 3D

printing. Pioneer work from two decades ago focused on slicing

speed while producing coherent slices friendly to printers [Mc-

Mains and Séquin 1999]. More recently, the focus has shifted to

more high-level design-related goals. Wang et al. [2015] optimized

layer heights to preserve salient regions on printed meshes. Starly

et al. [2005] designed a novel slicing algorithm for CAD NURBS

models to overcome the accuracy issue in precision manufacturing.

Similar to [Alexa et al. 2017], VarSlice [Crayons 2016] and oth-

ers [Zucheul et al. 2016] manipulate layers based on curvature to

speed up printing where possible. A comprehensive review can be

found in [Nadiyapara and Pande 2017]. Inspired by the long line of

work on layer slicing, we explore the layering nature to develop a

robust tagging scheme.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:4 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

black layer

white layer

Fig. 4. Distorted thickness. A sphere is coded with black and white layers
of equal thickness. On the captured image, curvature and perspective cause
layers to appear spatially varying in size.

The layer information we embed not only encapsulates the tag,

but also conveys depth information. To estimate depth from the

images, there is abundant literature on leveraging structured light

for 3D reconstruction [Taubin et al. 2014]. Most previous methods

use active and controlled light sources with multiple images to help

decode the depth [Hall-Holt and Rusinkiewicz 2001; Zhang et al.

2002]. For depth estimation from a single image, due to its ill-posed

nature, most prior work has resorted to data-driven methods [Chen

et al. 2016; Saxena et al. 2006]. Relying on structured layers, we

demonstrate it is possible to estimate depth from a single image and

this can be complementary to existing data-driven approaches.

3 ENCODING
Conceptually, the encoding process decomposes a 3D printed shape

into two sets of interleaving layers, which we refer as the black and

white layers, respectively (Figure 4), to echo the black and white

bars in standard barcodes. We also refer the black and white layers

generally as the coding layers to distinguish from the 3D printing
layers made in the 3D printing process. Each black or white coding

layer consists of multiple consecutive 3D printing layers, and thus

has a variable thickness.

In practice, we need to assign each 3D printing layer dierent

properties (such as colors) so that at decoding time, the black and

white layers can be recognized from a camera image. These practical

details are deferred until §5. In this section, our goal is to assign

each coding layer a thickness to encode a piece of information.

The input to our encoding algorithm is a 3D shape, the tag in-

formation represented as a bit string, as well as the 3D printing

direction with respect to the printed object (i.e., the direction along

which 3D printing layers will be grown). Unlike other tagging meth-

ods, there is no restriction on the 3D printed shape. We leave the

exibility of choosing a printing direction to the user, because the

printing direction may depend on the specic shape, printing soft-

ware, support materials, and perhaps subjective preferences. The

output of the encoding algorithm is a series of slices along the

printing direction to specify the thickness of each coding layer.

Challenges and insights. In a standard optical barcode, the black

and white colors are used to label individual bars, and a bit (0/1)

is encoded in the thickness of each bar. Unfortunately, it would

be problematic to simply transfer this design to curved surfaces.

As shown in Figure 4, a layer’s thickness on a curved surface will

appear spatially variant after being projected on an image. Thus, a

new coding scheme is needed.

bit 0

bit 1

Fig. 5. Encoding scheme. Each pair of layers encodes a single bit. A bit-
wise 0 or 1 can be determined by computing the ratio of adjacent layer
thicknesses.

A key insight comes from noticing the fact that if the coding

layers are thin (relative to the inverse of the surface curvature along

the printing direction), the thickness ratio of two consecutive layers
measured in a local region of the image plane is invariant. This
is because in a small local region, two nearby coding layers share

approximately the same surface tangent plane, and the projection

from the tangent plane to the image plane follows an ane trans-

formation which preserves the layer thickness ratio.

Using local thickness ratios also favors the decoding step. As will

be discussed in §4, it allows us to sample the thickness ratio of two

layers at many local regions on the image, and collectively estimate

a thickness ratio that is robust against imaging noise and artifacts.

Coding scheme. We propose the following scheme to encode every

bit in a bitstring. A bit “1” is encoded if the thickness ratio of two

consecutive layers is either 1/M orM , whereM is a constant larger

than 1 that we will discuss shortly, and a bit “0” is represented by a

unitary thickness ratio (i.e., the same thickness). The representation

of a bit string always starts from a layer with a baseline thickness

h. The next layer thickness an+1 is either h orMh according to the

current bit bn+1 and the previous layer thickness an , namely,

an+1 =

an if bn+1 = 0,

Mh if bn+1 = 1 and an = h,

h if bn+1 = 1 and an = Mh.

(1)

At decoding time, we recover the bit string sequentially, using the

inverse map

bn+1 =

{
1 if logan − logan+1 = ± logM,

0 if logan − logan+1 = 0.
(2)

In practice, the value of logan − logan+1 will never be precisely
± logM or 0 due to the image estimation errors. But a nice property

of this coding scheme is that the estimated values of logan−logan+1,
when viewed as a random variable, will form three distribution

modes symmetrically centered at ± logM and 0. In §4.1, we will

return to this property for robust decoding. Figure 5 illustrates this

scheme forM = 2.

In theory, M can be any value larger than 1. It oers the user

the exibility of trading o the total number of bits of a shape for

the robustness of decoding. A larger M sets ± logM further away

from 0, so at decoding time the estimated logan − logan+1 is more

distinctive; but the layers are thicker, and thus the shape can store

less information. IfM becomes too large, a coding layer may occupy

a large surface area, where the surface curvature starts to vary

considerably. Then, the local layer thickness ratio also becomes

spatially varying. In all our examples, we usedM = 2.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:5

linear scan multi-line average non-linear scan graph-based search

Fig. 6. Barcode challenges. Simple input shapes (Le) are followed by
more challenging geometry (Right). Linear scan works with simple flat
surfaces, but cannot generalize to flat pieces with holes. These might be
decoded by projecting all pixels to one dimension; however, globally pro-
jecting fails to handle curved objects. Instead, locally tracing across layers
is eective, until subsequent layers are too far to trace (e.g., see Figure 7-
le). Lastly, our graph-based method can be used to handle highly complex
shapes, and is backwards compatible with all previous challenging shapes.

Among the coding layers, we also need to label where a bit string

starts and ends. And we use the following simple rules. We start a

bit string from a layer with a thickness Nh, where N is considerably

larger than M (in practice, N = 4), followed by two layers (one

black and one white) with a thickness h each. This appends a bit

“0” to the beginning of the message. Then, after encoding the full

bit string, a single layer is added to encode a bit “1” followed by

another layer of thickness Nh. This additional structure isolates a
tag and disambiguates the bit string direction on the image plane.

Lastly, we reach a lemma about the total thickness of a bit string.

Lemma 1. Provided a bit string of lengthT (T bits), the 3D printing
thickness H needed to host this bit string is bounded by

(2N + 2 +T +M)h ≤ H ≤ (2N + 3 +T ·M)h.

Proof. In addition to the beginning 3 layers of a total thickness

(N + 2)h and the ending layer of thickness Nh, there areT + 1 layers
in-between corresponding to the T bits followed by the ending

bit “1”. Recall that whenever a bit “1” appears, the layer thickness

changes across two layers. Therefore, among the T + 1 layers, there
is at least one layer whose thickness is dierent from others. If that

layer is a thick layer (of thicknessMh), we obtain the lower bound.

If that layer is thin (of thickness h), we reach the upper bound. �

Conversely, this lemma shows that if a 3D shape has a sizeD along

the printing direction and D � h, then its information capacity (i.e.,

total bits) is at least

⌈ D
h ·M − 2N+3

M
⌉
.

Repetition. The user needs to choose the layer’s baseline thick-

ness h at encoding time, although as presented in §4, our decoding

algorithm is agnostic to h. From Lemma 1, we know that if a 3D

printed object has a size D along the printing direction, and if we

need to storeT bits, h should be at most D/(2N+2+T+M). Oftentimes,

h is much smaller than this bound. Then, we repeat the same bit

string (and thus the layer thickness pattern) multiple times, occu-

pying the entire printing distance. Eectively, we embed multiple

copies of the bit string in the entire object (Figure 6 & Figure 23).

