
A Theory of Spherical Harmonic Identities for
BRDF/Lighting Transfer and Image Consistency

Dhruv Mahajan1, Ravi Ramamoorthi1, and Brian Curless2

1 Columbia University
{dhruv, ravir}@cs.columbia.edu

2 University of Washington
curless@cs.washington.edu

Abstract. We develop new mathematical results based on the spherical har-
monic convolution framework for reflection from a curved surface. We derive
novel identities, which are the angular frequency domain analogs to common
spatial domain invariants such as reflectance ratios. They apply in a number of
canonical cases, including single and multiple images of objects under the same
and different lighting conditions. One important case we consider is two differ-
ent glossy objects in two different lighting environments. Denote the spherical
harmonic coefficients by Blight,material

lm , where the subscripts refer to the spher-
ical harmonic indices, and the superscripts to the lighting (1 or 2) and object
or material (again 1 or 2). We derive a basic identity, B1,1

lm B2,2
lm = B1,2

lm B2,1
lm ,

independent of the specific lighting configurations or BRDFs. While this paper
is primarily theoretical, it has the potential to lay the mathematical foundations
for two important practical applications. First, we can develop more general al-
gorithms for inverse rendering problems, which can directly relight and change
material properties by transferring the BRDF or lighting from another object or
illumination. Second, we can check the consistency of an image, to detect tam-
pering or image splicing.

1 Introduction

Recent work by Basri and Jacobs [2], and Ramamoorthi and Hanrahan [15] has shown
that the appearance of a curved surface can be described as a spherical convolution
of the (distant) illumination and BRDF. This result often enables computer vision al-
gorithms, previously restricted to point sources without attached shadows, to work in
general complex lighting. Many recent articles have explored theoretical and practical
applications for Lambertian surfaces (e.g., [1, 16]). However, there has been relatively
little work in vision on using the convolution formulae for general glossy objects.

The main goal of this paper is to derive new formulae and identities for direct fre-
quency domain spherical (de)convolution. As with most previous work in the area, we
assume curved homogeneous objects (single BRDF) of known shape lit by complex
distant illumination, and neglect cast shadows and interreflections. As explained in
section 2, we also assume the BRDF is radially symmetric, which is a good approx-
imation for most specular reflectance. A first example of our framework (section 3.1) is
illumination estimation from a single image of a glossy material with known BRDF. By
the convolution theorem, a glossy material will reflect a blurred version of the lighting.
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Fig. 1. One application of our framework. We are given real photographs of two objects of known
geometry (shown in inset; note that both objects can be arbitrary, and one of them is a sphere
here only for convenience). The two objects have different (and unknown) diffuse and specular
material properties. Both objects are present in the first image under complex lighting, but the
cat is not available in the second image, under new lighting. Unlike previous methods, none of
the lighting conditions or BRDFs are known (lightings on left shown only for reference). Our
method enables us to render or relight the cat, to obtain its image in lighting 2 (compare to actual
shown on the right). This could be used for example to synthetically insert the cat in the second
image.

It is appealing to sharpen or deconvolve this by dividing in the frequency domain by
the spherical harmonic coefficients of the BRDF. The basic formula is known [15], but
cannot be robustly applied, since BRDF coefficients become small at high frequencies.
Our first contribution is the adaptation of Wiener filtering [4, 11] from image processing
to develop robust deconvolution filters (figures 2 and 5).

Deconvolution can be considered a particular case, involving a single image of an
object with known reflectance in unknown lighting. In this paper, we study single
(section 3) and multiple (section 4) images under single and multiple lighting condi-
tions. Our main contribution is the derivation of a number of novel frequency domain
identities. For example, one important case we consider (section 4.3) is that of two dif-
ferent glossy1 materials in two different lighting environments. Denote the spherical
harmonic coefficients by Blight,material

lm , where the subscripts refer to the harmonic
indices, and the superscripts to the lighting (1 or 2) and object or material (again
1 or 2). We derive an identity for the specular component, B1,1

lm B2,2
lm = B1,2

lm B2,1
lm ,

directly from the properties of convolution, independent of the specific lightings
or BRDFs.

