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Figure 1: Image hybrids. Given a set of input images (left), our algorithm automatically produces arbitrarily many hybrid images (right).

Abstract

Example-based texture synthesis algorithms generate novel texture
images from example data. A popular hierarchical pixel-based ap-
proach uses spatial jitter to introduce diversity, at the risk of break-
ing coarse structure beyond repair. We propose a multiscale de-
scriptor that enables appearance-space jitter, which retains struc-
ture. This idea enables repurposing of existing texture synthesis
implementations for a qualitatively different problem statement and
class of inputs: generating hybrids of structured images.

1 Introduction

We rarely see the same thing twice. No two beetles have the ex-
act same form and markings; every human face is different; and
even the most talented artist cannot exactly draw the same thing
twice. Modeling the richness of the world as we see it requires in-
corporating diversity in generated images. We pursue an algorithm
that produces arbitrarily many individual variants, or hybrids, given
only a handful of example images.

Automated synthesis is broadly explored for the special case
of textures, whose perceived semantics are carried by the finer
scales [DeBonet 1997; Wei et al. 2009]. For data that requires
“getting the structure right” at all scales, solutions are less under-
stood. Do textures and highly structured images require fundamen-
tally different synthesis algorithms? To answer this question, we
attempt a simple extension to the parallel, controllable texture syn-
thesis framework of Lefebvre and Hoppe [2005; 2006], extending a
method designed only for textures to operate on a broader class of
images whose semantic content is distributed across scales.
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Contributions We extend Lefebvre and Hoppe’s work in two
ways. First, we use a multiscale descriptor to measure neighbor-
hood distance. Second, we propose a structure-preserving jitter step
that operates in the appearance rather than spatial domain. The
first extension helps maintain and repair synthesized image consis-
tency; the second introduces variation without breaking structure.
The combined extensions make for an algorithm that handles im-
ages far outside the domain of the original approach.

Related works Several earlier pixel-based approaches treated
global structure and inhomogeneity, either by incorporating user
input [Hertzmann et al. 2001; Ramanarayanan and Bala 2007; Wei
et al. 2008], by incorporating specialized domain knowledge [Liu
et al. 2004; Dischler and Zara 2006; Mohammed et al. 2009], or by
automatically encouraging formation of coarse features in coarsely
varying textures [Kopf et al. 2007; Han et al. 2008; Rosenberger
et al. 2009]. Like the latter, we pursue an automatic approach, but
we are distinct in our focus on highly structured images. Another
line of works is designed to combine multiple exemplars [Wu et al.
2006; Matusik et al. 2005; Zhang et al. 2003]; this goal inspires our
focus on hybridization.

Multiresolution local image descriptors are often used in vision and
graphics. A number of successful early methods modeled textures
using the joint coefficient distributions of various wavelet fami-
lies [Heeger and Bergen 1995; DeBonet 1997; Portilla and Simon-
celli 2000; Bar-Joseph et al. 2001]. Recent research in the field
has been favoring operations in the pixel domain over wavelets;
accordingly, there has also been a move away from the use of mul-
tiscale descriptors. While many hierarchical approaches operate
across a range of image resolutions, these algorithms all typically
use single-scale descriptors at any given stage of synthesis. In fact,
the method by Wei and Levoy [2000] is the only other pixel-based
synthesis method we are aware of that employs a multiresolution
descriptor, albeit spanning only two resolutions.

2 Method

We build on the method of Lefebvre and Hoppe [2005], and fol-
low the notations established therein. Following the hierarchical
synthesis paradigm, the output is generated in a series of images,
S 0,S 1, . . . ,S L, of increasing resolution. The image pixels, S [p],
are not represented as RGB values but rather as coordinate point-
ers into the exemplar, such that the rendered color at pixel p is
E[S [p]]. Moving from coarse to fine, three steps are executed at
each pyramid level: upsample the previously generated level, jit-
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Figure 2: Jitter. The traditional jitter method (a) is causes breaks in image

structure which may not be repairable by correction (b). Our structure-

preserving jitter (c) adds variation while maintaining structural coherence

(d). Note that, although jitter occurs here at a coarse level, the prejitter and

jitter steps are shown upsampled to full resolution for clarity.

ter the coordinate image to add variation, and correct local ap-
pearance through a series of relaxations. The correction step re-
quires a search for similar texture neighborhoods—an expensive
high-dimensional nearest-neighbor search—which is accelerated in
two ways: An offline precomputation, where k nearest-matching
patches are selected as candidates for an exemplar patch, reduces
the requisite number of comparisons during the online synthesis.
Truncated principal component analysis (PCA) reduces the high-
dimensional pixel neighborhoods to six dimensions. Following
Han et al. [2008], we extend this framework to multiple exemplars
by augmenting the coordinate pointers with exemplar indices.