This repetition introduces no additional printing cost, and is

benecial in practice. It allows the barcode to be read from a wider

range of camera angles, and thereby eases camera alignment at

decoding time. Additionally, the redundant bit strings allow for a

robust voting scheme at decoding time (see §4.2).

Bit capacity. LayerCode design supports a exible length integer

base-2 bit-length encoding, which may be adapted to design and

application constraints. In order to encapsulate the unique object

IDs of our database, all of our virtual evaluations (§6.1) use a 24 bit-

length base-2 encoding, leading to an entropy over 16 million. For

reference, a traditional UPC-E barcode uses base-10 encodings and

supports an entropy of 2 million. Similarly, our real world two-color

and layer-height examples (see §5.1 and §5.2 respectively) also use

24 bit-length encodings. The near-infrared prints discussed in §5.3

employ 12 bit binary encodings due to the printer’s smaller build

volume and subsequently smaller prints.

Error correction coding. Our coding scheme is about encoding

a bit string in a physical representation (e.g. layer thickness) and

decoding from a tangible form (e.g. 3D printed objects). Thus, it

is able to carry any error-correction code. In our experiments, we

choose not to add any error-correction redundancy to study the

pure performance of our method. Our coding scheme can support

various error-correction coding schemes such as the Reed-Solomon

codes [Reed and Solomon 1960]. These coding schemes add redun-

dant bits to a bit string for correcting errors at decoding time.

4 DECODING
We now describe our core algorithm of decoding LayerCode tags

from a camera image. To start decoding, we expect the black and

white layers of the object to appear distinctively on the image. This

is guaranteed through our fabrication methods specic to dierent

types of printers. Focusing on the core decoding algorithm here, we

defer those fabrication details in §5.

To motivate the overarching idea of our algorithm, we start by

considering a few increasingly challenging situations (see Figure 6).

First, on a curved surface, the thickness of a coding layer varies

spatially on the image (Fig 4), making the decoding (e.g., using (2))

easily fallible. If the surface curvature is relatively small, previously

existing rectications include decoding along multiple projection

lines of pixels [England 1996] and along curved paths [Liu et al.

1998]. Nevertheless, the concept of an image-space decoding path

is awed once a more complex shape is considered. As illustrated

in Figure 7, if a shape zigzags or branches, it is almost impossible

to nd a path along which the entire encoded bit string is covered.

This might suggest that a more reasonable approach is to instead

segment individual coding layers and somehow measure the layer

thickness. Yet, such a layer-centric approach is also vulnerable as

highlights, shadows, and image noise may “shatter” a layer into

disjoint regions (Figure 6-right).

We propose a graph-based algorithm. We treat each coding layer

region, which may not include an entire layer, as a graph node.

Two nodes are connected if they are from dierent but neighboring

layers. As we will show, a robust decoding algorithm can be realized

by strategically traversing this graph.

Image Preprocessing. Before delving into the decoding details,

we preprocess the camera image to separate the object from its

background and remove highlights and shadows, which are regions

where pixel intensities are too high or too low. The preprocess-

ing step depends on specic types of 3D printed objects—whether

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:6 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

inaccurate thicknesscan’t find neighbor

Fig. 7. Layer thickness estimation. (Le) Looking at local pixel regions
is not suicient to guarantee that neighboring layers can be found. (Right)
Computing the shortest path between neighbors as a vector or traced
path will oen not measure an accurate layer thickness. Distances must be
projected along the printing direction (or boundary normal direction).

they are bi-material objects, objects with variable layer deposition

heights, or objects containing NIR resin; they exhibit dierent image

features. We defer this fabrication-specic preprocessing step in

§5. Afterward, we binarize the remaining pixels, labeling them as

in either black layers or white layers (see Appendix A for details).

Later in Figure 14-e and -h, we show an example of images before

and after this preprocessing step. Images resultant from this step are

ready for decoding (see Algorithm 1 for an outline of major steps).

4.1 Graph Construction
First, we construct a graph to represent the layer structure. Through

a ood-ll process, we identify individual pixel regions where all

the pixels are labeled black or white at the end of the preprocessing

step. Each region is represented as a graph node, and two nodes are

connected if their regions are adjacent to each other (Figure 8-a,b).

Next, we associate every edge e with two quantities, a 2D vectorv

in image space and a binary label r . Consider an edge e that connects
nodes A and B. Its vectorv represents the general direction along

which we can move from the image regionA to the region B. As will
become clear shortly (§4.2), this direction will guide us in traversing

the graph without getting trapped in a loop. To compute v , we

rst identify boundary pixels in each region. These are the pixels

within δ pixels away from another region (δ = 3 in practice). At

each boundary pixel, we estimate a boundary normal direction
as the direction along which we can enter into a dierent region

by moving the shortest distance. v is then dened as the average

normal direction over all boundary pixels between region A and

region B. When computing the average, we use the normal direction

np for pixel p in region A, and the opposite normal direction −np
for p in B. Thus, the average directionv is in fact associated to the

directed edge fromA to B, and for clarity we denote it asvA→B . The

direction for the opposite edge is justvB→A = −vB→A.

The binary label r is associated to the undirected edge, and is

denoted as rA↔B for clarity. We compute rA↔B as follows. First,

from each boundary pixel p between A and B, we estimate the layer

thickness hA(p) of the region A by rst nding the shortest image-

plane vector dm between p and another region that is notA or B but

connected to A. hA(p) is then set to be the length of dm projected

on the normal direction np (see Figure 7). Symmetrically, from p,
we also estimate the layer thickness hB (p) of B using a similar step.

Then, pixel p contributes a vote for rA↔B . It votes for label “0" if

Algorithm 1 Decoding Steps

1: procedure Decode
2: Process the image and segment the image pixels.

3: Build Connectivity Graph . § 4.1

4: while Traverse every path on the graph do . § 4.2

5: if Decodes on paths seen are in agreement then
6: Terminate Traversal Early . § 4.3

7: Vote on path candidates . § 4.2

A

B

C

E
D

A

B

undirected graph
without direction constraints

C

D

E

directed graph
with direction constraints

A

B

C

D

E

layering direction

Fig. 8. Graph construction and traversal. (le) We identify individual
pixel regions (A-E) through flood filling. (middle) We create a graph, where
each node represents a pixel region, and two nodes are connected if their
regions are adjacent to each other. Since the layers are added along the
printing direction, it makes no sense to traverse back and forth along the
printing direction for decoding—for example, A→B→C does not produce a
valid bit string, while A→B→D is reasonable (right).

| loghA(p) − loghB (p)| <
1

2
logM (i.e., closer to 0), indicating the

second case in (2) and suggesting a bit “0" encoded betweenA and B.
On the other hand, if | loghA(p) − loghB (p)| ≥

1

2
logM , it votes for

label “1”, suggesting the rst case in (2) and hence a bit “1”. The nal

label rA↔B is taken as the majority vote over all boundary pixels.

At rst glance, assigning the label rA↔B requires a prior knowl-

edge of M , which is not known from the image. Fortunately, our

coding scheme presented in §3 enables an easy and robust way of

estimating logM . In the above process, we collect all | loghA(p) −
loghB (p)| values for all boundary pixels on the image. From (2), we

know that these values are expected to be either logM or 0, although

we do not knowwhatM is. If we think of each | loghA(p)−loghB (p)|
value as a random variable, these random variables must be gener-

ated through a mixture of two Gaussians (in 1D): one is centered at

0, and another center (i.e., logM) is unknown but can be estimated

using maximum likelihood estimation [Nasrabadi 2007].

This Gaussian mixture estimation also enables us to identify the

starting nodes, which correspond to the starting layers (of thickness

Nh) described in §3. If node A corresponds to a starting layer, then

the estimated | loghA(p)−loghB (p)| values from its boundary pixels

will appear as outliers of the Gaussian mixture model, as they are

considerably larger than logM . If this case is encountered, we label

A as a potential starting node and include it in a set S.