We show (section 4.4) that this and a related class of identities can be considered the
frequency domain analog of fundamental spatial domain invariants, such as reflectance
ratios (Nayar and Bolle [13]) or photometric invariants (Narasimhan et al. [12]).

1 Parts of the theory (in sections 3.2 and 4) address only purely specular (or purely Lambertian)
objects. However, as discussed in the paper and shown in our results, the theory and algorithms
can be adapted in practice to glossy objects having both diffuse and specular components.
Hence, we use the term “glossy” somewhat loosely throughout the paper.
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This paper is motivated by two important practical applications. The first is inverse
rendering [10, 15]. Besides estimation of lighting and BRDFs, we also develop more
general algorithms, which directly relight and change material properties by transfer-
ring the BRDF or lighting from another object or illumination. For example, our iden-
tity above enables us to render the fourth light/BRDF image (say B2,2

lm ), given the other
three, without explicitly estimating any lighting conditions or BRDFs. A common ex-
ample (figure 1) is when we observe two objects in one lighting, and want to insert the
second object in an image of the first object alone under new lighting.

The second, newer application, is to verify image consistency and detect tampering
(Johnson and Farid [7], Lin et al. [8]). The widespread availability of image processing
tools enables creation of “forgeries” such as splicing images together (one example is
shown in figure 6). Most previous work has focused on checking consistency at a signal
or pixel level, such as the camera response [8], or wavelet coefficients (Ng et al. [14]).
However, (in)consistencies of lighting and shading also provide valuable clues. This
paper takes an important first step in laying theoretical foundations for this new area.

2 Background

We now briefly introduce the spherical convolution and signal-processing frame-
work [2, 15] needed for our later derivations. We start with the Lambertian case,

B(n) =
∫

S2
L(ω)max(n · ω, 0) dω, (1)

where B(n) denotes the reflected light as a function of the surface normal. B is pro-
portional to the irradiance (we omit the albedo for simplicity), and L(ω) is the incident
illumination. The integral is over the sphere S2, and the second term in the integrand
is the half-cosine function. The equations in this paper do not explicitly consider color;
the (R,G,B) channels are simply computed independently.

A similar mathematical form holds for other radially symmetric BRDFs, such as the
Phong model for specular materials. In this case, we reparameterize by the reflected
direction R (the reflection of the viewing ray about the surface normal), which takes
the place of the surface normal:

B(R) =
s + 1
2π

∫
S2

L(ω)max(R · ω, 0)s dω, (2)

where s is the Phong exponent, and the BRDF is normalized (by (s + 1)/2π).
If we expand in spherical harmonics Ylm(θ, φ), using spherical coordinates ω =

(θ, φ), n or R = (α, β), and ρ(θ) for the (radially symmetric) BRDF kernel, we obtain

L(θ, φ) =
∞∑

l=0

l∑
m=−l

LlmYlm(θ, φ) B(α, β) =
∞∑

l=0

l∑
m=−l

BlmYlm(α, β) ρ(θ) =
∞∑

l=0

ρlYl0(θ).

(3)
It is also possible to derive analytic forms for common BRDF filters ρ. For the
Lambertian case, almost all of the energy is captured by l ≤ 2. For Phong and
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Torrance-Sparrow, good approximations [15] are Gaussians: exp[−l2/2s] for Phong,
and exp[−(σl)2] for Torrance-Sparrow, where σ is the surface roughness parameter.

In the frequency domain, the reflected light B is given by a simple product formula
or spherical convolution (see [2, 15] for the derivation and an analysis of convolution),

Blm = ΛlρlLlm = AlLlm (4)

where for convenience, we define Al and the normalization constant Λl as

Λl =

√
4π

2l + 1
Al = Λlρl. (5)

The remainder of this paper derives new identities and formulae from equation 4,
Blm = AlLlm. Practical spherical harmonic computations are possible from only a sin-
gle image, since a single view of a sufficiently curved object (assuming a distant viewer)
sees all reflected directions. Most glossy BRDFs (such as Torrance-Sparrow) are ap-
proximately radially symmetric, especially for non-grazing angles of reflection [15].
Most of the theory in this paper also carries over to general isotropic materials, if we
consider the entire light field, corresponding to multiple views [9].

