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Fig. 1. Smoothing a noisy function with the Laplacian energy and common low-order boundary conditions (zero Neumann) introduces a bias at the boundary:
isolines exit perpendicularly. We propose using a different smoothness energy, the Hessian energy, whose natural boundary conditions avoid this bias.

In geometry processing, smoothness energies are commonly used to model
scattered data interpolation, dense data denoising, and regularization during
shape optimization. The squared Laplacian energy is a popular choice of
energy and has a corresponding standard implementation: squaring the
discrete Laplacian matrix. For compact domains, when values along the
boundary are not known in advance, this construction bakes in low-order
boundary conditions. This causes the geometric shape of the boundary
to strongly bias the solution. For many applications, this is undesirable.
Instead, we propose using the squared Frobenius norm of the Hessian as
a smoothness energy. Unlike the squared Laplacian energy, this energy’s
natural boundary conditions (those that best minimize the energy) correspond
to meaningful high-order boundary conditions. These boundary conditions
model free boundaries where the shape of the boundary should not bias the
solution locally. Our analysis begins in the smooth setting and concludes
with discretizations using finite-differences on 2D grids or mixed finite
elements for triangle meshes. We demonstrate the core behavior of the
squared Hessian as a smoothness energy for various tasks.
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1 INTRODUCTION
Smoothness energies are commonly used in graphics, geometry
processing and image processing to model deformations, denoise
densely sampled measurements, and interpolate sparse scattered
data. Compared to those involving first derivatives, smoothness
energies involving second derivatives are by definition more expres-
sive, but also more challenging to control. For example, minimizing
the squared-norm of the gradient of an unknown function u inte-
grated over a bounded domain Ω ⊂ R2

E∇2 (u) = 1
2

∫
Ω

∥∇u∥2 dA, (1)

results in a second-order Laplace equation with only one set of pre-
scribable boundary conditions (either fixed values, normal deriva-
tives, or linear combinations thereof).

Meanwhile, minimizing the squared Laplacian energy

E∆2 (u) = 1
2

∫
Ω

(∆u)2 dA, (2)

results in a fourth-order bi-Laplace equation with many different
combinations of prescribable boundary conditions (values and nor-
mal derivatives; values and Laplacians; normal derivatives and Lapla-
cians; etc.). This greater expressive power comes with greater re-
sponsibility during modeling.

This greater responsibility manifests itself in the need for care-
fully choosing boundary conditions for higher order energies, such
as the squared Laplacian energy. Indeed, lacking a careful and sys-
tematic treatment of boundary conditions can lead to undesirable
and unintuitive artifacts in geometry processing applications. We
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Fig. 2. When interpolating scattered data over a bounded domain, Neumann conditions introduce a noticeable bias at the boundary (orange arrows). Meanwhile,
ignoring the boundary by interpolating over ambient space allows bleeding of data onto geodesically distant regions (orange circle).

here refer to boundary conditions that only depend on the function
value and its first derivatives, such as Dirichlet and Neumann bound-
ary conditions, as low-order. Boundary conditions involving higher
derivatives are referred to as high-order. Consider for example the
problem of data smoothing. Enforcing Neumann boundary condi-
tions for the squared Laplacian energy leads to noticeable bias along
the boundary which is often unintentional, as illustrated in Fig. 1
(middle). Likewise, consider the problem of scattered data interpo-
lation, such as in Fig. 2. Here Neumann boundary conditions will
cause the interpolation to be strongly influenced by the boundary’s
shape and isolines will be perpendicular to the boundary (Fig. 2,
orange arrows). One option would be to simply ignore the given
domain’s boundary and instead solve over a naive extension into
the surrounding space. As a consequence, however, data will bleed
across the original domain boundaries (Fig. 2, orange circle).

In this paper, we offer a study of the effect of boundary conditions
for second-order energies derived from the biharmonic equation. In
particular, we show limitations of the popular squared Laplacian
energy, and we propose an alternative second-order energy: the
squared Frobenius norm of the Hessian or simply squared Hessian
energy:

EH2 (u) = 1
2

∫
Ω

∥Hu ∥2F dA, (3)

where Hu ∈ R2×2 is the symmetric matrix of second-order partial
derivatives. While this energy appears frequently in the mechanics
and image processing literatures, it has not been applied and ana-
lyzed as a smoothness energy for geometry processing on irregular
domains.

If both Dirichlet and Neumann boundary conditions are enforced
simultaneously, then minimizers of EH2 and E∆2 will be identical.
However, these two energies offer dramatically different behavior
for “free” or natural boundaries where no explicit boundary con-
ditions are enforced. Natural boundary conditions are those that,
among all possible boundary conditions, minimize the given energy.

Unlike the natural boundary conditions of the squared Laplacian
energy, those of the squared Hessian energy admit well-behaved
solutions without strong bias near the boundary (see Fig. 3). We
show the implications of this when modeling smoothness in geom-
etry processing. We derive these boundary conditions and analyze

their effects in detail. The advantages of the squared Hessian energy
are especially pronounced for irregular domains (e.g., non-convex
domains with arbitrarily shaped, non-axis-aligned boundaries).

To demonstrate practical results for typical applications of smooth-
ness energies, we discretize the squared Hessian energy with natu-
ral boundary conditions following the same steps that have been
used to discretize the squared Laplacian energy previously, using
finite differences on 2D grids and mixed finite-elements on triangle
meshes.

Alongside our core contribution of providing a boundary-insensitive
smoothness energy for geometry processing tasks on irregular do-
mains, we also present a novel L1-norm minimization for piecewise
planar data reconstruction as well as a smooth understanding of
previous discrete methods for linear subspace design for real-time
shape deformation.

2 BACKGROUND
Before discussing related works specifically, we establish concretely
what we mean by natural boundary conditions.

2.1 Definition: natural boundary conditions
In the calculus of variations, the term natural boundary conditions
refers specifically to boundary conditions appearing in the Euler-
Lagrange equation of an energy minimization problem that were
not imposed beforehand (see [Gelfand and Fomin 1963, p. 26] or
[Giaquinta and Hildebrandt 1996, p. 34]). This definition is general
in that it applies to any energy or partially constrained energy. Just
like other types of boundary conditions, it is possible to witness
natural boundary conditions on one part of a domain’s boundary
and explicitly enforce different boundary conditions on another
part.