4.2 Decoding through Graph Traversal
We now decode the bit string by traversing the graph. Our traversal

repeatedly starts from each node in the set S, and moves to the

next node through a depth-rst search (DFS). Because the object

is always 3D printed in a layer-by-layer fashion, we must avoid

looping back to earlier layers during the traversal. To this end, the

direction vector associated to each edge is helpful. As illustrated

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:7

full traversal: 5,764,801 paths early termination: 64 pathsholes cause branching

Fig. 9. Early termination. (le) Holes and fine features leads to a large
decoding graph with many branches. (middle) As a result, a naïve graph
traversal unnecessarily explores too many decoding paths. (right) Early
termination allows us to declare a tag with confidence aer processing just
a small fraction of the available paths.

in Figure 8-c, consider a traversal that reaches a node B from a node

A. In the DFS, we visit the next node D, only when the moving

direction from A to B is approximately consistent with the moving

direction from B toD. In other words, we requirevA→B ·vB→D ≥ ∆
(∆ = 0.35 in all our examples).

The traversal stops when a node inS is reached or when DFS runs

out of unvisited nodes. In the latter case, the current traversal path

is simply discarded, as we expect a valid bit string to always end

with a thick ending layer (recall §3), which must have been included

in S. In the former case, we decode a bit string by concatenating

the binary labels of all edges on the path. It is worth noting that

this path might traverse a bit string backwards. If that happens,

we would decode a bit string starting with “1” and ending with “0”.

From our coding scheme in §3, it is easy to see that we can just

reverse the bit string to obtain the original one.

This graph traversal process generates many paths and thus many

bit strings. Some of them might be erroneous due to image noise.

But collectively, they are robust. Therefore, we nalize the bit string

by taking a bit-wise majority vote over all decoded bit strings.

Remark. The majority voting, albeit simple, is a fundamental

philosophy behind many modern error-resilient systems, from peer-

to-peer networks, to Byzantine fault tolerance, to the current emer-

gence of blockchain technology (e.g., see [Lamport et al. 1982;

Nakamoto 2008]). Here, we exploit the voting scheme in both as-

signing the edge labels and decoding the traversal paths. From this

very perspective, the aforementioned conditionvA→B ·vB→D ≥ ∆
should be seen as a way of culling votes that are likely rejected. It

is meant to accelerate the graph traversal but it is not necessary to

ensure correctness. Thus, the choice of ∆ is not sensitive.

4.3 Early Termination
We terminate the graph traversal if we have surveyed a sucient

number of paths, and most of them are already in agreement. As

shown in Figure 9, this is particularly useful when dealing with

objects where the number of paths grows exponentially due to holes

and other ne features.

We begin by imposing a lower bound on how many decoding

paths to consider before checking for early termination. Once at least

K unique paths have successfully been decoded, we begin to tally the

agreement across votes for each individual bit (K = 64 in practice).

If all bits individually concur by 80% or more, the graph traversal

terminates and outputs the agreed upon decoding. Otherwise, it

continues. It is important not to vote on entire bit strings, but rather

recovered layer heightssingle image input images synthesized from novel viewpoints

Fig. 10. 2.5D image re-synthesis. An object carrying a LayerCode tag also
carries depth information for free. From a single image, we can estimate
the object’s 3D coordinates with respect to the camera (middle), which in
turn allows us to re-synthesize images from other viewpoints (right).

individual bits, as this way best allows early termination when there

are only a few bits in disaccord.

4.4 Extension: Depth Recovery
The black and white layers not only encode a bit string but impose a

geometric structure that brings additional advantages. The appear-

ance of these layers can be reinterpreted as a parallel light pattern

projected on the object, and this interpretation has an interesting

connection to the depth recovery using structured light techniques

from computer vision [Taubin et al. 2014].

On the object surface, the boundary curves between any two

consecutive layers by construction must be on a series of parallel

planes. The distances between these planes depend on individual

layer thicknesses. If we know the orientation of those planes with

respect to the camera, we can recover the depth of every point on

layer boundaries by intersecting a camera ray with the plane where

the point resides. In this way, from a single image, we can recover

the object’s depth. Unlike traditional structured light approaches,

we require no active projector emitting light patterns. A graphic

depiction of this idea is provided later in Figure ?? of Appendix B.
In practice, whenwe place an object and photograph it, the coding

layers are all parallel to the table surface (because of the way the

layers are 3D printed). Thus, the layer plane’s orientation aligns

with the table’s surface orientation, which can be inferred using

a standard camera calibration process (e.g., with a checkerboard

placed on the table). By decoding the bit string, we obtain every

layer thickness, being it h, Mh, or Nh (recall §3), and in turn the

distances between the layer planes. The baseline thickness h can be

either set a priori or retrieved from the object that encodes the h
value. More details of this extension are provided in Appendix B.

The estimated depth is useful in many ways, such as direct 2.5D

image manipulation and image re-synthesis from novel viewpoints,

as shown in Figure 10. In §5.4, we also demonstrate the use of depth

information for virtual recovery of damaged objects.

5 FABRICATION
Since its inception, LayerCode has been designed to work with

a wide variety of layered manufacturing methods. This section

describes three dierent embodiments of LayerCode adapted to

various types of 3D printers: Stratasys PolyJet, Ultimaker 2, and

Autodesk Ember. Fabricating LayerCode objects on these 3D print-

ers carries advantages and tradeos for each: varying from ease of

implementation to visual concealment of the barcodes. Recognizing

that some of the following approaches require augmentation of 3D

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:8 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

Two-Color Printing

Variable Layer Heights

Invisible NIR Dye

Fig. 11. Fabricated pieces carry LayerCode tags made by two-color print-
ing, variable layer heights, and near-infrared resins. LayerCode tags are
successfully tested on bumpy, shell, curvy, and otherwise complex geometry.

printer rmware and/or hardware, we open source all our rmware

codes and hardware modications.

We use a Canon DSLR camera with 5184 × 3456px to take photos.

To read NIR LayerCode tags, we used a Grasshopper3 camera from

Point Grey with a resolution 2048 × 1536px for its easy adoption

of the NIR lter. We also tried an iPhone camera with a resolution

4032 × 3024px and found the results similar.

5.1 Two-Color Fabrication
The most direct way of making a LayerCode object is by using a

multi-material 3D printer. Many 3D printers (e.g. MakerBot, Mak-

erGear, and PolyJet) now support multi-material fabrication with de-

creasing costs. Bymapping the black andwhite layers of a LayerCode

tag to two colors of materials, these printers can produce LayerCode

objects without any modications to software or hardware.

As a demonstration, we use Stratasys PolyJet to fabricate two-

color LayerCode objects (see Figure 12). Decoding these types of

LayerCode objects is straightforward, as their surface textures are

already in two colors. Simple thresholding in image space suces

to binarize the input camera image and prepare for decoding (as

described in §4). While simple for fabrication, this type of LayerCode

tags would change the object appearance. In certain applications

(e.g., see [Li et al. 2017]), appearance preservation is desired, so

unobtrusive or completely invisible barcodes are preferable.

The next two fabrication approaches aim to oer this feature.

5.2 Fabrication with Variable Layer Heights
Although not all 3D printers support multi-material fabrication,

virtually all printers are able to print at a range of resolutions. Here
the resolution indicates the height of a single layer deposited during

the 3D printing process. We refer to it as the layer height (to avoid

confusion with the aforementioned coding layer thickness).

Noticing printers’ ubiquitous ability of layer height control, we

propose to use distinct 3D printing layer heights for each type

of coding layers. When fabricating black layers, we use a small

layer height h0 (i.e., a high printing resolution); we switch to a

larger layer height h1 for making white layers (see Figure 14). This

approach requires only a singlematerial, and introduces little change

to the surface geometry. Under environment lighting, the resulting

LayerCode tags are barely noticeable to our eyes (Figure 14-e).

Interestingly, the small and large layer heights cause the two

types of coding layers to have distinctive distributions of specular

highlights. This can be understood by the illustration in Figure 13.

#Vertices : 2450

Euler : 2

Genus : 1

Closed : True

Solid : False

Edge manifold : True

Duplicated faces : False

Sample Query Information:

Fig. 12. The 24 bit LayerCode tag embedded in this Zebra-shaped object is
repeated twice and reveals shape and related mesh information.

Exploiting this dierence, the decoding algorithm is able to segment

black coding layers from white coding layers from a camera image.