3 Theoretical Analysis: Single Image of One Object

We develop the theory for the simplest case of a single image of one object in this
section, with multiple objects and lighting conditions discussed later in section 4.

3.1 Known BRDF: Deconvolution to Estimate Lighting

We start by considering a known BRDF, where we want to determine the lighting. Given
a single image of a curved surface, we can map local viewing directions to the reflected
direction, determining B(R), and then Blm by taking a spherical harmonic transform.
If the material includes a diffuse component, we use the dual lighting estimation algo-
rithm [15], which finds the specular Blm consistent with the diffuse component. As per
equation 4, Blm will be a blurred version of the lighting, filtered by the glossy BRDF.

From equation 4 in the spherical harmonic domain, we derive

Llm =
Blm

Al
= Al

−1Blm, (6)

where the last identity makes explicit that we are convolving with a new radially sym-
metric kernel A−1

l , which can be called the inverse, sharpening or deconvolution filter.
Unfortunately, it is difficult to apply equation 6 directly, since Al in the denominator

will become small for high frequencies, or alternatively the inverse filter A−1
l will be-

come very large. This will lead to substantial amplification of noise at high frequencies.
These types of problems have been well studied in image processing, where a number

of methods for deconvolution have been proposed. We adapt Wiener filtering [4, 11]
for this purpose. Specifically, we define a new inverse filter,

A∗
l =

1
Al

(
|Al|2

|Al|2 +K

)
=

Al

|Al|2 +K
Llm = Al

∗Blm, (7)
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Fig. 2. Deconvolution filter in the angular (a), and frequency (b) domains. The combined effect
(multiplication in the frequency domain) of Phong and deconvolution filters is in (c).

where K is a small user-controlled constant. When |Al|2� K , the expression in paren-
theses on the left is close to 1, and A∗

l ≈ A−1
l . When |Al|2� K , A∗

l ≈ Al/K .
Figure 2 shows a deconvolution filter A∗

l in the angular (a) and frequency (b) do-
mains. The convolution of this filter with the original Phong filter (blue graph in c) lets
through most frequencies without attenuation, while filtering out the very high frequen-
cies. Figure 5 shows an application of deconvolution with real images and objects.

3.2 Known Lighting: Identity Obtained by Eliminating the BRDF

We now consider the converse case, where the lighting is known, but the BRDF is not.
We will eliminate the BRDF to derive an identity that must hold and can be checked
independent of the BRDF. This is the first of a number of frequency domain identities
we will derive in a similar fashion. First, from equation 4, we can write

Al =
Blm

Llm
. (8)

This expression could be used to solve for BRDF coefficients.2 However, we will use
it in a different way. Our key insight is that the above expression is independent of m,
and must hold for all m. Hence, we can eliminate the (unknown) BRDF Al, writing

Bli

Lli
=

Blj

Llj
(9)

for all i and j. Moving terms, we obtain our first identity,

BliLlj − BljLli = 0. (10)

In effect, we have found a redundancy in the structure of the image, that can be used
to detect image tampering or splicing. The lighting L and image B are functions on a
2D (spherical) domain. However, they are related by a 1D radially symmetric BRDF,
leading to a 1D redundancy, that can be used for consistency checking in equation 10.

To normalize identities in a [0...1] range, we always use an error of the form

Error =
| BliLlj − BljLli |

| BliLlj | + | BljLli | .

2 Since natural lighting usually includes higher frequencies than the BRDF, we can apply equa-
tion 8 directly without regularization, and do not need to explicitly discuss deconvolution.
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Fig. 3. Left: The synthetic images used. These correspond to closeups of specular spheres ren-
dered with “ECCV” and “ICCV” lighting. To the naked eye, the two images look very simi-
lar. Middle and Right: The graphs show that our identity can clearly distinguish consistent
image/lighting pairs (lower line) from those where lighting and image are inconsistent (upper
line).