Natural boundary conditions achieve the lowest energy among
all possible boundary conditions for a given minimization prob-
lem. Consequently, natural boundary conditions heavily depend
on the energy being minimized. As we will see, the natural bound-
ary conditions of the squared gradient energy (Dirichlet energy) in
Equation (1), the squared Laplacian energy in Equation (2), and the
Equation (3) are all strikingly different.
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Fig. 3. Smoothing a function over an omega-shaped domain. The high-order natural boundary conditions of E∆2 maintain noisy boundaries (green). Previous
works use low-order boundary conditions, but this biases the solution to follow the boundary even if the input data does not (light blue). Smoothing converges
to a constant function. In contrast, the high-order natural boundary conditions of EH2 produce smooth boundary values without bias and converges to a linear
function (dark blue).

2.2 Related Work
The natural boundary conditions of E∆2 and EH2 were considered by
Courant and Hilbert [1924]. Since then, second-derivative energies
have been considered in various fields, including data, image, and
geometry processing. Earlier work also relates to ours in how the
energy, boundary conditions, and domain are chosen, and in their
application.

2.2.1 Geometry Processing. High-order smoothness energies are
a popular and powerful tool. Discretizations of the squared Lapla-
cian energy have been used for surface fairing [Desbrun et al. 1999],
smooth surface displacements [Andrews et al. 2011; Botsch and
Kobbelt 2004; Sorkine et al. 2004; Zhou et al. 2005], smooth geo-
desic distance computation [Lipman et al. 2010], data smoothing
[Weinkauf et al. 2010], and regularization during other high-level
operations [Cao et al. 2015, 2014; Huang et al. 2006; Jones et al. 2016;
Zhou et al. 2010]. These and other works square the discrete cotan-
gent Laplacian for triangle meshes [Pinkall and Polthier 1993]. This
Laplacian matrix L is constructed assuming zero Neumann bound-
ary conditions (i.e., for a boundary edge ij with opposite angle αi j ,
Li j = cotαi j ). Squaring this matrix effectively bakes in these condi-
tions. Jacobson et al. [2010] confirm that this construction agrees
with a convergent mixed finite element discretization of minimizing
E∆2 subject to zero Neumann boundary conditions (∇u · n = 0).

Squaring L is an intuitive and easy way to handle unconstrained
boundaries when employing E∆2 . However, we show that zero Neu-
mann boundary conditions are not natural for E∆2 according to the
mathematical definition in Section 2.1. Perhaps surprisingly, the
true natural boundary conditions of E∆2 are not useful in general
(see Fig. 3). Meanwhile, the “not natural” zero Neumann conditions
are clearly quite useful, as evidenced by the sheer number of ge-
ometry processing methods that impose them and achieve great
results for their respective applications [Finch et al. 2011; Jacobson
et al. 2011, 2012; Kavan et al. 2011; Landreneau and Schaefer 2010;
Lipman et al. 2010; Rustamov 2011; Sýkora et al. 2014; Weber et al.
2012; Weinkauf et al. 2010]. And yet, we will present evidence that
the natural boundary conditions of EH2 can be more useful than
either the zero Neumann or natural boundary conditions of E∆2 in
contexts where boundaries should minimally influence the solution.

Natural boundary conditions for energies involving first deriva-
tives are found frequently in geometry processing or related fields

such as computer animation [Batty 2010; Bojsen-Hansen and Wojtan
2016]. When parameterizing surfaces, natural boundary conditions
for the as-conformal-as-possible energy remove the burden of pre-
scribing values for cut-boundaries [Cohen-Steiner and Desbrun
2002; Desbrun et al. 2002; Lévy et al. 2002; Mullen et al. 2008; Spring-
born et al. 2008]. The boundary conditions imposed by Desbrun et
al. [2002] have been applied to different energies to which they are
no longer natural per Section 2.1, though they nonetheless serve
the application [Gingold et al. 2006].

Previous works in geometry processing have considered how to
discretize the Hessian of a scalar function defined on a triangulated
surface [de Goes et al. 2014; Tosun et al. 2007]. These methods do
not explore minimization of EH2 or its natural boundary conditions.

Wang et al. [2015] square a modified cotangent Laplacian to
design linear subspaces for cartoon animation; they do not explicitly
discuss boundary conditions. We will consider the discrete energy in
[Wang et al. 2015] and its relationship to others built using discrete
exterior calculus [Fisher et al. 2007] and non-conforming edge-
based elements [Bergou et al. 2006] in Section 4.5. We show that —
in contrast to these previous discrete energies — the null space of
EH2 contains and only contains affine functions, the necessary and
sufficient condition for linear subspace design as set forth by Wang
et al.

In the infinite Euclidean domain, biharmonic radial basis func-
tions (a.k.a, thin-plate splines) minimize EH2 and form a useful basis
for various scattered data interpolation problems [Bookstein 1989].
Botsch and Kobbelt [2005] applied these globally supported func-
tions to shape deformation and modelling by densely sampling
selected surface regions. Free surface boundaries are not noticed
any differently from the surface interior as both are embedded in a
deformation of the entire Euclidean space (see Fig. 4).

2.2.2 Energies and boundary conditions in other fields.
Second-derivative smoothness energies such as E∆2 and EH2 are

found frequently in denoising, restoration, inpainting, image en-
hancement, and domain reduction applications. Works in image
processing that specifically consider EH2 [Didas and Weickert 2004;
Lefkimmiatis et al. 2012; Lysaker and Tai 2006; Roth 2009; Terzopou-
los 1984] or a broader class of energies including EH2 as a special case
[Didas et al. 2009; Lefkimmiatis et al. 2012] impose low-order bound-
ary conditions, with some notable exceptions: Terzopolous [1984;
1988] was the first to employ the natural boundary conditions of
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Fig. 4. Scattered data interpolation using biharmonic radial basis functions
in R3 ignores the embedded surface and therefore also surface boundaries.
In contrast, interpolation by minimizing EH2 on the surface is “shape aware”,
yet not qualitatively disturbed by open boundaries.

EH2 in the vision and graphics literature, in the context of surface
reconstruction from images. Didas et al. [2004; 2009] invoked the
natural conditions for image denoising, whereas Lefkimmiatis et
al. [2012] removed boundaries altogether via periodic or reflexive
identification. When smoothing over the convex image rectangle,
free boundaries have diminished influence on the behavior of the
solution. Applications such as inpainting frequently consider non-
convex, irregular image subregions, but enforce low-order bound-
ary conditions explicitly to ensure value and derivative continuity
[Georgiev 2004].