The image processing steps (for producing the input of §4) are

outlined in Figure 14 and detailed in Appendix A.

In practice, although the layer height is adjustable, almost all

existing 3D printing software use a single layer height for printing

an object. We overcome this limitation by carefully constructing

a G-code program that runs on the 3D printer and instructs when

to switch the layer height. Figure 14 depicts this implementation.

We use the rst-party slicer to generate a G-code program that

prints the object with the small layer height h0 (Figure 14-b), and
another G-code program that prints at the larger layer height h1
(Figure 14-b). We then interweave these two at specic locations to

construct alternating printing heights (Figure 14-b). In our approach,

we always set h1 as an integer multiple of h0 to ensure seamless

switches across layer heights.

Since these simple G-code manipulations require no hardware

changes, we envision that this type of LayerCode tags can be readily

incorporated into existing 3D printers with an over-the-air software

update. On the other hand, while its impact on object appearance

is minimal, this impact is not completely invisible. If stringent ap-

pearance preservation is a priority, we recommend the next ap-

proach, one that embraces near infrared (NIR) optical properties for

LayerCode embodiment.

5.3 Fabrication with Invisible Near-Infrared Dye
Inspired by ColorMod [Punpongsanon et al. 2018] which uses pho-

tochromic inks to recolor objects after their printing, we propose to

control the NIR optical properties of Stereolithography Apparatus

specular reflections

Fig. 13. Distinctive highlight distributions. The black layers (orange
color) are made of 3D printing layers each with a small height, while the
white layers (green color) have a much larger 3D printing layer height. As
a result, the specular highlights in black layers appear sparser and more
granular, while the highlights in white layers are denser and more uniform.
The dierence of highlight distributions allows the decoding algorithm to
discern the two types of coding layers when processing a camera image.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:9

slicing with different layer heights and our g-code mixing send to printer bilateral filteringcontrast boosting graph construction

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 14. Variable layer heights. A twisted vase is encoded with a variable height LayerCode (a-d), printed (e), and then decoded (f-h). At the decoding time,
a camera image (e) is converted into grayscale, followed by contrast boosting (f), bilateral filtering (g), and a Gaussian-mixture-based clustering to binarize the
image (h), which is in turn supplied to the decoding algorithm for graph construction and decoding along paths (red curve on (h)).

single resin tray double resin tray

original
single plate

our custom designed
CNC-millled metal
double plate

firmware
update

hardware
update

(a)

(b)

(d)

(c)

Fig. 15. Hardware augmentation of Autodesk Ember. (a) The Autodesk
Ember has only one resin tray, and thus cannot support two types of cod-
ing layers. We replace the build plate (b) on its rotational platform with
a new CNC-milled plate (c) that supports two trays (d). This hardware
augmentation together with a firmware modification allows us to deploy
NIR LayerCode tags in 3D printed objects.

(SLA) resins—the materials commonly used in Stereolithography

printers—using NIR dyes.

NIR dyes are granular substances based on small organicmolecules,

commonly used in chemical biology and industrial applications [Es-

cobedo et al. 2010; Falkenstern et al. 2018]. They have strong optical

absorption in the NIR range (i.e., 700 ∼ 1100 nanometers in wave-

length), but weak absorption in the visible light range. In other

words, they appear nearly transparent in the visible light range but

dark in the NIR range. Thanks to this property, we can darken the

NIR “color” of a 3D printing material while leaving its visible ap-

pearance unchanged by mixing a certain amount of NIR dye in the

3D printing resin. In practice, we mix 35mg of 828nm dye into every

100ml of PR-57 CMYK+W resin. Mechanical stirrers are employed

for a day to ensure an even mixture of the dye in the resin.

This procedure creates the resin for one type of our coding layers,

and for the other type, we use the original, untouched resin. The

challenge is how to use both resins for a single print and switch one

resin tray to another for every coding layer. For high-end, expensive

3D printers, it is possible to use both resins simultaneously. Here,

we provide a low-cost solution by augmenting an Autodesk Ember.

Autodesk Ember is a stereolithography printer. As shown in Fig-

ure 15, it comes with one 180° tray (in orange) with a transparent

bottom window and can hold only one type of resin. Like most stere-

olithography printers, when printing an object, Ember lowers its

build platform (which faces downward) to almost touch the bottom

Fig. 16. NIR LayerCode tags in sunlight. The NIR LayerCode tags remain
invisible in sunlight (le), but become visible when imaged with a NIR filter
in front of the camera (right). No additional light source is needed.

of the resin-lled tray. To grow a printing layer, a UV laser shines

through the transparent tray bottom, and solidies the part of resin

between the build platform and tray bottom. We found that in this

process the tray is xed on a build plate which is the limiting factor

if we wanted to add another 180° tray. Noticing this limitation, we

custom designed a new build plate (Figure 15-d) which ts in the

printer and supports two resin trays; each will be used to hold a

dierent resin. To make use of both trays, we modied Ember’s

rmware such that whenever a dierent coding layer is started, the

printer 1) lifts its build platform, 2) switches the tray by rotating

the build plate, 3) lowers down its build platform again, and 4) re-

sumes the printing. More details of this augmentation are provided

in Appendix D, and we will open source the computer-aided design

(CAD) models of the build plate, the rmware update code, and all

instructions for amending the printer.

Figure 1-g shows a LayerCode object printed by our double-

material Ember. To our eyes, the LayerCode tag is completely invis-

ible, so the object’s appearance is fully preserved. To decode a tag,

we image its carrier object in the NIR range by mounting a longpass

lter with a cut-on wavelength at 850nm
1
in front of the camera.

No special camera is needed, as the conventional image sensor is

capable of capturing NIR light.

When imaging the object indoors, we need to illuminate the

object with a NIR light source (such as the 850nm and 950nm LEDs

commonly used on TV remote controls). However, since sunlight

has NIR wavelengths
2
, it can be exploited to expose LayerCode

tags without resorting to additional lighting. Figure 16 shows a pair

of images taken under uncontrolled natural daylight on a partly

1
We use the lter from Thorlabs Inc. under this link.

2
In fact, nearly all the infrared radiation in sunlight is near infrared.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=918

1:10 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

code still

visible on

interior

3D

reconstruction

Fig. 17. LayerCode tag and augmented reality. (Le) A fallen angel
damages its wing. However, the LayerCode tag can still be read from the
interior of the object. Decoding the damaged piece reveals the embedded
tag, from which we know 1) the original 3D model, and 2) its 3D depth
and position with respect to the camera. (Right) This information enables a
virtual repair of the angel displayed in an augmented reality fashion.

sunny day. The embedded LayerCode tag is discernible and can be

successfully decoded.

We see LayerCode tags with great potential not just as a tag, but as

a means of intellectual property (IP) protection and anti-counterfeit

detection while preserving aesthetics.

5.4 Discussion on Implementation and Application
Across the three approaches described, as we make the LayerCode

tags to better preserve object appearance, increasingly more soft-

ware and hardware modications are needed—there is no free lunch.

All three approaches have a minimal impact on the object’s me-

chanical strength, since they fully preserve the object’s volumetric

shape (up to the printing resolution). In contrast, previous tagging

approaches (such as [Kikuchi et al. 2018; Li et al. 2017; Willis and

Wilson 2013]) all alter the object shape inside or near the surface.

In terms of printing time, all print jobs took from 40 minutes to

several hours, depending on the model complexity. When printing

with two colors and with variable layer heights, the time costs are

comparable to printing without LayerCode tags. For Ember printing

with NIR resin, we observed a minor overhead (about 15% to 20%

slow-down) because of the extra tray swaps.

A remarkable strength of LayerCode tags is the ability to de-

code even when the object is damaged, thanks to the layer-by-layer

printing process that spreads the tag over the entire body of the ob-

ject. For example, Figure 17-b shows an angel model with a broken

wing. Nevertheless, we can still traverse the remaining part of the

LayerCode graph and successfully decode the tag.

Since LayerCode tags are present inside prints, scung and mod-

erate fractures do not inhibit use. However, similar to barcodes, one

cannot recover from missing entire layers at any point along the

code. This limitation is partially addressed by repetition of the codes.