Precomputation We used the PatchMatch [Barnes et al. 2009]
algorithm for nearest-neighbor search during precomputation,
slightly altered so that matches found in each candidate set were
separated by at least 5% of the image size [Zelinka and Garland
2002]. To encourage a diversity of choices at synthesis time, we
construct candidate sets with equal numbers of candidates per ex-
emplar (choosing one or two candidates per exemplar usually suf-
fices, in our experience).

Structure-preserving jitter Jitter introduces variation during
synthesis. The standard, spatial approach of Lefebvre and
Hoppe [2005] adds a small randomized offset to each coordinate
(Fig. 2a). Jitter is applied independently to each texel, and thus typ-
ically breaks or distorts features; the correction step then attempts to
repair them. However, when jitter is applied too strongly (Fig. 2b),
correction fails to restore structure. By contrast, our structure-
preserving jitter judiciously introduces variation without breaking
structure (Fig. 2c,d), while serving as a drop-in replacement for spa-
tial jitter in existing implementations.

To understand our jitter, recall that the correction step points each
synthesized pixel to the closest-matching exemplar neighborhood’s
center. Similarly, our jitter randomly chooses some exemplar neigh-
borhood from among those “sufficiently similar”—an attribute gov-
erned by the jitter parameter, J. This approach is related in spirit to
earlier works in nonparametric texture synthesis which use neigh-
borhood similarity to build candidate sets from among which ran-
dom winners are chosen [Efros and Leung 1999].

At each synthesis pixel, p, we collect the 5 × 5 color neighbor-
hood at the current scale level, NS (p) and project it into a trun-
cated 6D PCA basis to obtain the reduced neighborhood ÑS (p).
Mirroring the correction step, we collect precomputed candidate

5x5 pixel neighborhood Multilevel descriptor

PCA reduction

Figure 4: Schematic of descriptors. We use PCA at each stack level to re-

duce the 75D (5×5×3) pixel neighborhoods to a 6D representation (shown

here as RGB, right). We then concatenate PCA vectors of adjacent levels

to form our multilevel descriptor. For illustration, we show here only three

intermediate levels of our Gaussian stack (left).

locations {ci} from each of the 3× 3 neighboring texels. Employ-
ing k-coherence search [Tong et al. 2002], we evaluate the error
di = ‖Ñs(p)− ÑE(ci)‖

2 associated with each candidate.

Letting dmin and dmax be the minimal and maximal errors over all
candidates, respectively, we disqualify candidates whose normal-
ized error (di − dmin)/(dmax − dmin) exceeds the given jitter thresh-
old J ∈ [0,1]. We update S [p] selecting uniformly at random among
the qualified candidates. Intuitively, higher values of J cull fewer
candidates thus encouraging variation (Fig. 3).

Observe that our jitter is heterogeneous and data-sensitive in be-
havior: it adds variation when safe to do so. For regions with
many plausible matches, jitter selects among multiple candidates;
at unique features having no close matches, jitter selects the best
matching candidate—acting essentially as a correction pass.

Multiscale descriptors Our multiresolution descriptor embod-
ies a compromise between expressiveness and simplicity. Drawing
inspiration from more sophisticated models, we ultimately found
that our simple PCA-based descriptor is (surprisingly) adequate for
synthesis, while being simple to implement and naturally compati-
ble with our implementation of hierarchical synthesis.

Both our new jitter step and the correction step rely on precomputed
sets of best-match candidates for each pixel location in the input.
The notion of “best-match” is not fixed, however, and depends on
the choice of local descriptor; almost all pixel-copying texture syn-
thesis methods use the single-scale local pixel neighborhood as the
descriptor (e.g., Lefebvre and Hoppe use 7×7 neighborhoods).

We extend the notion of a single-scale pixel neighborhood to a mul-
tiscale counterpart (see Fig. 4). If ÑEl

(p) is the neighborhood vector

at pixel p in level l, our multilevel descriptor, N̂El
(p), is defined as

the concatenation of neighborhood vectors at p from L successive
finer levels (we use L = 8):

N̂El
(p) =

[

ÑEl
(p) ÑEl+1

(p) . . . ÑEl+L
(p)
]

.