Other works consider related energies, such as the L1-norm of
the Hessian [Lysaker et al. 2003; Steidl 2006; Yuan et al. 2009] (a
generalization of total variation [Rudin et al. 1992]), the energy
E∆2 [Steidl et al. 2005] or variants thereof [You and Kaveh 2000].
We show how the L1-norm can analogously apply to smoothing
geometric data.

Other authors formulate fourth-order equations directly, not via
an energy of second-derivatives. For instance, Liu et al. [2015]
explicitly enforce second- and third-order boundary conditions
(∇u · n = ∇∆u · n = 0) on a fourth-order equation similar to the
bi-Laplace equation. As we will see in Section 4, this set of boundary
conditions is not natural to either E∆2 or EH2 , however they are
frequently imposed on E∆2 for geometry processing problems on
surfaces with boundaries.
E∆2 and EH2 have been used for the spectral embedding of high di-

mensional data [Belkin and Niyogi 2004; Donoho and Grimes 2003].
A generalization of EH2 was used by Steinke and Hein [2009] for
regression, using the energy’s natural boundary conditions (therein
referred to as implicit).

In physical systems, natural boundary conditions typically have
an intuitive explanation: they explain the behavior of free bound-
aries. In elastic beam theory, natural boundary conditions are higher-
order and appear for biharmonic-like equations (see, e.g., [Li 2000] ).
Similar boundary conditions also appear in Kirchhoff plate bending
theory [Felippa 2017]. We now leverage this physical intuition in
one-dimension before discussing smoothing in two-dimensions and
on surfaces.

3 ONE DIMENSION
As a didactic exercise, let us derive natural boundary conditions for
the one-dimensional squared second derivative energy integrated

over the unit line segment:

min
u

1
2

∫ 1

0
(u ′′)2 dx , (4)

whereu ′ = du/dx ,u ′′ = d2u/dx2 and so on. Throughout, we appeal
to the physical metaphor of a bending bar (see Fig. 5).

In practice, we minimize this energy subject to various boundary
conditions or additional energy terms. However, applying the calcu-
lus of variations to the the energy’s raw form will better illustrate
natural boundary conditions. In the absence of explicit boundary
conditions, then u is a minimizer of this energy if any infinitesimal
variation εv does not change its energy:

0 = d

dε

�����ε=0
1
2

∫ 1

0
((u + εv )′′)2 dx =

∫ 1

0
u ′′v ′′ dx (5)

for all sufficiently smooth functions v . In particular, v is not con-
strained at the boundary. Integration by parts yields

0 =
∫ 1

0
u ′′′′v dx − [u ′′′v]1

0 + [u ′′v ′]1
0 (6)

for all v . By judiciously testing with v functions, we conclude that
u ′′′′ = 0 on the interior interval (0, 1) and u ′′ = u ′′′ = 0 at the
boundary {0, 1}. We began without explicit boundary conditions, so
these are the natural boundary conditions.

We observe that functions in the energy’s null space satisfy that
energy’s natural boundary conditions – any linear function u mea-
sures zero energy. Correspondingly, we can interpret the natural
boundary conditions as “the solution should be linear at the bound-
ary” (u ′′ = 0).

We can repeat this process even if we fix some but not all bound-
ary conditions explicitly. For example, if we fix u (0) = 0 then the
remaining natural boundary conditions will be u ′′(0) = 0 and
u ′′(1) = u ′′′(1) = 0 leaving any linear function passing through
origin as a solution. If we also fix u ′(0) = 0 then the boundary at
x = 0 is fully constrained and natural boundary conditions only ap-
pear at x = 1, namely u ′′(1) = u ′′′(1) = 0. In this case, the problem
has a unique albeit trivial solution: u = 0, the only linear function
passing through the origin with zero slope.

From a mechanics perspective, natural boundary conditions cor-
respond to zero forces and zero moments at the boundary. Fig. 5
shows an example of a uniform load applied to a bending bar (i.e.,
minu

∫ 1
0 (u ′′)2 + u dx) with various explicit boundary conditions

and each problem’s resulting set of natural boundary conditions.
In two dimensions, there will be many different ways to construct

a smoothness energy out of squared second derivatives. Different
energies might even behave the same when boundaries are suffi-
ciently fixed, but imply different natural boundary conditions in the
presence of free boundaries.

4 TWO DIMENSIONS
Given a flat 2D domain Ω ⊂ R2 with a possibly intricate yet smooth
boundary, we consider two intimately related energies that measure
second-order variations of a function u : Ω → R: the squared
Laplacian energy E∆2 (u) of Equation (2) and the squared Hessian
energy EH2 (u) of Equation (3).
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Fig. 5. A bending bar experiences a uniform load subject to various explicit boundary conditions (black, e.g., u = 2); in their absence, natural boundary
conditions emerge (gray, e.g., u′′ = 0). This physical problem has a unique solution when at least two low-order boundary conditions are imposed; otherwise,
the problem becomes underconstrained and the solution tends toward infinite values. Calculus of variation shows that a uniform load does not change the
natural boundary conditions.

4.1 Green’s Identities
We will employ various Green’s identities for functions in R2 to
move derivatives across inner products by introducing a boundary
term. Starting with the classic identity:∫

Ω

(∇u · ∇v + u∆v ) dA =

∮
∂Ω

u ∇v · n ds, (7)

Replacing u in Eq. (7) with ∆u:∫
Ω

(∇∆u · ∇v + ∆u∆v ) dA =

∮
∂Ω

∆u ∇v · n ds, (8)

Replacing v in Eq. (7) with ∆v :∫
Ω

(
∇u · ∇∆v + u∆2v

)
dA =

∮
∂Ω

u ∇∆v · n ds, (9)

Replacing u and v in Eq. (7) with ∇uT and ∇vT:∫
Ω

(Hu : Hv + ∇u · ∇∆v ) dA =

∮
∂Ω

∇uTHvn ds, (10)

Replacing u and ∇v in Eq. (7) with a vector u and matrix V:∫
Ω

(∇u : V + u · (∇ · V)) dA =

∮
∂Ω

uTVn ds, (11)

where X : Y := tr (XT Y) computes the Frobenius inner product
which generates the Frobenius norm X : X = ∥X∥2F , and ∇ · X
computes the matrix divergence of X.