Resilient to physical changes, the LayerCode may still be recovered

as long as one copy of the code remains present, even if damaged.

The ability to read tags from damaged objects opens the door to

many applications. For example, through an embedded LayerCode

tag, one can recover the original model to patch a broken piece [Teib-

rich et al. 2015]. Another scenario can apply to augmented reality.

From a single image of the object (damaged or not), we can extract

Mercator projection of viewing angle success
on our virtual database

Z

Y X

Fig. 18. The decoding success rate across the entire database of each of
the 30 viewing directions is color-mapped on a sphere, whose equator is
aligned to the plane perpendicular to the printing direction. This mapping
is unrolled in the Mercator projection, with representative views of a tagged
bust shown (on top) for the red selected points of interest.

the tag and estimate its 3D position with respect to the camera

(through depth recovery in §4.4), and display an augmented object

(e.g., the original model of a currently damaged one) or animate

the static object in 3D (e.g., similar to previous eorts on animating

books [Billinghurst et al. 2001; Cimen et al. 2018]).

Moreover, we envision LayerCode tags being used for 3D printer

steganography, similar in spirit to Machine Identication Codes
3

(also known as the Yellow dots), a watermark that many paper print-

ers and copiers leave on every single printed page for device iden-

tication. Our LayerCode tags (especially the unobtrusive ones)

allow 3D printers to introduce similar watermarks for the same

purposes (e.g., counterfeit detection) as those that have motivated

paper printers.

6 EVALUATION ON VIRTUAL DATASET
To understand the performance of our decoding algorithm more

thoroughly, we also test our algorithm on a large dataset of shapes

using synthetic images generated by a photorealistic renderer. A

glimpse of the tested shapes is shown in Figure 23. This evaluation

over such a virtual dataset is justied by several considerations:

i. Cost and time. In regards to both cost and time, it is unaordable

to 3D print all the shapes in the dataset. 3D printing of a single

object is usually an hour-long process, barring failures. Virtual

rendering of 3D printed objects, on the other hand, can be n-

ished in a short time, and the resulting images are photorealistic.

ii. Feasibility. For many complex shapes that we use in this evalua-

tion, it is hard, if not impossible, to fabricate them via current

commodity 3D printers. But 3D printing technology is constantly

and rapidly improving. Therefore, it is desirable to test our algo-

rithm on those complex shapes to prepare for the future.

3
https://en.wikipedia.org/wiki/Machine_Identication_Code

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://en.wikipedia.org/wiki/Machine_Identification_Code

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:11

100

60

80

40

20

78.0%

49.5%

21.7%

database covered with at least n views

de
co

da
bl

e
pe

rc
en

ta
ge

 30 25 20 15 10 5 0

99.6%

number of views

Fig. 19. We plot the distribution of all 4,835 tested shapes with respect to the
number of view angles from which they can be decoded successfully. 99.6%
of the shapes can be decoded from at least three sampled view directions.

iii. Thoroughness. In a virtual environment, we can test our algo-

rithm using a large number of objects viewed from many camera

angles. Thoroughly testing over all these variances provides us

statistical insights which in turn guide our use of LayerCode tags

in practice. This thoroughness is made possible only through

virtual experiments.

6.1 Database Construction
We tested our algorithm over a set of shapemeshes from the Thingi10k

dataset [Zhou and Jacobson 2016]. The testing shapes are selected

through the following “printability” criteria: 1) They must be wa-

tertight 2-manifolds (i.e., no self-intersections), and 2) have only a

single connected component. 3) They should also have consistent

surface normals without degenerate faces. Following these criteria,

we obtain 4,835 meshes.

Each of these meshes is processed to embed a LayerCode tag

indicating the mesh’s database ID. When we encode the tag (using

the procedure in §3), the printing direction is chosen to be the

longest dimension of an axis-aligned bounding-box containing the

mesh, and the baseline layer thickness h is set to repeat the tag three

times. The output of the encoding step is a shape with two sets of

coding layers ready for rendering. Each type of layer is assigned a

dierent material color (i.e., red and blue). We then use the physics-

based renderer Mitsuba [Jakob 2010] to generate a photorealistic

image from a chosen camera angle.

To understand how the view angles aect the decoding, we uni-

formly sample 30 viewing directions on a sphere co-centered with

the object. Sampled views near the poles aligned with the printing

direction are discarded, since looking along the printing direction is

unlikely to reveal the entire tag. Figure 23 shows 18 representative

shapes and the rendered images from multiple view angles. The

decoding algorithm takes as input only a single image, and so each

given view is decoded independently.

6.2 Results Statistics
Camera angle dependency. Only one photo from a single view is

needed for decoding. However, due to surface curvature and local

occlusions, the coding layers are better captured from certain an-

gles. A natural question is what camera angles are more suitable

for decoding the tag. Figure 18 reports our experiment results, sug-

gesting that view directions just north or south of the equator is

statistically the most promising for decoding tags. This is somewhat

0.180 mm0.679 mm 0.623 mm 0.940 mm 0.922 mm

Fig. 20. Lower bound of h. The decoding becomes challenging if the cod-
ing layers are made too thin. Here we show the smallest baseline layer
thickness h still readable under dierent views for shapes normalized to
10cm in length along the printing direction.

counter-intuitive, as one might expect the directions at equator to

be the most promising.

Our hypothesis is that these slightly titled view angles allow the

coding layers to be viewed by avoiding occlusions introduced by

bulges at one end or the center of the shape. For example, the bust

in Figure 18-top has its head and shoulders protrude from its center

axis, making decoding hard from above but much easier from below.

Figure 19 shows that some shapes can accommodate awider range

of view angles than others for successful decoding. For example, one

shape is readable from all 30 views, whereas 44 other shapes are not

decodable at all (which account for only 0.9% of the shapes in the

dataset). On average, for any given shape, its tag is readable from

51% of the viewing directions we sampled. Overall, 78.0% of the

shapes can be decoded in 10 view directions, 49.5% can be decoded

in 15 directions, and 21.7% can succeed in 20 directions.

Timings. Decoding time varies from seconds and up to 5 min-

utes, depending on specic shapes and view angles. Much of the

time complexity is derived from our graph based approach, which

consists of image and graph processing steps that are slower than

simpler approaches, but allow LayerCode to handle a signicantly

broader diversity of shapes with one consistent algorithm. Notably,

proling reveals the majority of capture time is spent on pixel-wise

graph building operations including morphological image process-

ing, computing neighboring region distances, and masking. Each

graph node may be treated in parallel for time-critical applications.

Image resolution also impacts decoding time, since resolution

will vary the size of the many image processing operations. Our

experiments use a xed resolution 2048 × 2048px in all rendered

images, on par with modern smartphone cameras. Similarly the

complexity of the extracted graph will also factor into decoding

time. Simpler shapes, curvy or at, lead to smaller number of graph

nodes, and thus are faster to decode. On the other hand, holes

or occlusions tend to split coding layers on the image plane into

separate graph nodes and result in a larger graph. Thus, shapes with

many holes and ne structures take longer to decode.

Lower bound of h. In §3, we derive the upper bound of h from

Lemma 1. A smaller h allows the object to host more copies of

the tag. But if h is too small, the coding layers will become hardly

discernible on the image. In an experiment, we progressively reduce

h and encode only a single copy of an ID in the object. In this process,

we keep the camera angle and image resolution unchanged, and

check at what h value the decoding would fail. Not surprisingly, the

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:12 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

0 81 162 243 324

holes

Fig. 21. Stress test. From le to right, we keep adding holes to the wedge
and check if the resulting shape can hold a readable LayerCode tag. 324 holes
of random radii are added before decoding is no longer possible. Decoding
is possible even when the final wedge is 10.81% of its original volume and
has many fine features.

lower bound of h depends on the object shape. Figure 20 reports the

results.

Shape complexity. Figure 23 lists some of the nontrivial shapes

from our dataset, all of which can be successfully decoded. These

shapes all possess amix of the following challenging features: bumpy

surface, thin shell, thin rods, sharp corners, highly occluded surfaces,

holes, and so forth. A complete set of shapes including 4,791 suc-

cessful shapes and 44 failure cases, is provided in the supplementary

le. Here we highlight and discuss three of the shapes.