Note that we use the 6D PCA-projected neighborhood vectors
(hence the use of tilde notation) rather than the full 5×5 3 color 75D
representations. Since precomputation already includes a PCA pro-
jection, these are available to us essentially “for free.” At the finest
levels where l+ L exceeds the Gaussian stack height, we truncate
the multiscale neighborhood to include levels only up to the finest.

This multiscale descriptor improves on a straightforward starting
point—the use of a larger neighborhood at a finer scale. In par-
ticular, it improves performance, since it gathers fewer pixels, and
involves shorter vectors in the PCA step. As an added benefit, it
avoids a potential pitfall of the large flat neighborhood approach:
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Figure 3: Variation control. Qualitatively, higher values of the jitter parameter J (increasing towards the right) permit more variation in synthesized hybrids.

it allows (e.g., equal) weighting of each scale, so that in particu-
lar fine features do not overpower information at coarse scales, as
might occur in the most naïve flat implementation.

We provide some intuition for the role of multiscale descriptors
within the overall method. Synthesis proceeds in a coarse-to-fine
direction, at each point building on the information contained in
the finest synthesized scale; thus we measure features of the syn-
thesized image using only a single-scale descriptor. On the other
hand, analysis has all scales available at once. Here a multiscale
descriptor enables the analysis algorithm to make better choices at
coarse levels, in effect anticipating finer levels. Candidate sets pre-
computed using the multiscale descriptor include candidates that
match well both at the current level and at finer levels (see Fig. 6).

What is the ideal depth for a multiscale descriptor? An overly deep
descriptor is costly and may introduce noise from its finest levels,
while shallower descriptors retain the disadvantages of the single-
scale setting. Heuristically, we have found that eight scale levels
works well for all images we test, yet is efficient. It would be in-
teresting to explore an adaptive method for choosing the descriptor
depth, in particular one that focuses attention on non-stationary fea-
tures, defined as follows. Points in an image at different scales can
be classified on a gradient from completely stationary (stochastic)
to completely non-stationary. When maintaining structure during
synthesis it is our goal to replace highly non-stationary features
with similar non-stationary features. To this end we must prop-
erly identify these similar features. However since images do not
maintain the same stationary properties across scales (see Fig. 5)
we are only interested in using enough scale levels to capture all
non-stationary information. If we look deeper than necessary then
we include stochastic information into our neighborhood which acts
as noise with regards to describing structure. We have found that
in practice this is not a severe problem and non-stationary features
generally have more extreme differences than stationary features
and thus overpower them in terms of feature distance. To illustrate
the use of different scale levels we include examples of multiscale
neighborhoods using one, two, four and eight scales Fig. 7.

Exemplar standardization In many applications such as object
detection and recognition [Moghaddam and Pentland 1997], the
scale, orientation or illumination variations across images are re-
moved by a pre-normalization step, because they do not character-
ize the intrinsic properties of the object but rather the conditions of
the acquisition. Similarly, we normalize our exemplars manually
for scale and orientation—variations not modeled in our estimated
probabilistic manifold. In addition, exemplars share a similar color
palette in our experiments (e.g., faces, jeans, chess pieces, etc.):
the intensity has been automatically normalized in all exemplars by

Figure 5: Stationary variation across scales. A human face is highly non

stationary at a scale which captures facial features. However, at very fine

scales skin features such as pores become dominant and the image becomes

highly stationary.

using multiscale descriptor

using single-scale descriptor

Figure 6: Multiscale vs single-scale descriptor. Synthesis results using our

multiscale descriptor (top) compared to the same example run with a single-

scale descriptor (bottom). The addition of information at finer scales guides

our candidate selection to more structurally meaningful location matches,

better resolving sharp features such as a zipper.

computing the PCA on their (RGB) pixels and dividing by the dom-
inant eigenvalue. More advanced automatic standardization tech-
niques could be adopted following the object recognition literature.

Symmetric synthesis For some examples (Figure 9, butter-
flies, chess, faces) we implemented an additional scheme to en-
courage symmetry. During the correction step, we augment the
usual neighborhood distance measure with a term (shown in blue)
that encourages symmetric formation of features:

di = ‖Ñs(p)− ÑE(ci)‖
2 +‖Ñs(WS − p)− ÑE(WE − ci)‖

2.