4.2 Equivalence up to boundary conditions
We first show that — regardless of boundary conditions — minimiz-
ers of both E∆2 and EH2 satisfy the biharmonic equation (∆2u = 0)
in the interior of the domain. To avoid redundant derivations, we
introduce a parameter α (cf. [Courant and Hilbert 1924; Terzopoulos
1984]) so that setting α = 1 gives EH2 and α = 0 gives E∆2 :

1
2

∫
Ω

(
(1 − α ) (∆u)2 + α ∥Hu ∥2F

)
dA. (12)

As in Section 3, u is a minimizer if adding any infinitesimal varia-
tion εv will not change its energy. Thus,

0 =
∫
Ω

((1 − α )∆u∆v + αHu : Hv ) dA (13)

∆2 interpolation (∆u)2 Hu
2
F

Fig. 6. Subject to fixed boundary values and normal derivatives, the same
biharmonic interpolation minimizes both E∆2 and EH2 , despite each energy
measuring a different local quantities.

for all v . Applying Equations (8) and (10) this becomes

0 =
∫
Ω

(−(1 − α )∇∆u · ∇v − α∇v · ∇∆u) dA+ (14)

∮
∂Ω

(
(1 − α )∆u ∇v · n + α∇vTHun

)
ds,

for all v . Then applying Equation (9), we arrive at:

0 =
∫
Ω

v∆2u dA+ (15)

∮
∂Ω

(
−v ∇∆u · n + (1 − α )∆u ∇v · n + α∇vTHun

)
ds,

for allv . Because this equality must hold for any choice ofv , u must
be biharmonic in the interior, regardless of α :

∆2u = 0 on Ω. (16)

Biharmonic functions are uniquely determined by boundary val-
ues and normal derivatives [Evans 1998, pp. 345], therefore minimiz-
ers of E∆2 and EH2 on R2 will be identical when explicit low-order
boundary conditions are prescribed, i.e., fixing Dirichlet (u = f ) as
well as Neumann (∇u · n = д) conditions. Indeed, enforcing such
boundary conditions during calculus of variations requires consid-
ering variations such that v = ∇v · n = 0 on the boundary. This
immediately implies that ∇v = 0 on the boundary and correspond-
ingly that the entire boundary integral in Equation (15) vanishes.
In conclusion, when modeling smoothness for boundary-value in-
terpolation problems, these energies are interchangeable despite
measuring different local quantities (see Fig. 6).
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∇ · n = 0

E∆2

Fig. 7. Ten lowest frequency modes of E∆2 with natural boundary conditions on a 2D Cheeseman include random harmonic functions with high oscillation
near the boundary (top). Adding zero Neumann boundary conditions to E∆2 causes modes to reproduce familiar Laplacian eigenfunctions (middle). In contrast,
modes of EH2 with natural boundary conditions include affine functions and other low frequency functions without constrained normal derivatives (bottom).

4.3 Natural boundary conditions
In the absence of explicit boundary conditions, the variations v in
Equation (15) include all sufficiently smooth functions. We choose
from them specific variations to expose the natural boundary condi-
tions of the parameterized family of energies in Equation (12). First,
consider all v that vanish on the boundary but whose gradient ex-
ists only in the normal direction (v = 0 and ∇v = дn��∂Ω , for some
arbitrary function д). Second-order natural boundary conditions
must hold:

(1 − α )∆u + αnTHun = 0 on ∂Ω. (17)
Additionally, considering all v with zero normal derivative without
restricting the value of v along the boundary
(∇v · n = 0|∂Ω), we witness third-order boundary conditions must
hold:

∇∆u · n + α∇
(
tTHun

)
· t = 0 on ∂Ω. (18)

Both conditions depend on α , and therefore the natural boundary
conditions for the squared Laplacian and squared Hessian energies
indeed differ (ref. [Courant and Hilbert 1924]). We now build an
intuition for these conditions for canonical choices of α and contrast
their behavior when modeling smoothness on domains with free
boundaries.

4.4 Contrasting natural boundary behavior
For the squared Laplacian energy E∆2 (α = 0), unconstrained mini-
mizers of E∆2 (α = 0) will be biharmonic on the interior (∆2u = 0)
and satisfy natural boundary conditions forcing the solution to be
harmonic along the boundary (∆u = 0) and continue to be harmonic
across the boundary (∇∆u · n = 0). Consistent with our understand-
ing from Section 2.1, these boundary conditions agree with the
energy’s null space: any harmonic function u measures zero energy
E∆2 (u) = 0.

For the squared Hessian energy EH2 (α = 1), unconstrained min-
imizers are also biharmonic on the interior (∆2u = 0), but satisfy
different natural boundary conditions forcing the function to be

EH2

E∆2 ,∇ · n = 0

Fig. 8. Interpolating scattered samples of a quadratic function over a square
domain without holes (left) and with holes (center and right). When mini-
mizing E∆2 with Neumann boundary conditions, the presence and shape of
boundaries effects the solution. With EH2 , boundaries are less noticeable.

linear in the normal direction (nTHun = 0) and after that continue
with low variation along the boundary ∇∆u · n + ∇

(
tTHun

)
· t = 0.

Again, this agrees with the null space: all linear functions measure
zero energy.

The null space of E∆2 is infinite dimensional: for any boundary
values, there exists a harmonic function interpolating them. This
renders the E∆2 with natural boundary conditions rather useless
as a smoothness energy. For data smoothing, noisy data along the
boundary will simply remain, since there exists an interpolating
harmonic function that can be added without affecting the energy
(see Fig. 3, left).
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In contrast, the linear functions in the null space of EH2 are finite
dimensional and intuitive. For data smoothing, this null space mod-
els “in the absence of any other information, fit a linear function”
(see Fig. 3, right).