WaterSplash is highly irregular. LayerCode tag manages to sur-

vive the ne and thin features by leveraging the solid external base

and internal regions. BunnyStripe is a typical thin shell model with

stripe-like surface patches. Despite of the holes and discontinuity

showing on the images, our graph-based decoding algorithm is able

to nd valid paths leading to correct decoding. StratumVase is yet

another extremely challenging shape with more than 180,000 faces.

The shape is similar to Spiral (Figure 22-a) on which our algorithm

fails. But a key dierence is that the thin slices here do not oc-

clude or shadow the neighboring regions because of the orientation

alignment with the printing direction.

Stress test. To further gain some insights on to what extent the

shape may have ne features while remaining decodable, we de-

signed a stress test, inspired by the shape of Swiss cheese. Starting

with an wedge shape, we iteratively add holes with a random radii

at random locations (see Figure 21). As more holes are hollowed,

parts of the shape become thinner and more ne features emerge.

At each iteration, we encode an ID in the current shape and check

if it can be decoded. Eventually, decoding algorithm fails when the

shape is hollowed out until only 10% of its original volume is left.

Fig. 22. Failure cases. Among the 4,835 shapes, 44 shapes cannot be de-
coded. Here are three challenging failed shapes.

Failure cases. Out of the 4,835 tested shapes, 44 cannot be decoded
at all. We discuss three of them shown in Figure 22. The Escher-like

staircase exhibits highly complex topology at most camera angles,

which makes it hard to nd a complete path on the decoding graph.

The spiral appears simple at rst glance, but each spiral always

occludes some coding layers, and so the entire tag is hardly seen

from any given angle. Similarly, the bumpy blob occludes itself

all over, and the heavy shadows spread over the surface, causing

ambiguities and making the image processing prone to errors.

7 LIMITATIONS & CONCLUDING REMARKS
We have presented LayerCode, a tagging scheme that embeds care-

fully designed optical barcodes as a deliberate byproduct of the

existing layer-by-layer 3D printing process. At its core, a LayerCode

tag is an optical barcode readable by a conventional camera. For this

reason, it also retains a few limitations of standard optical barcodes.

Foremost, LayerCode tags are agnostic to choices regarding view-

ing angles, printing orientations, and application semantics, yet

requires a direct line of sight for decoding. If an object is completely

occluded or poorly illuminated, decoding will fail. The ability to

decode also depends on the camera view angle. While as shown

in our experiments, LayerCode tags can be correctly read from a

wide range of camera angles, there are other view angles (such as

those nearly aligned with the printing direction) from which the

decoding is prone to failure. Therefore, optimizing for how a shape

might be held, seen standing, or made less visible would certainly

improve robustness. Similarly, since not all angles are equally easy

to decode, processing multiple views in parallel to achieve more

robust decoding also serves as an exciting avenue for future work.

Our decoding algorithm runs for up to tens of seconds, slower

than decoding a regular barcode. This is partly because our current

implementation uses Matlab, and partly because we wish to explore

a sucient number of decoding paths for the sake of robustness.

Then, an interesting future direction is how to speed up the decoding

algorithm. If we can signicantly shorten the decoding time, it would

be possible to decode from a multi-frame capture or a short video

clip, and further improve the robustness.

In our NIR Ember printing process, a small detail might cause

a practical concern. Every time the printer starts a new coding

layer, the build platform switches from the tray holding one resin to

another tray lled with the second type of resin. As a result, every

such switch brings a small amount of resin in one tray to another.

In our experiments, though this cross mixing of resins causes no

negative eects on the tag’s readability. But if we were to print for

an extended period, resin contamination would be accumulated, and

might become a practical issue to consider.

Despite LayerCode’s potential for IP protection and counterfeit

detection, it is not a physically one-way tag (meaning one that is

"easy to compute, but hard to invert" [Rompel 1990]). With a high-

resolution camera for measuring coding layer thicknesses and a

spectrometer analysis of NIR resin formula, it is possible to reverse

engineer and counterfeit a LayerCode tag on another 3D printer. To

achieve truly unclonable tags, we might have to consider a fusion

of optical codes, RFIDs, and other new modalities. This remains as

an interesting future direction.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:13

Fig. 23. Successfully decoded shapes. A peek into the diversity of tested shapes within our database. Each view presented is correctly decoded by our
graph-based algorithm. Shapes with bumpy, shell, thin, curvy, and other challenging properties showcased here are still subject to encoding and decoding by
our LayerCode approach. Three shapes indicated by the stars are discussed in the main text.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:14 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

Last but not least, LayerCode tags use

only two types of coding layers to en-

code a bit string, corresponding to the

black and white colors in standard bar-

codes. In theory, there is no limitation

on how many coding “colors” can be

used. As 3D printers become more precise and robust, it is possible

to extend LayerCode to use ternary or quaternary coding layers

for higher information capacity. One can also explore a general-

ized version where a pairwise ratio may go beyond 1 and M to

M2
or evenM3

to support thicker layers near challenging regions

(see inset). For all that, LayerCode is the rst step toward robustly

tagging complex, 3D printed shapes, and it is our hope that our

open-sourced code, hardware, and benchmark database can help the

research community develop more robust and ubiquitous physical

tagging mechanisms.

ACKNOWLEDGMENTS
We would like to thank Qingnan Zhou for sharing code to generate

the database mosaic, as well as Joni Mici, Bill Miller, and Mohamed

Haroun for their assistance with printing. We thank Eitan Grin-

spun and Oded Stein for their helpful discussions, along with Anne

Fleming for proofreading. The authors would also like to thank

the anonymous referees for their valuable comments and helpful

suggestions. The work is supported in part by the National Science

Foundation under Grant No. 1816041 and 1644869.

REFERENCES
Marc Alexa, Kristian Hildebrand, and Sylvain Lefebvre. 2017. Optimal Discrete Slicing.

ACM Trans. Graph. 36, 1 (2017), 12:1–12:16.
Mark Billinghurst, Hirokazu Kato, and Ivan Poupyrev. 2001. The Magicbook - moving

seamlessly between reality and virtuality. IEEE Computer Graphics and applications
21, 3 (2001), 6–8.

Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. 2016. Single-image depth perception

in the wild. In Proc. NIPS. 730–738.
Gokcen Cimen, Ye Yuan, Robert W Sumner, Stelian Coros, and Martin Guay. 2018.

Interacting with Intelligent Characters in AR. International SERIES on Information
Systems and Management in Creative eMedia (CreMedia) 2017/2 (2018), 24–29.

Steve Crayons. 2016. Variable Slicing for 3D Printing on Autodesk Ember.

https://www.instructables.com/id/Variable-Slicing-for-3D-Printing-on-Autodesk-

Ember/. [Online; accessed 30-December-2018].

Gary A England. 1996. Method of reading a barcode representing encoded data and

disposed on an article and an apparatus therefor. US Patent 5,510,604.

Jorge O Escobedo, Oleksandr Rusin, Soojin Lim, and Robert M Strongin. 2010. NIR dyes

for bioimaging applications. Current opinion in chemical biology 14, 1 (2010), 64–70.

Kristyn R Falkenstern, Alastair M Reed, Vojtech Holub, and Tony F Rodriguez. 2018.

Digital watermarking and data hiding with narrow-band absorption materials. US

Patent App. 15/669,103.

Olaf Hall-Holt and Szymon Rusinkiewicz. 2001. Stripe boundary codes for real-time

structured-light range scanning of moving objects. In Proc. ICCV, Vol. 2. IEEE, 359–
366.

Chris Harrison, Robert Xiao, and Scott E. Hudson. 2012. Acoustic barcodes: passive,

durable and inexpensive notched identication tags. In UIST 2012.
Liang He, Gierad Laput, Eric Brockmeyer, and Jon E Froehlich. 2017. SqueezaPulse:

Adding Interactive Input to Fabricated Objects Using Corrugated Tubes and Air

Pulses. In Proc. TEI. ACM, 341–350.

Vikram Iyer, Justin Chan, Ian Culhane, Jennifer Manko, and Shyamnath Gollakota.

2018. Wireless Analytics for 3D Printed Objects. In Proc. UIST 2018. 141–152.
Wenzel Jakob. 2010. Mitsuba renderer. http://mitsuba-renderer.org.