Here, WS and WE are the respective widths of the synthesis and
exemplar images.



Figure 8: Exemplar Weighting. Synthesis results from linear exemplar weight interpolation from leftmost exemplar image to rightmost.

1 level 2 levels 4 levels 8 levels

Figure 7: Progressively deeper multiscale descriptors. Synthesis results

using our multiscale descriptor with depths of one, two, four, and eight for

human faces top and jeans bottom. Jean quality improves up to the eighth

level, and face quality improves up to the fourth level.

Exemplar Weighting Individual exemplar images can be given
special emphasis during synthesis through the use of per-image
weighting. The mechanism for this is the correction step where
new link coordinates are chosen from our candidate set based on a
neighborhood similarity error metric. By weighting neighborhood
comparison error values based on the exemplar image the target
neighborhood is taken from, we can favor or discourage a certain
image’s features in the final synthesized result. Exemplar weighting
is a controllability mechanism which allows the user to direct the
algorithm towards desired results. Exemplar weighting can exist for
each image, for each image at each scale level, or per-pixel in each
image using a weight map. It is also possible to randomly weight
exemplars in order to promote diversity between outputs. Figure 8
illustrates the use of exemplar weights to favor specific images.

3 Discussion

Results Figure 9 depicts typical results for a variety of inputs,
including drawings, photographs, objects with textured surfaces,
solid shapes, both natural and anthropogenic. Our system produces
an unlimited number of results, and we show representative exam-
ples from typical usage.

Inspired by Visio-lization [Mohammed et al. 2009], we explore the
performance of our approach on images of human faces (faces),
a particularly challenging problem because of our attuned percep-
tion to facial structure. Despite that our algorithm does not “know”
specifically about faces, we observe however that for highly stan-
dardized facial photographs, the resulting hybrids are surprisingly
perceptually compelling. We attribute this primarily to the built-in
prudence of our structure-preserving jitter. Likewise, in other or-
ganic examples (butterflies) our system was able to recreate the
natural templates defined within a given species.

We also tested our system on highly structured cases (chess; Fig. 8),
noting that the resulting variations retain the rigid structure of the
input. On slightly less structured inputs (pirate; Fig. 1), the sys-
tem discovered useful, interesting, and even creative variations. For

input

Figure 10: Color limitation. Our rudimentary color normalization scheme

can struggle when exemplars have radically different color palettes.

even more loosely structured inputs (doodle, monster), we were
pleasantly surprised that we were able to recover not just important
structural variations, but also to some extent artistic style.

Being a straightforward extension, our timings were roughly equal
to those seen in our reference CPU implementation of Lefebrve and
Hoppe’s algorithm. Specifically we found that our method yielded
a 30% computational overhead from the previous technique, which
should follow for any implementation as well.

Limitations As our rudimentary color standardization scheme
mainly addresses intensity normalisation between the exemplars,
it can struggle when the multiple exemplars have greatly disparate
color palettes (see Fig. 10). Such an input with widely varying col-
ors carries an inherent ambiguity when defining the desired space of
output colors, which will result in potentially unwanted variations.
One potential solution is to increase the number of exemplars to
more densely cover the desired space; however, this process can be
tedious and computationally expensive. Normalization is another
solution: the color variations can be reduced by transforming all
exemplars so that they map to the same color palette, e.g. by using
existing color transfer techniques [Pitié et al. 2007].

As explained in §2, the perceived randomness is controlled by a jit-
ter parameter, J. The ideal range of values for J will vary depending
on the particular input and desired randomness. Fortunately, since
our structure-preserving jitter degrades gracefully into correction
when randomness is inappropriate, we will still produce a usable, if
not highly-varied image, for most reasonable settings.

Future work A number of methods have been developed for the
direct manipulation of image structure. These allow a user to com-
bine content from multiple source images [Agarwala et al. 2004] or
to rearrange content within a given image [Cho et al. 2008; Pritch
et al. 2009], possibly at interactive rates [Barnes et al. 2009]. These
works are related to our method in that they seek to discover se-
mantically plausible images, and we therefore view our algorithm
as being complementary. We envision that a combination of these
approaches with our structure-preserving synthesis will result in yet
more powerful interactive editing tools.
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Figure 9: Synthesis results. A series of example inputs and the results generated by our method.
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