There are many ways one could turn this error metric into a binary consistency checker
or tamper detector. Instead of arbitrarily defining one particular approach, we will show
graphs of the average normalized error for each spherical harmonic order.

Figure 3 applies our theory to synthetic data of an ideal Phong BRDF, with noise
added. We show closeups of (a rectangular region in) spheres generated with “ECCV”
and “ICCV” lighting. To the naked eye, these look very similar, and it is not easy to de-
termine if a given image is consistent with the lighting. However, our identity in equa-
tion 10 clearly distinguishes between consistent (i.e., the image is consistent with the
lighting [ECCV or ICCV] it is supposed to be rendered with) and inconsistent illumi-
nation/image pairs. As compared to Johnson and Farid [7], we handle general complex
illumination. Moreover, many of the identities in later sections work directly with im-
age attributes, not even requiring explicit estimation or knowledge of the illumination
(though we still require known geometry, and assume homogeneous materials.)

Our framework could be used to blindly (without watermarking) detect tampering of
images, making sure a given photograph (containing a homogeneous object of known
shape) is consistent with the illumination it is captured in.3 To the best of our knowl-
edge, ours is the first theoretical framework to enable these kinds of consistency checks.
Example applications of tamper detection on real objects are shown in figures 4 and 6.

3.3 Combining Diffuse and Specular

We now consider the more general case of an unknown glossy BRDF with both specular
and Lambertian (diffuse) reflectance. To our knowledge, this is the first such combined
diffuse plus specular theory of the single image case.

3 Our identities are “necessary” conditions for image consistency, under our assumptions and
in the absence of noise. They are not theoretically “sufficient.” For example, if an unusual
material were to zero out a certain frequency, tampering at that frequency may go unde-
tected. Also note that noise tends to add high frequencies, while materials tend to filter out
high frequencies, causing the consistency errors to rise (become less reliable) with harmonic
order.
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Common Parameterization: While both diffuse and specular components are radially
symmetric, they are so in different parameterizations (normal vs reflected direction).
Hence, we first express the diffuse irradiance in the reflected parameterization,

Blm = KdDlm + Aspec
l Llm, (11)

where Dlm are the spherical harmonic coefficients of the irradiance written in the re-
flected parameterization4. They depend only on the lighting, which is assumed known,
and are small [9] for | m |> 2. The parameters of reflectance are the diffuse coefficient
Kd and the specular BRDF filter coefficients Al (we drop the superscript from now on).

Determining Al and Image Consistency: For example, we can now eliminate Kd,

Bli − AlLli

Dli
=

Blj − AlLlj

Dlj
=⇒ Al =

BliDlj − BljDli

LliDlj − LljDli
. (12)

This can be used to directly estimate the specular BRDF coefficients, irrespective of
the diffuse coefficient Kd. As a sanity check, consider the case when Kd = 0. In this
case, Bli = AlLli, so the expression above clearly reduces to Al. Hence, equation 12
can be considered a new robust form of reflectance estimation that works for both purely
specular and general glossy materials. Further note that we estimate an accurate non-
parametric BRDF representation specified by general filter coefficients Al.

Since the formula above is true for all i, j, we get an identity for image consistency.
An application to detect splicing for a real object is shown in the left graph of figure 6.

BliDlj − BljDli

LliDlj − LljDli
=

BlmDln − BlnDlm

LlmDln − LlnDlm
. (13)

4 Theoretical Analysis: Two Materials and/or Lighting Conditions

Section 3 analyzed the single object, single image case. In this section5, we first consider
two different objects (with different materials) in the same lighting. Next, we consider
one object imaged in two different lighting conditions. Then, we consider the two light-
ing/two BRDF case corresponding to two images (in different lighting conditions), each
of two objects with distinct BRDFs. Finally, we discuss some broader implications.

4.1 Two Objects/BRDFs: Same Lighting

We consider a single image (hence in the same lighting environment) of two objects,
with different BRDFs. Let us denote by superscripts 1 or 2 the two objects,

4 Dlm depend linearly on lighting coefficients Llm as Dlm ≈
∑2

n=0 ALamb
n LnmTlmn, with

Tlmn =
∫

S2 Ynm(α
2 , β)Y ∗

lm(α, β) dΩ. The α/2 in the first term converts from normal to
reflected parameterization. The coefficients Tlmn can be determined analytically or numeri-
cally [9].