Hsin-Liu Cindy Kao, Paul Johns, Asta Roseway, and Mary Czerwinski. 2016. Tattio:

Fabrication of Aesthetic and Functional Temporary Tattoos. In Proc. CHI. 3699–3702.
Ryosuke Kikuchi, Sora Yoshikawa, Pradeep Kumar Jayaraman, Jianmin Zheng, and

Takashi Maekawa. 2018. Embedding QR codes onto B-spline surfaces for 3D printing.

Computer-Aided Design 102 (2018), 215–223.

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine generals

problem. ACM Transactions on Programming Languages and Systems (TOPLAS) 4, 3

(1982), 382–401.

Dingzeyu Li, David I.W. Levin, Wojciech Matusik, and Changxi Zheng. 2016. Acoustic

Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph.
35, 4 (2016).

Dingzeyu Li, Avinash S. Nair, Shree K. Nayar, and Changxi Zheng. 2017. AirCode:

Unobtrusive Physical Tags for Digital Fabrication. In Proc. UIST.
Lingnan Liu, Mark Y Shimizu, and Lisa M Vartanian. 1998. Method and apparatus for

reading machine-readable symbols having surface or optical distortions. US Patent

5,854,478.

Marco Livesu, Stefano Ellero, Jonàs Martínez, Sylvain Lefebvre, and Marco Attene. 2017.

From 3D models to 3D prints: an overview of the processing pipeline. Comput.
Graph. Forum 36, 2 (2017), 537–564.

Sara McMains and Carlo H. Séquin. 1999. A coherent sweep plane slicer for layered

manufacturing. In Fifth ACM Symposium on Solid Modeling and Applications, Ann
Arbor, Michigan, USA, June 9-11, 1999. 285–295.

Hitesh Hirjibhai Nadiyapara and Sarang Pande. 2017. A review of variable slicing in

fused deposition modeling. Journal of The Institution of Engineers (India): Series C
98, 3 (2017), 387–393.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

Nasser M Nasrabadi. 2007. Pattern recognition and machine learning. Journal of
electronic imaging 16, 4 (2007), 049901.

Sylvain Paris, Pierre Kornprobst, Jack Tumblin, Frédo Durand, et al. 2009. Bilateral

ltering: Theory and applications. Foundations and Trends® in Computer Graphics
and Vision 4, 1 (2009), 1–73.

Parinya Punpongsanon, Xin Wen, David S. Kim, and Stefanie Mueller. 2018. ColorMod:

Recoloring 3D Printed Objects using Photochromic Inks. In Proc. CHI 2018.
Ben Redwood, Filemon Scher, and Brian Garret. 2017. The 3D Printing Handbook:

Technologies, design and applications. (2017).

Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain nite elds.

Journal of the society for industrial and applied mathematics 8, 2 (1960), 300–304.
John Rompel. 1990. One-way functions are necessary and sucient for secure signatures.

In Proc. ACM Symposium on Theory of Computing. ACM, 387–394.

Valkyrie Savage, Andrew Head, Björn Hartmann, Dan B. Goldman, Gautham J. Mysore,

and Wilmot Li. 2015. Lamello: Passive Acoustic Sensing for Tangible Input Compo-

nents. In CHI 2015.
Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. 2006. Learning depth from single

monocular images. In Advances in neural information processing systems. 1161–1168.
Binil Starly, Alan Lau, Wei Sun, Wing Lau, and Tom Bradbury. 2005. Direct slicing of

STEP based NURBS models for layered manufacturing. Computer-Aided Design 37,

4 (2005), 387–397.

Gabriel Taubin, Daniel Moreno, and Douglas Lanman. 2014. 3d scanning for personal

3d printing: build your own desktop 3d scanner. In ACM SIGGRAPH 2014 Studio.
ACM, 27.

Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert Kovacs, Stefan

Neubert, and Patrick Baudisch. 2015. Patching physical objects. In Proc. UIST 2015.
ACM, 83–91.

Carlos Tejada, Osamu Fujimoto, Zhiyuan Li, and Daniel Ashbrook. 2018. Blowhole:

Blowing-Activated Tags for Interactive 3D-PrintedModels. In Proc. Graphics Interface
2018. 131 – 137.

WeimingWang, Haiyuan Chao, Jing Tong, Zhouwang Yang, Xin Tong, Hang Li, Xiuping

Liu, and Ligang Liu. 2015. Saliency-Preserving Slicing Optimization for Eective

3D Printing. Comput. Graph. Forum 34, 6 (2015), 148–160.

Karin Weigelt, Mike Hambsch, Gabor Karacs, Tino Zillger, and Arved C. Hübler. 2010.

Labeling the World: Tagging Mass Products with Printing Processes. IEEE Pervasive
Computing 9, 2 (2010), 59–63.

Karl D. D. Willis, Eric Brockmeyer, Scott E. Hudson, and Ivan Poupyrev. 2012. Printed

optics: 3D printing of embedded optical elements for interactive devices. In Proc.
UIST 2012.

Karl D. D. Willis and Andrew D. Wilson. 2013. InfraStructs: fabricating information

inside physical objects for imaging in the terahertz region. ACM Trans. Graph.
(2013).

Norman J Woodland and Silver Bernard. 1952. Classifying apparatus and method. US

Patent 2,612,994.

Sang Ho Yoon, Yunbo Zhang, Ke Huo, and Karthik Ramani. 2016. TRing: Instant

and Customizable Interactions with Objects Using an Embedded Magnet and a

Finger-Worn Device. In Proc. UIST 16.
Li Zhang, Brian Curless, and Steven M Seitz. 2002. Rapid shape acquisition using color

structured light and multi-pass dynamic programming. In Proc. 3D Data Processing
Visualization and Transmission. IEEE, 24–36.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

Lee Zucheul, Daehwan Kim, and Yeong-il Seo. 2016. Variable slicing for 3d modeling.

US Patent App. 14/964,916.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:15

LayerCode: Optical Barcodes for 3D Printed Shapes

Henrique Teles Maia, Columbia University

Dingzeyu Li, Adobe Research

Yuan Yang and Changxi Zheng, Columbia University

Fig. 24. A visualization of tagged meshes tested in our database.

A IMAGE PREPROCESSING FOR DECODING
At decoding time, we image a LayerCode carrier object using a

conventional camera. The image is preprocessed (as outlined in §4)

before feeding into the decoding algorithm. Here, we describe the

image preprocessing details.

For an object made by a two-color printer, we use intensity thresh-

olding to clean highlights and shadows. The remaining pixels are

those on the black and white coding layers, and clearly visible from

the camera. To label what type of coding layers each pixel is in, we

perform a two-way clustering through a Gaussian mixture model

in a sliding window; each window produces the label of its central

pixel. We found that a better labeling quality can be achieved by

repeating this clustering step three times, each with dierent sliding

window sizes (50 × 50px,100 × 100px, and 200 × 200px), followed by

a pixel-wise majority vote of the labels. It is also helpful to convert

images to the LAB/HSV color space to focus solely on the color

channels of AB when clustering, removing some of the uncertainty

added by lighting.

Labeling images of objects with varying layer heights but a uni-

form color (Figure 14-e) requires an altogether dierent approach.

Once the background is removed, the image is eectively grayscale,

since the object is 3D printed with a single-color material. In this

case, a series of morphological operations are applied on the image,

including bottom and top hat ltering, in order to rst increase the

contrast of the image. Once contrast is improved, we use a bilateral

lter [Paris et al. 2009] to blur the black andwhite layer regions with-

out blurring their boundaries. We rescale, threshold, and clean the

image, labeling of regions ready for decoding. Figure 14 illustrates

these steps.

Lastly, labeling images of objects with NIR materials is to a large

extent similar to processing bi-colored object images. NIR images

come in grayscale, and our rst step is to increase its contrast,

followed by removal of highlights and shadows. Afterward, we

classify the remaining pixels into two types corresponding to the

black and white coding layers, and this step is similar to bi-colored

object images.