Low-frequency eigenfunctions of smoothness energies are a stan-
dard way to construct a smooth low-frequency function space in
geometry processing. Typically, previous works use the low-order
Dirichlet energy in Equation (1) with its natural boundary condi-
tions (∇u · n = 0) [Hildebrandt et al. 2011; Zhang et al. 2007]. Such
modal analysis on the higher-order E∆2 with its natural boundary
conditions is not practical because low-frequency modes are pol-
luted with arbitrary harmonic functions (see Fig. 7, top). Explicitly
enforcing zero Neumann boundary conditions ∇u · n = 0 on E∆2

alleviates this but simply results in the same spectrum as E∇2 (up
to squared eigenvalues, [Lipman et al. 2010]). In contrast, the low
frequency modes of EH2 provide a new, smooth, and well-behaved
basis (see Fig. 7).

4.4.1 Mixing with explicit boundary conditions. We examine how
explicitly enforcing certain boundary conditions changes the remain-
ing natural boundary conditions. For example, to explicitly enforce
values of u along the boundary (Dirichlet conditions), we must as-
sume that our test function v vanishes on the boundary (v = 0|∂Ω
in Equations 13-15. Only second-order natural boundary conditions
remain. For E∆2 , the additional natural boundary conditions are
∆u = 0. For EH2 , they are nTHun = 0.

As discussed in Section 2, many previous works in geometry
processing minimize the squared Laplacian energy E∆2 subject to
zero Neumann conditions (∇u · n|∂Ω = 0). We obtain that the only
additional natural boundary conditions are third-order: ∇∆u · n = 0.

For data smoothing, zero Neumann boundary conditions encour-
age functions to be flat near the boundary. The null space cor-
respondingly shrinks to contain only constant functions. If the
smoothness energy dominates over the data, then a best fit constant
function is found (see Fig. 3, center). For arbitrary domains, the zero
Neumann boundary conditions create a strong boundary sensitivity
(see Fig. 8).

4.5 Relationship to previous discrete energies
The null space of the squared Hessian energy EH2 contains and
only contains linear functions. In the context of real-time shape
deformation, Wang et al. [2015] specify that this is precisely the
condition needed of a smoothness energy for linear subspace design.
With this property as a goal, Wang et al. and other previous works
have designed discrete energies by modifying the discrete cotangent
Laplace operator, L ∈ Rn×n , for a triangle mesh with n vertices
and k edges. The unmodified discrete Laplace operator L can be
derived via a finite-element discretization of the squared gradient
energy in Equation (1), and the discrete energy preserves the smooth
structure of having only constant functions in its null space. In
contrast, the following two discrete modifications of L do not have
known smooth analogs, and as such are more susceptible to errors
and more challenging to analyze [Wang et al. 2017].

4.5.1 Discrete exterior calculus. Fisher et al. [2007] construct a
discrete energy for tangent vector field design using discrete exterior

Subspace deformation using… 

…DEC energy ...EH2…Bergou et al.’s energy

Fig. 9. The smoothness energy built using discrete exterior calculus in Equa-
tion (20) is not suitable for linear subspace design. In contrast, deformations
using Equation (21) or EH2 are similarly appropriate.

calculus (DEC) on triangle meshes. Their energy measures the sum
of all squared discrete divergences of a given vector field v via:

vT ⋆1 d0 ⋆
−1
0 dT0⋆1︸︷︷︸

F

v, (19)

where ⋆0, ⋆1 and d0 are the discrete Hodge star operators for zero-
and one-forms and the discrete differential matrix for one-forms
respectively, following the adjustments when building F for free
boundaries as described in [Fisher et al. 2007]. If we replace the
unknown vector field v with the differential of an unknown scalar
field d0u, we can build a discrete smoothness energy of a scalar field:

u dT0 FT ⋆−1
0︸︷︷︸

M−1

F d0︸︷︷︸
K=L+N

u, (20)

where the matrix M ∈ Rn×n is the (lumped) per-vertex mass matrix,
and the non-symmetric matrix K ∈ Rn×n matches the description of
the operator in [Wang et al. 2015] constructed by adding the normal
derivative operator N ∈ Rn×n to the standard cotangent Laplacian
L. This same matrix K has been previously shown to contain at least
linear functions in its right null space [Crane 2009].

Nonlinear null vector 
of DEC energy

Unfortunately, for some meshes this
matrix — and by extension the energy it
defines — contains other non-linear func-
tions in its null space (see inset). This
does not appear to be a simple matter of
mesh resolution or numerics. From the
point of view of linear subspace design
(see Fig. 9), this null space is too big.

Following the DEC construction, tak-
ing the divergence of the gradient should
correspond to the smooth Laplace operator (∆ = ∇ · ∇). If the dis-
crete energy in Equation (20) were structure preserving, then we
would expect it to produce discrete natural boundary conditions
for the squared Laplacian energy E∆2 and match its null space of
all harmonic functions (see Fig. 7). However, eigen analysis of this
energy for typical meshes produces a small number (≥ 3) of null
modes. From a structure preservation standpoint, this null space is
too small.
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Fig. 10. On a 2D annulus, fixing inner boundary values to one and outer
boundary values to zero, the analytic minimizer of EH2 is a radially symmet-
ric function with natural 3rd-order boundary conditions (see Section 4.4.1).
While a finite difference discretization of EH2 converges under refinement,
minimizing the discrete energy in [Bergou et al. 2006] does not.

4.5.2 Non-conforming finite-elements. Wang et al. [2015] use an
alternative construction to create their results [Wang et al. 2017].
Normal derivatives are added to the edge-based Laplacian Lcr ∈
Rk×k resulting from the Crouzeix-Raviart non-conforming finite-
element discretization of the squared gradient energy in Equa-
tion (1):

uTETKT
crM
−1
cr Kcr︸︷︷︸

Lcr+Ncr

Eu, (21)

where E ∈ Rk×n averages vertex values onto incident edges, Mcr ∈
Rk×k is the Crouzeix-Raviart mass matrix, and Ncr ∈ Rk×k com-
putes normal derivatives at boundary edges.

This energy corresponds to one of two discrete energies proposed
by Bergou et al. [2006] to model plate bending under the assump-
tion of isometric deformation as the squared Laplacian (E∆2 ) of
the displacement coordinate functions. Bergou et al. do not discuss
boundary conditions and the discrete boundary conditions of their
two proposed discrete energies differ (the other corresponding to
E∆2 subject to zero-Neumann boundary conditions).