5 This section will primarily discuss the purely specular case. For consistency checking, we have
seen that in the reflective reparameterization, the diffuse component mainly affects frequencies
Dlm with | m |≤ 2. Therefore, it is simple to check the identities for | m |> 2. Diffuse
relighting is actually done in the spatial domain, as discussed in section 4.4. Section 5 provides
experimental validation with objects containing both diffuse and specular components.
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B1
lm = A1

l Llm B2
lm = A2

l Llm. (14)

From these, it is possible to eliminate the lighting by dividing,

B2
lm

B1
lm

=
A2

l

A1
l

= γl. (15)

We refer to γl as the BRDF transfer function. Given the appearance of one object
in complex lighting, multiplication of spherical harmonic coefficients by this function
gives the appearance of an object with a different material. γl is independent of the
lighting, and can be used in any (unknown) natural illumination. Also note that γl is
independent of m, so we can average over all m, which makes it robust to noise—
in our experiments, we have not needed explicit regularization for the frequencies of
interest. Moreover, we do not need to know or estimate the individual BRDFs.

It is also possible to use these results to derive a frequency space identity that depends
only on the final images, and does not require explicit knowledge of either the lighting
condition or the BRDFs. We know that equation 15 should hold for all m, so

B2
li

B1
li

=
B2

lj

B1
lj

=⇒ B2
liB

1
lj − B1

liB
2
lj = 0. (16)

This identity can be used for consistency checking, making sure that two objects in an
image are shaded in consistent lighting. This enables detection of inconsistencies, where
one object is spliced into an image from another image with inconsistent lighting. As
with equation 10, the images B are 2D functions, but related by a 1D radially symmetric
BRDF, leading to redundancies in the spherical harmonic coefficients.

Finally, note that the single image identity (equation 10) is a special case of equa-
tion 16, where one of the objects is simply a mirror sphere (so, for instance, B1 = L).

4.2 Two Lighting Environments: Same Object/BRDF

We now consider imaging the same object in two different lighting environments. Let
us again denote by superscripts 1 or 2 the two images, so that,

B1
lm = AlL

1
lm B2

lm = AlL
2
lm. (17)

Again, it is possible to eliminate the BRDF by dividing,

B2
lm

B1
lm

=
L2

lm

L1
lm

= L
′

lm. (18)

We refer to L
′

lm as the lighting transfer function. Given the appearance of an object in
lighting condition 1, multiplication of spherical harmonic coefficients by this function
gives the appearance in lighting condition 2. L

′

lm is independent of the reflectance or
BRDF of the object. Hence, the lighting transfer function obtained from one object
can be applied to a different object. Moreover, we never need to explicitly compute the
material properties of any of the objects, nor recover the individual lighting conditions.
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The relighting application does not require explicit knowledge of either lighting con-
dition. However, if we assume the lighting conditions are known (unlike the previous
subsection, we need the lighting known here since we cannot exploit radial symmetry
to eliminate it), equation 18 can be expanded in the form of an identity,

B2
lmL1

lm − B1
lmL2

lm = 0. (19)

This identity can be used for consistency checking, making sure that two photographs of
an object in different lighting conditions are consistent, and neither has been tampered.

4.3 Two Materials And Two Lighting Conditions

Finally, we consider the most conceptually complex case, where both the lighting
and materials vary. This effectively corresponds to two images (in different lighting
conditions), each containing two objects of different materials. We will now use two
superscripts, the first for the lighting and the second for the material.