B DETAILS ON DEPTH RECOVERY
Each selected image pixel from layer boundaries forms a ray u =
[Xc ,Yc , 1]

ᵀ
in the camera reference frame. The origin of the camera

reference frame is the focal point of the camera, and each pixel in

the camera can be represented by the ray denoted above. Assuming

this coordinate system, we next calibrate and solve for the 3×3

intrinsic matrix K of the camera. With this in hand, we can invert

camera specic parameters (including focal length, pixel size, lens

characteristics) to determine where pixels project in space.

Next we must take into account the extrinsic parameters that

relate the camera to the world coordinate frame. By looking at a

marker in the scene with known properties, such as a checkerboard,

we can extract the rotation R and translation t between the world

coordinate frame and the camera coordinate frame.

Thus, if the camera lives at

qw = −Rtᵀ (3)

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:16 • Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

in the world reference frame, we can then similarly write the camera

ray incident on our pixel as:

vw = RK−1u, (4)

This leaves us only to solve for where along this ray λ, from the

camera and through the pixel, does an intersection occur with a

given plane height in the scene. We can estimate each plane height

by inverting our LayerCode decoding to approximate lengths. Con-

cretely, if the world coordinate frame and our printing layers align

in direction, these planes can be described by the normal vector

n =
(
0, 0, 1

)
(5)

and the point in space

pw =
(
0, 0, height

)
, (6)

which, when combined with the ray emanating from the camera

position qw , is known:

λ =
nᵀ(pw − qw)

nᵀvw
, (7)

and thus we solve for the world coordinate of the pixel at:

pp = qw + λvw . (8)

In any case, the position of the camera needs to be known in space,

relative to the world coordinates (or table). A marker is needed in

order to compute this extrinsic camera calibration, although not

needed for reconstructing the points otherwise. If the camera’s

position relative to the table is known through a calibration, or

computed and xed for the images used, then the marker is not

necessary for recovering the LayerCode shape.

C VARIABLE LAYER HEIGHT PRINTING
Although some 3D printing platforms support the use of varying

layer heights, it is often limited in capacity if available to the user.

However, across all 3D printer models, instructions are conveyed

from staging software to printer hardware through print les com-

posed of G-code commands. In practice, we achieve alternating

layer heights by directly manipulating the underlying G-code.
For a given print, the G-code les are similar in structure regard-

less of layer height settings, and so les directing ne and coarse

versions of a print may be spliced together to achieve a print which

alternates for each coding layer. Depending on the printer specica-

tions, other settings might be adjusted accordingly: when working

with Fused Deposit Modeling (FDM) printers, it may also be neces-

sary to adjust the nozzle temperature when switching layer heights

in order to ensure a successful print.

For FDM printers, G-code instructs the path of the nozzle head

throughout printing, specifying dierent paths and height adjust-

ments for every slice per the layer-height specic settings. This

makes it possible to interweave G-code les at the termination of

each layer, when the printer nozzle lifts to the next layer. Splicing

together the two G-code les at this intermission will cause them

to continue each other’s print, allowing for seamless alternating

print properties, so long as the les are combined at the appropriate

layers heights. Due to their thickness dierences, each G-code le
will require a dierent number of layers to achieve a certain print

height, and thus ensuring these heights match is crucial for print

continuity. In practice, this is guaranteed by choosing the thick layer

height as an integer multiple of the thin layer height.

This ensures the printer deposits at the appropriate height from

the nozzle onto the piece. If care is not taken to align layer-heights

directly, or too much space is given when layers get deposited,

then visible gaps and artifacts at the swaps partitions may appear.

Alternatively, if not enough space is given, the head will sink into

printed material, which can roughen the look of the printed material

and encourages jamming of the print head.

D INVISIBLE NEAR-INFRARED PRINTING

D.1 Dye Mixing
Exact measurements between NIR-dye and resin depend on the mix-

ing properties and spectrographic ngerprint of the NIR-dye. In our

case, we found 25-50 milligrams of dye dissolved and mixed evenly

(after stirred for one day using a magnetic stirrer) per 100ml of

PR-57 CMYK+W resin, and this formula generates a strong enough

disparity in the printed coding layers. In experimenting with dier-

ent levels of NIR signatures, we explored the use of three types of

dyes that peak their absorption coecients at 828nm, 912nm, and

1031nm, respectively. Although NIR-dyes peak in the Near-Infrared

electromagnetic range, they may still express some weak signal in

the visible light range, and thus discolor the resin they mix with.

Therefore, once the dye is mixed with the resin, achieving an invisi-
ble LayerCode requires only the color of the resin without dye to

match that of the NIR-dye resin mixture.

D.2 Firmware & Hardware Modifications
In order to automate the printing and swapping process, a multi-

material resin based printer is required. This presents a signicant

(and often prohibitive) nancial and technical barrier to experimen-

tation and exploration. Here, we show how to upgrade a low-cost

and simple-to-use SLA printer to exhibit multi-resin functional-

ity. Primarily, this involves replacing the rotating tray platform of

the Autodesk Ember printer, along with updating its rmware to

integrate novel swap commands, as shown in 15.

Careful disassembly of the printer allows the removal of the

existing tray platform. A substitute extended platform should then

be milled from aluminum, or other similarly heavy composite, so

as to avoid altering the load on the motors. Notably, replacement

platforms that were printed in ABS plastic were found to deect

under the weight of the resin trays, leading to numerous diculties

and failed prints. If the two resin tray windows, which are supported

by the resin tray platform, are not level with one another, then

between tray swaps the print bed may dier in height, and miss

layers which attempt to print. This is similar to misaligned G-code
heights in variable-layer-height printing, but far more dicult to

recover, since in this case gravity ghts against the print progression.

Finally, a rmware update is needed to introduce a swap com-

mand, which lifts the build platform to a safe height prior to rotating

to another tray. This command concludes the swap by lowering

down the build platform to its previous height on the complemen-

tary resin tray, where the print may continue to progress as if no

swap had occurred. Once printer modications are completed, two

resin trays may be retrot within the printer chamber on the new

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

LayerCode: Optical Barcodes for 3D Printed Shapes • 1:17

rotation plate, each accessible via swap commands enabled in the

updated rmware. Then, during the printing, one may trigger a

desired swap at the desired slices via a secure shell connection or

by depositing a formatted CSV le along with the model images for

printing.

Please refer to our video for a quick demonstration of this hard-

ware modication process. Given the precision required to modify

the Autodesk Ember for multi-resin use, we plan to release all the

CAD models, designs, instructions, and code involved in amending

the printer.

D.3 Observing NIR LayerCode Tags
Once printed, the nal piece appears smooth and uniformly colored

to the naked eye in visible light. Since most light bulbs are tuned to

illuminate the visible light range, turning lights on or o has little

eect on the visibility of NIR LayerCode. However, this does not

guarantee the NIR layering will become apparent when captured

through a NIR lter, since there must be some appropriate NIR light

illumination to introduce the contrast. In order to best expose the

LayerCode while indoors, the use of LED NIR lights is recommended

to illuminate the scene and printed object. For optimal conditions,

choose LEDs that are similar in wavelength to the peak of the NIR.

850nm LED for 828nm Dye, 950nm LED for 912nm Dye, etc. Under

a NIR camera, the layers printed with NIR-Dye will appear darker,

since they are designed to absorb NIR radiation at given frequencies.

In outdoors, natural sunlight can produce enough NIR excitation to

reveal the LayerCode pattern, without resort to NIR lights.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Encoding
	4 Decoding
	4.1 Graph Construction
	4.2 Decoding through Graph Traversal
	4.3 Early Termination
	4.4 Extension: Depth Recovery

	5 Fabrication
	5.1 Two-Color Fabrication
	5.2 Fabrication with Variable Layer Heights
	5.3 Fabrication with Invisible Near-Infrared Dye
	5.4 Discussion on Implementation and Application

	6 Evaluation on Virtual Dataset
	6.1 Database Construction
	6.2 Results Statistics

	7 Limitations & Concluding Remarks
	Acknowledgments
	References
	A Image Preprocessing for Decoding
	B Details on Depth Recovery
	C Variable Layer Height Printing
	D Invisible Near-Infrared Printing
	D.1 Dye Mixing
	D.2 Firmware & Hardware Modifications
	D.3 Observing NIR LayerCode Tags