Perhaps surprisingly, the discrete energy in Equation (21) be-
haves very similarly to the squared Hessian energy EH2 despite its
motivation by both Bergou et al. [2006] and Wang et al. [2015] as
a discrete analog to E∆2 . In contrast to the DEC energy in Equa-
tion (20), empirical tests indicate that the null space of the Bergou
et al. energy contains and only contains linear functions. Resulting
subspace deformations are visually indistinguishable from those
using EH2 (see Fig. 9).

Unfortunately, while the discrete energy in Equation (21) clearly
does not behave like a discretization of E∆2 with natural boundary
conditions, it also does not converge to smooth minimizers of EH2

with its natural boundary conditions (see Fig. 10). It remains unclear
— and outside our scope — to show whether this discrete energy
converges to yet some other continuous energy.

5 DISCRETIZATION
For our experiments, we discretize the energies E∆2 and EH2 using
either the finite difference method on regular 2D grids restricted to
a bounded subregion Ω ⊂ R2 or the mixed finite element method
on irregular triangle meshes.

5.1 Finite differences
For finite differences on a 2D regular grid, we use standard central
differences to compute each entry of the Hessian at all interior nodes
[Fornberg 1988] (see Appendix A).

Our discretization on grids is in agreement with those used in
image processing on rectangular domains [Didas et al. 2009]. As
expected, this standard finite difference discretization converges
under refinement (see Fig. 10). No special treatment is required in
the case of non-convex, irregular domains beyond ensuring that all
interior nodes have neighboring nodes in all eight directions.

5.2 Mixed Finite Elements
The common discretization of the squared Laplacian energy with
zero Neumann boundary conditions on a mesh withn vertices andm
faces is constructed by squaring the cotangent Laplacian L ∈ Rn×n :

E∆2 (u) subject to ∇u · n = 0��∂Ω ≈ uTLTM−1Lu, (22)

where M ∈ Rn×n is a (often lumped) mass matrix. Jacobson et al.
[2010] demonstrated that this discrete energy can be derived by
applying the mixed finite element method to the continuous energy
minimization problem.

Following their steps, we can similarly discretize the natural
boundary conditions1 of the squared Laplacian energy:

E∆2 (u) ≈ uTL(i,a)TM(i, i )−1L(i,a)u, (23)

where X(j,k ) indicates slicing rows and columns corresponding to
vertex lists j and k respectively, and specifically i and a are the lists
of interior vertices and all vertices respectively. It is clear from this
construction that any discrete harmonic function (L(i,a)u = 0) will
measure zero energy regardless of boundary values. This is correct
from the point of view of structure preservation, and validates the
arbitrary boundary behavior observed when using these natural
boundary conditions for smoothing (see Fig. 3).

We can follow similar steps to use the mixed finite element
method to discretize the squared Hessian energy. Beginning in the
smooth setting, we introduce an auxiliary matrix-valued variable V
constrained to be equal to the Hessian of the unknown function on
the interior of the domain via a matrix-valued Lagrange multiplier
function Λ which is free on the interior and clamped to zero on the
boundary:

saddle
u,V,Λ

∫
Ω

( 1
2V : V + Λ : (Hu − V)

)
dA, s.t. Λ = 0|∂Ω .

Applying the Green’s identity from Equation (11) to the Λ : Hu
term, we move a derivative from u to Λ:

saddle
u,V,Λ

∫
Ω

( 1
2V : V − (∇ · Λ) · ∇u − Λ : V

)
dA + (24)

���
���*

Λ = 0|∂Ω∮
∂Ω

nTΛ∇u ds .

1Jacobson et al. [2010] mention “natural” boundary conditions for E∆2 but do not
explicitly derive or discretize them. The free boundaries in their results appear to
enforce zero Neumann boundary conditions.
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Noisy function EH2E∆2 , ∇ · n = 0

Fig. 11. Low-order boundary conditions are the de facto standard for smooth-
ing in geometry processing (middle), but they introduce bias at the boundary
(inset). A naïve extension of our discrete Hessian energy to 3D seems to
alleviate this.

Applying a functional variation to V, we immediately see that the
solution must be obtained when V = Λ|Ω , so we can substitute Λ
out:

saddle
u,V

∫
Ω

(
− 1

2V : V − (∇ · V) · ∇u
)
dA (25)

This saddle problem involves only first derivatives. We may use stan-
dard piecewise-linear elements foru and each of the four coordinate
functions of V (with V = 0|∂Ω because Λ = 0|∂Ω). Factoring out
the degrees of freedom corresponding to V, we have a discretization
of the squared Hessian energy with natural boundary conditions:

EH2 (u) ≈ uTGTADM̃−1DTAGu, (26)

where G,A,D, and M̃ are the discrete gradient operator, diagonal
matrix of triangle areas, discrete matrix divergence operator and
discrete mass matrix (see Appendix B).

5.2.1 Alternative discretizations. Many other mixed finite-element
methods have been applied to the biharmonic equation and asso-
ciated energies in the past [Lamichhane 2011; Scholz 1978]. The
Hellan-Herrmann-Johnson mixed formulation (see, e.g., [Comodi
1989] ) has seen recent renewed interest when applied in conjunc-
tion with the discontinuous Galerkin method [Braess et al. 2017;
Hoppe et al. 2016].

Conforming high-order elements are another option. For example,
the Argyris element [Braess 2002] would directly allow second-
order differentiation in R2. Besides introducing a large number of
degrees of freedom, it is dependent on the 2D Cartesian coordinate
system, making it difficult to extend to arbitrary surfaces.

Higher-order smoothing energies have also been discretized with-
out the finite element method. For example, in machine learning,
Kim et al. [2009] discretize the Hessian energy using a nonlinear
fitting approach.

5.3 Triangle meshes in 3D
So far we have only considered flat domains Ω ⊂ R2. First experi-
ments suggest that curved surfaces, and especially those with bound-
aries, might benefit analogously from our analysis of smoothness en-
ergies (see Fig. 11). We can trivially extend our mixed finite-element
discretization of EH2 in Section 5.2 to triangle meshes immersed in
R2 by extending the gradient and matrix divergence operators in

Equation (26) to compute 3D rather than 2D vectors. This amounts
to temporarily treating the Hessian as a 3× 3 matrix. This extension
is inspired by the construction of the discrete Laplacian for surfaces
built by trivially extending the gradient operator to compute per-
face 3D vectors while maintaining the property that: L = GTAG.
Our discretization of the Hessian and squared Hessian matrices is
available open source as part of libigl [2017].