Lighting 1 Lighting 2
BRDF 1 B1,1

lm = A1
l L

1
lm B2,1

lm = A1
l L

2
lm

BRDF 2 B1,2
lm = A2

l L
1
lm B2,2

lm = A2
l L

2
lm

Simply by multiplying out and substituting the relations above, we can verify the basic
identity discussed in the introduction to this paper,

B1,1
lm B2,2

lm = B1,2
lm B2,1

lm = A1
l A

2
l L

1
lmL2

lm, (20)

or for the purposes of consistency checking,

B1,1
lm B2,2

lm − B1,2
lm B2,1

lm = 0. (21)

An interesting feature of this identity is that we have completely eliminated all lighting
and BRDF information. Consistency can be checked based simply on the final images,
without estimating any illuminations or reflectances. Note that if the second object is a
mirror sphere, this case reduces to the two lightings, same BRDF case in equation 19.

Equation 20 also leads to a simple framework for estimation. The conceptual setup
is that we can estimate the appearance of the fourth lighting/BRDF image (without loss
of generality, say this is B2,2

lm ), given the other three, without explicitly computing any
illumination or reflectances. Clearly, this is useful to insert the second object into a pho-
tograph where it wasn’t present originally, assuming we’ve seen both objects together
under another lighting condition. From equation 20, we have

B2,2
lm =

B1,2
lm B2,1

lm

B1,1
lm

(22)

= B1,2
lm (

B2,1
lm

B1,1
lm

) = B1,2
lm L

′

lm (23)

= B2,1
lm (

B1,2
lm

B1,1
lm

) = B2,1
lm γl. (24)
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This makes it clear that we can visualize the process of creating B2,2
lm in two differ-

ent ways. One approach is to start with the same object in another lighting condition
B1,2

lm and apply the lighting transfer function L
′

lm obtained from another object. Al-
ternatively, we start with another object in the same lighting condition, i.e. B2,1

lm and
apply the BRDF transfer function γl. The BRDF transfer function is found from the
image of both objects in lighting condition 1. In practice, we prefer using the BRDF
transfer function (equation 24), since γl is more robust to noise. However, the equa-
tions above make clear that both interpretations are equivalent, following naturally from
equation 20. Since none of the lightings or BRDFs are known, it would be very difficult
to render B2,2

lm with alternative physics-based inverse rendering methods.

4.4 Implications and Discussion

We now briefly discuss some of the broader implications of our theory, and previous
spatial domain identities and invariants analogous to our frequency domain results.

Multiple lighting conditions and BRDFs: Let us consider r lighting conditions and s
BRDFs, instead of assuming r = s = 2, with superscripts i ≤ r and j ≤ s, so that

Bi,j
lm = Aj

l L
i
lm =⇒ Blm = LlmAT

l , (25)

where in the last part, for a given spherical harmonic index (l, m), we regard Blm as an
r × s matrix obtained by multiplying column vectors Llm (r × 1), corresponding to the
lighting conditions, and the transpose of Al (s × 1), corresponding to the BRDFs.

Equation 25 makes it clear that there is a rank 1 constraint on the r × s matrix
Blm. Section 4.3 has considered the special case r = s = 2, corresponding to a 2 × 2
matrix, where the rank 1 constraint leads to a single basic identity (equation 21). In fact,
equation 21 simply states that the determinant of the singular 2 × 2 matrix Blm is zero.

Spatial Domain Analog: Equation 25 expresses the image of a homogeneous glossy
material in the frequency domain as a product of lighting and BRDF. Analogously,
a difficult to analyze frequency domain convolution corresponds to a simple spatial
domain product. For example, the image of a textured Lambertian surface in the spatial
domain is a product of albedo ρk and irradiance Ek, where k denotes the pixel.

Bi,j
k = ρj

kEi
k =⇒ Bk = EkρT

k . (26)

These identities enable spatial domain techniques for re-rendering the diffuse com-
ponent (which in our case has constant albedo since the material is homogeneous),
while still using the frequency domain for the specular component.6 We use the spa-
tial domain analogs of equations 20 and 24 to compute the diffuse component of B2,2.

6 We first separate diffuse and specular components by observing that in a parameterization by
surface normals, Blm will have essentially all of its diffuse energy for l ≤ 2, while the specular
energy falls away much more slowly, and therefore mostly resides in l > 2. Since we have
only the front facing normals in a single image, we use fitting to remove the low-frequency
terms with l ≤ 2, and thereby separate diffuse and specular. As expected, this works less well
for the extremes when the specular intensity is very small relative to the diffuse component (in
the limit, a purely Lambertian surface) or vice versa (a purely specular object).
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In this case, the spatial analog of the BRDF transfer function γ in equation 24 simply
corresponds to the ratio of the (in our case uniform) diffuse albedos of the two objects.

Analogies with Previous Spatial Domain Results: While the exact form of, and rank
1 constraint on, equation 26 is not common in previous work, many earlier spatial do-
main invariants and algorithms can be seen as using special cases and extensions.

Reflectance ratios [13] are widely used for recognition. The main observation is
that at adjacent pixels, the irradiance is essentially the same, so that the ratio of im-
age intensities corresponds to the ratio of albedos. Using superscripts for the different
pixels as usual (we do not need multiple super- or any subscripts in this case), we have
B2/B1 = ρ2/ρ1. The analogous frequency domain result is equation 15, corresponding
to the two BRDFs, same lighting case. In both cases, by dividing the image intensities
(spherical harmonic coefficients), we obtain a result independent of the illumination.

Similarly, a simple version of the recent BRDF-invariant stereo work of Davis et
al. [3] can be seen as the two lighting, same BRDF case. For fixed view and point
source lighting, a variant of equation 26 still holds, where we interpret ρj

k as the (spa-
tially varying) BRDF for pixel k and fixed view, and Ei

k as the (spatially varying)
light intensity at pixel k. If the light intensity changes (for the same pixel/BRDF),
we have B2/B1 = E2/E1. The frequency domain analog is equation 18. In both
cases, we have eliminated the BRDF by dividing image intensities or spherical har-
monic coefficients.

Narasimhan et al. [12] also assume point source lighting to derive spatial domain
photometric invariants. By contrast, our frequency domain framework handles general
complex lighting (but is limited to homogeneous objects with known shape, and a global
spherical harmonic analysis as opposed to local pixel operations.) Narasimhan et al. [12]
consider a variant of equation 26 with a summation of multiple terms (such as diffuse
plus specular). For each term, ρ encodes a material property such as the diffuse albedo,
while E encodes illumination and geometric attributes. Their work can be seen as ef-
fectively deriving a rank constraint on B, corresponding to the number of terms. For
diffuse objects, this is a rank 1 constraint, analogous to that in the frequency domain for
equation 25. For diffuse plus specular, this is a rank 2 constraint. They then effectively
use the rank constraint to form determinants that eliminate either material or geome-
try/lighting attributes, as in our frequency domain work. Jin et al. [6] use a similar rank
2 constraint for multi-view stereo with both Lambertian and specular reflectance.

Finally, we note that some of our frequency domain results have no simple spatial
domain analog. For example, the concept of angular radial symmetry does not transfer
to the spatial domain, and there is no known spatial analog of equations 10, 13, and 16.

5 Experimental Validation and Results

We now present some experiments to validate the theory, and show potential applica-
tions. We start with diffuse plus specular spheres in figure 4, since they correspond
most closely with our theory. We then describe results with a complex cat geometry
(figures 1, 5 and 6). All of these results show that the theory can be applied in practice
with real data, where objects are not perfectly homogeneous, there is noise in measure-
ment and calibration, and specular reflectance is not perfectly radially symmetric.
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Fig. 4. Top Left: Experimental setup. Top Middle: Two lightings (shown only for reference)
and images of two glossy (diffuse plus specular) spheres in that lighting. Top Right: We can
accurately render (b1), given (a1,a2,b2), and render (b2), given (a1,a2,b1). Bottom: We tamper
(b2) to generate (c) by squashing the specular highlights slightly in photoshop. While plausible
to the naked eye, all three identities in section 4 clearly indicate the tampering (red graphs).