5.3.1 Future work: accounting for curvature.

our EH2E∇2

Fiedler�vectorsOn curved surfaces, the formula-
tion of the Hessian energy is far more
intricate. One striking difference to
the planar case arises from the fact
that the Hessian energy on smooth
surfaces without boundary is in gen-
eral no longer equal to the Laplacian
energy. Indeed, integration by parts
similar to Equation (10) leads to the
so-called Bochner-Laplacian, which
differs from the usual (Hodge-) Laplacian by a term involving Gauss-
ian curvature. Also the naïve extension of our mixed finite element
discretization of EH2 to 3D leads to a different energy than the Lapla-
cian energy (see inset). However, we do not claim this extension to
be a proper discrete version of the smooth Hessian energy.

Another complication arises from the fact that even a weak for-
mulation of the Hessian similar to Equation (24) involves covariant
differentiation in the smooth setting. One future direction might
be to use recent discretizations of the covariant derivative (e.g.,
[Azencot et al. 2015; Liu et al. 2016]) to derive a discrete Hessian
energy while maintaining analogous natural boundary conditions.
The original Green’s identity in Equation (7) does not introduce
curvature terms, allowing discretization of the squared Laplacian
Energy using mixed FEM as used for thin shells [Bergou et al. 2006;
Garg et al. 2007].

Regardless, first experiments suggest that our naïve extension
to 3D might enable our main results concerning free boundaries
to operate on surface meshes. We leave an analysis of our naïve
extension to 3D for future work.

5.4 L1 minimization
Instead of minimizing the L2-norm of the Hessian, the squared
Hessian energy, we can also minimize its L1-norm:∫

Ω

|Hu |F dA (27)

This L1-type energy exhibits different properties from the ones
of the squared Hessian energy (see Section 6).

A detailed description the dizcretization can be found in Appen-
dix C. This is a simple discretization; other discretizations of the L1

norm are discussed in works such as [Bronstein et al. 2016].

6 EXPERIMENTS & APPLICATIONS
Smoothness energies are a fundamental ingredient in geometry
processing algorithms. We tour applications using the Hessian to
define smoothness. We solve the resulting sparse linear systems
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…minimizingEH2…minimizingE∆2

bounded biharmonic weights…

Fig. 12. Both weights are constrained to agree on the outer boundary. On
the interior holes, EH2 causes less distortion than E∆2 .

using MATLAB and quadratic programs using Mosek [Andersen
and Andersen 2000]. We verified that both our discretizations (see
Section 5) converge toward the analytic minimizer of EH2 on an
annular domain with radially symmetric fixed value and third-order
natural boundary conditions (see, e.g., Fig. 10). The computational
complexity of minimizing EH2 is equivalent to minimizing E∆2 : in
both cases the number of non-zeros per-row is less than or equal to
the size of the corresponding vertex’s two-neighborhood.

The simplest demonstration of these energies is to reconstruct a
smooth function while interpolating values at specific points. For
flat domains with interpolated values and normal derivatives along
the boundary, the reconstructions minimizing E∆2 and EH2 will
agree (see Fig. 6). If the boundary is left unconstrained or partially
constrained then natural boundary conditions will appear for each
respective energy (see Fig. 2). In all examples, differences are best
identified by observing how isolines meet with the boundary: zero
Neumann boundary conditions cause the isolines to be perpendicu-
lar to the boundary, while high-order natural boundary conditions
do not force this behavior (see Fig. 8).

Linear subspace design for cartoon deformation is a special case
of scattered data interpolation. Instead of interpolating colors or
temperatures, displacements are interpolated over a 2D cartoon or
surface (ref., [Jacobson et al. 2014]). Minimizing EH2 with its natural
boundary conditions and Kronecker delta values at specified point
handles, we can define a linear basis for smooth deformation inter-
polation displacements at these points. Like previous approaches
[Wang et al. 2015], the minimizing functions of EH2 are linearly pre-
cise and therefore form a form of cage-free generalized barycentric
coordinates (“Hessian coordinates”). In contrast to previous work,
like the coordinates of Wang et al., Hessian coordinates are defined
by a smooth energy where it is easy to show that all and only linear
functions exist in its null space (see Fig. 7). Fig. 9 shows that the
deformation behavior is similar that of Wang et. al. [2015]

Similarly, automatic methods for computing linear blend skinning
weights have employed smoothness energies [Baran and Popović
2007]. Classic bounded biharmonic weights minimize E∆2 subject
to zero Neumann boundary conditions [Jacobson et al. 2011] and
bound constraints. Restricting EH 2 to the same value as classic
bounded biharmonic weights on the outside of the shape, but not
on interior holes leads to weights that preserve the characteristic
shape of holes withough much distortion. As can be seen in Fig. 12,
bounded biharmonic weights based on E∆2 distort the interior holes

Noisy function EH2E∆2 , ∇ · n = 0

Fig. 13. Smoothing on a noisy domain. Compared to previous methods (left),
the natural boundary conditions of EH2 (right) better model ignoring the
non-salient boundaries when smoothing data on a partial surface scan.

of the pants significantly under deformation, while EH 2 alleviates
the effect.

We now turn our attention to another common use for a smooth-
ness energy: dense data denoising or fairing. To do so, we can opti-
mize a function u that minimizes the weighted sum of a data term
(L2-norm of difference between u and a noisy input function f ) and
the L2 smoothness energy (e.g., E∆2 or EH2 ). When using E∆2 for
data smoothing on domains with free boundaries, previous methods
(e.g., [Weinkauf et al. 2010]) enforce low-order boundary conditions
to ensure that noisy boundary values are not simply interpolated
(see Fig. 3).

The biasing effect of these low-order conditions is apparent: the
heavier the smoothing, the more the solution becomes constant near
the boundary regardless of the data there. In contrast, smoothing
with EH2 allows the solution to vary near the boundary (see Fig. 11).

In Fig. 13, we smooth a noisy simulation of heat diffusion on a
range scan of a Nokia cellphone [Godil et al. 2009]. The abundance
of free boundaries due to missing data highlights the effect of zero
Neumann boundary conditions compared to the natural boundary
conditions of EH2 .