Experimental Setup: We ordered spheres from http://www.mcmaster.com. The cat
model was obtained at a local craft sale. All objects were painted to have various spec-
ular finishes and diffuse undercoats. While homogeneous overall, small geometric and
photometric imperfections on the objects were visible at pixel scale and contributed
“reflection noise” to the input images. To control lighting, we projected patterns onto
two walls in the corner of a room. We placed a Canon EOS 10D camera in the cor-
ner and photographed the objects at a distance of 2-3m from the corner (see top left of
figure 4). This setup has the advantage of more detailed frontal reflections, which are less
compressed than those at grazing angles. However, frontal lighting also gives us little
information at grazing angles, where the BRDF might violate the assumption of radial
symmetry due to Fresnel effects; we hope to address this limitation in future experi-
ments. To measure the lighting, we photographed a mirror sphere. To measure BRDFs
(only for deconvolution), we imaged a sphere under a point source close to the camera,
determining Al by simply reading off the profile of the highlight, and Kd by fitting to
the diffuse intensity. For all experiments, we assembled high-dynamic range images.

Glossy Spheres: Figure 4 shows the two lighting, two materials case. The top right
shows a relighting application. We assume (b1) is unknown, and we want to synthesize
it from the other 3 lighting/BRDF images (a1,a2,b2). We also do the same for rendering
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Fig. 5. Deconvolution on a real cat image. Left: Geometry estimation, using example-based
photometric stereo (we take a number of images with the cat and example sphere; the sphere is
also used to find the BRDF). Middle: Input image under unknown lighting, and mapping to a
sphere using the surface normals. Right: Closeups, showing the original sphere map, and our
deconvolved lighting estimate on top. This considerably sharpens the original, while removing
noise, and resembles the BRDF*Wiener filter applied to the actual lighting (bottom row).

Fig. 6. Image consistency checking for cat (labels are consistent with figure 1). The tampered
image (c) is obtained by splicing the top half (b1) under lighting 1 and the bottom half (b2) under
lighting 2. Image (c) looks quite plausible, but the splicing is clearly detected by our identities.

(b2) assuming we know (a1,a2,b1). The results are visually quite accurate, and in fact
reduce much of the noise in the input. Quantitatively, the L1 norm of the errors for (b1)
and (b2) are 9.5% and 6.5% respectively. In the bottom row, we tamper (b2) by using
image processing to squash the highlight slightly. With the naked eye, it is difficult to
detect that image (c) is not consistent with lighting 2 or the other spheres. However, all
three identities discussed in the previous section correctly detect the tampering.

Complex Geometry: For complex (mostly convex) known geometry, we can map ob-
ject points to points on the sphere with the same surface normal, and then operate on the
resulting spherical image. Deconvolution is shown in figure 5. We used a sphere painted
with the same material as the cat to aquire both the cat geometry, using example-based
photometric stereo [5] for the normals, and the BRDF (needed only for deconvolution).
Errors (unrelated to our algorithm) in the estimated geometry lead to some noise in the
mapping to the sphere. Our deconvolution method for lighting estimation substantially
sharpens the reflections, while removing much of the input noise.

The cat can also be used directly as an object for relighting/rendering and con-
sistency checking. An example of rendering is shown in figure 1. Note that this is
a very challenging example, since we are using the BRDF transfer function from a
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much lower-frequency material to a higher-frequency one—the blue sphere has a much
broader specular lobe than the green cat. Nevertheless, we see that the results are vi-
sually plausible. Figure 6 illustrates photomontage image tampering, in which the top
half under lighting 1 (b1 in figure 1) is spliced with the bottom half under lighting 2
(b2 in figure 1). While the image (c) looks plausible, the identities for both single and
multiple images clearly detect tampering.

6 Conclusions and Future Work

In this paper, we have derived a set of novel frequency space identities. These identities
often eliminate the lighting and/or BRDF, enabling a new class of inverse rendering al-
gorithms that can relight or change materials by using BRDF/lighting transfer functions.
In the future, similar ideas may be applied to other problems, such as BRDF-invariant
stereo or lighting-insensitive recognition. We would also like to extend our identities
and algorithms to work with textured objects, local patches, and unknown or approxi-
mate geometry. Beyond inverse rendering, our theoretical framework also makes a con-
tribution to the relatively new area of image consistency checking, describing a suite
of frequency domain identities to detect tampering. Finally, we have presented a new
unified view of spatial and frequency domain identities and rank constraints.
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