The energies E∆2 and EH2 measure the L2-norm of the Laplacian
/ Hessian respectively. Minimization of such energies prefers to
distribute energy smoothly over the domain. In contrast, L1 mini-
mization prefers to concentrate high energy at sparse locations. At

noisy input EH1EH2

Fig. 14. Smoothing using the L2-norm also removes salient creases. Mini-
mizing the L1-norm of the Hessian produces a piecewise-planar solution.
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E∆1EH1

Fig. 15. The Bunny flows along L1-minimization of the Hessian (local energy density in pseudocolor). Energy concentrates at creases and the bunny develops
smooth, nearly flat regions. This minimization achieves crease-aware smoothing of surface geometry. Minimizing the L1-norm of the Laplacian leads to
energy concentration at points and a prickly appearance.

these locations we see the behavior of natural boundary conditions
of the smoothness energy. Effectively, they become boundaries be-
tween low-energy regions. In Fig. 14, we smooth a toy function (a
triangle wave plus noise). While L2 smoothing EH2 also rounds the
peaks, L1 smoothing EH1 smooths away the noise but maintains the
sharp creases.

In Fig. 16, we smooth the noisy height data of a cathedral rooftop.
Minimizing the L1-norm of the Laplacian (E∆1 ) concentrates energy
at isolated points, producing a circus tent appearance. In contrast,
minimizing the L1-norm of the Hessian (EH1 ) concentrates energy
along creases, producing a piecewise planar rooftop.

Under the L1-norm, the difference between minimizers does not
rely on the presence of a boundary. Indeed, even for closed surfaces
with no boundary, we see very different behavior. In Fig. 15, we treat
the surface’s geometry as the input data f and take smoothing steps
where the data-versus-smoothness weight acts as an implicit time-
step parameter controlling a geometric flow. The EH1 flow of the
Bunny forms 1D creases bounding smooth, near-developable (low
Gaussian curvature) patches. This application is inspired by image
smoothing with sparse norms [Xu et al. 2011] and as such the results
are reminiscent of surface contrast enhancing methods (e.g., [He
and Schaefer 2013]). In contrast, the E∆1 flow quickly concentrates
energy at isolated points suspended in a near-minimal (low mean
curvature) surface.

7 CONCLUSION & FUTURE WORK
Energies built with the Hessian rather than the Laplacian unlock
high-order boundary conditions that are especially useful when
boundaries are to be conceptually ignored during problem modeling.

In future work, we would like to investigate formulations of EH2

for curved surfaces that account for the covariant derivative, as well
as corresponding discretizations (see Section 5.3.1). For flat domains,
it would be interesting to explore boundary-only discretizations
(cf. [Chen and Weber 2015]) or subspace deformation for solid ob-
jects. Initial derivations suggest that point constraints may not lead
to smooth minimizers of second-order smoothness energies for
solids. One possibility, however daunting, may be to consider the
squared Frobenius norm of the three-tensor of third derivatives, an
energy with only quadratic functions in its null space.

E∆1 EH1noisy input

Fig. 16. Smoothing a cathedral roof. Unlike L2 minimization, the behavior
of E∆1 =

∫
|∆u | dA and EH1 =

∫
|Hu |F dA are dramatically different in

the interior.

We hope that our work sheds new light on familiar problems and
provides insights into the power of the natural boundary conditions
of the squared Hessian energy for geometry processing problems.
Many applications that are currently using the squared Laplacian
energy with zero Neumann boundary conditions can potentially
profit by trying the squared Hessian energy with natural boundary
conditions alongside it.
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A FINITE DIFFERENCES
In order to discretize EH2 over a domain Ω embedded in a grid
with n total nodes and n̂ interior nodes, we define a sparse ma-
trix H =

[
HT
xx HT

yy
√

2HT
xy

]T ∈ R3n̂×n so that each row of Hxx
approximates the second derivative of the unknown function at
the corresponding interior grid node: Hi

xxu ≈ ∂2u (xi )/∂x2 and
analogously for rows in Hyy and Hxy .

We use standard, second-order stencils for each term, i.e.,:

Hi
xxu =

ui, j−1 − 2ui, j + ui, j+1
h2 (28)

Hi
yyu =

ui−1, j − 2ui, j + ui+1, j
h2

Hi
xyu = Hi

yxu =
ui−1, j−1 + ui−1, j+1 − ui+1, j−1 + ui+1, j+1

4h2 .

B MIXED FINITE ELEMENTS
Solving the piecewise-linear discretization of Equation (25) by differ-
entiating with respect to all degrees of freedom, we have a system
of linear equations in matrix form:

(
M̃ DTAG

GTAD 0

) *......
,

Vxx
Vxy
Vyx
Vyy
u

+//////
-

= 0 (29)

where M̃ ∈ R4 |i |×4 |i | repeats the mass matrix M(i, i ) along the
diagonal, A ∈ R2m×2m is a diagonal matrix containing triangle
areas, and D ∈ R2m×4 |i | computes the matrix divergence defined
by:

D =
(
G(x , i ) G(y, i ) 0 0

0 0 G(x , i ) G(y, i )

)
, (30)

where G ∈ R2m×n is the usual gradient operator and G(x , i ) selects
the rows and columns corresponding to the x-compo-nents and
interior vertices respectively. Finally, if we use lumped mass matri-
ces we can efficiently condense this system and use it to define a

discretization of our original energy:
EH2 (u) ≈ uTGTADM̃−1DTAGu. (31)

C L1 MINIMIZATION
In the smooth setting, the L1 Frobenius norm of the Hessian is:∫

Ω

|Hu |F dA (32)

This can be minimized by introducing an auxiliary matrix-valued
variable equal to the element-wise absolute value of the Hessian
Y = |Hu | and solving the constrained optimization problem:

min
u,Y

∫
Ω

1TY1 dA (33)

subject to Hu ≤ Y, Hu ≥ −Y, and Y ≥ 0, (34)
where 1 is a vector of ones (with appropriate length).

Using our discrete matrices, this becomes a linear program
min
u,y

1T M̃y (35)

subject to Hu ≥ −y (36)
Hu ≤ y (37)
y ≥ 0, (38)

where y ∈ R4n̂ is a vectorization of per-vertex 2 × 2 matrices on a
mesh with n̂ interior vertices and H = DTAG.

When combined with other quadratic energies such as a data-
term, this transforms into a quadratic program. We solve such prob-
lems with Mosek [Andersen and Andersen 2000].
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