
Supplemental to
Adaptive Nonlinearity for Collisions in Complex Rod Assemblies

Danny M. Kaufman
Adobe & Columbia University

Rasmus Tamstorf
Walt Disney Animation Studios

Breannan Smith
Columbia University

Jean-Marie Aubry
Weta Digital

Eitan Grinspun
Columbia University

Here we provide details of the pseudocode and our implementa-
tion of ADONIS – our adaptively nonlinear solver for rod assem-
blies. In what follows we employ superscripts to denote time. The
subscripts j and k are reserved to denote contact indices, while
the subscripts x and y are reserved for indexing rods and colli-
sion meshes. At each solve we have ` rods with configurations
qx, velocities q̇x, displacements δx, masses Mx, and internal en-
ergies Vx(qx). The rod assembly is subject to a contact set K
of |K| = m detected contacts. Each contact is generated by ei-
ther the contact between two rods, a rod and a collision mesh,
or else by self contact. Each k ∈ K then records the global
indices of the rods and/or collision meshes in contact, the local
indices of the vertices, edges, and/or faces forming the contact,
and, if CCD is employed, the time of collision. Quantities un-
decorated by a subscript are used to denote the full system vari-
ables composed by concatenation, e.g., q = (qT1 , ..., q

T
`)T ∈ Rn,

M = diag(M1, ...,M`), and G = (G1, ...,Gm) ∈ Rn×3m, and
summation, e.g., V (q) =

∑
x Vx(qx); while H denotes the Hes-

sian of V . A single time step of our algorithm then proceeds as
given in Algorithm 1.

A number of additional points in the algorithm warrant further dis-
cussion:

Alg. 1, steps 3-4 These initial LU factorizations are readily avail-
able from the previously completed unconstrained solve in
step 2. Rod Hessians are banded matrices with a width of
eleven. We employ a sequentially banded LU factorization
method dgbtrf (http://www.netlib.org/lapack/double/dgbtrf.f)
for LU factorization of these Hessians.

Alg. 1, step 6 Collision detection generates a contact graph that
is then subdivided into its connected components or contact
groups. Each contact group is solved as an independent con-
tact problem. For clarity of presentation and the avoidance of
further subscripting we do not include this detail in our pseu-
docode. However, the chief difference is simply that each con-
tact group (or “island”) independently follows the pseudocode
from line 7 onwards and is computed in parallel.

Alg. 1, steps 6-7 Broad-phase updates, narrow-phase collision
detection queries, and contact point processing to build con-
straints are all performed in parallel.

Alg. 1, step 7 Build Constraints builds the contact frames for
proximity detected contacts at the start of step position qt,
while the contact frames for CCD detected contacts are con-
structed at the linearly predicted collision states. The scripted
displacements of the collision meshes at the detected points of
contact, along the contact frame directions, at estimated times
of collision, then give the offsets s.

Alg. 1, step 9 Initialize Contact Force can either set λ to 0
or else warm start based on tracking contact coherence over
time steps. In our code we employ the latter warm starting
strategy but have so far, in limited testing, observed little ad-
vantage in employing the warm starting except when rods are
close to rest. Further investigation is certainly warranted.

Alg. 1, step 17 Contact Error(λ) returns the ∞-norm over all
individual contact subproblem residuals.

Algorithm 1 ADONIS(qt, q̇t, h, t)

1: for x in {1, ..., `} do in parallel
2: δx ← solve DEL(qtx, q̇

t
x, h)

3: Hx ← Hx(qtx + δx)
4: {Lx,Ux} ← LUFactorize

(
Mx+h2Hx

)
5: end for
6: K← Collision Detection(δ, qt)
7: {G, s} ← Build Constraints(K, δ, qt)
8: S← K
9: λ← Initialize Contact Force()

10: while S 6= ∅ do
11: P← Assemble Compliance(S)
12: for x in {1, ..., `} do in parallel
13: bx ← hMxq̇

t
x − h2∇Vx(qtx + δx) + h2Hxδx

14: δx ← LUSolve(Lx,Ux, bx)
15: end for
16: gs itr← 0
17: while Contact Error(λ) > contact tol
18: & gs itr < gs max do
19: for k in K do
20: c←

∑
j∈K6=k Pjλj

21: λk ← solve : λk ∈ Rk(δ + Pkλk + c)
22: end for
23: gs itr← gs itr + 1
24: end while
25: δ ← δ +

∑
j∈K Pjλj

26: S← ∅
27: for x in {1, ..., `} do in parallel
28: if Stretch(x) > stretch tol then
29: Hx ← Hx(qtx + δx)
30: {Lx,Ux} ← LUFactorize

(
Mx+h2Hx

)
31: S← S ∪ Get Contacts For Rod(x)
32: end if
33: end for
34: end while
35: q̇t+1 ← 1

h
δ

36: qt+1 ← qt + δ
37: return (qt+1, q̇t+1)

Algorithm 2 Collision Detection(δ, qt)

1: if rod ccd then
2: K← rod-rod CCD on the trajectory from qt to qt + δ
3: else
4: K← rod-rod proximity collision-detection at qt

5: end if
6: K← K ∪ rod-mesh CCD on the trajectory from qt to qt + δ
7: return K

Algorithm 3 Stretch(x)

1: sfx ← maxi

(
|ei|/|ēi| − 1

)
,∀ edges i in rod x

2: return sfx

Algorithm 4 Assemble Compliance(K)

1: for k in K do
2: {x, y} ← Get Contacting Objects Indices(k)
3: if x = y or y is a collision mesh then
4: Pk ← BlockLUSolve(x, Lx,Ux,Gk)
5: else
6: Pk ← BlockLUSolve(x, Lx,Ux,Gk)
7: Pk ← BlockLUSolve(y, Ly,Uy,Pk)
8: end if
9: end for

10: return P = {P1, ...,Pm}

Alg. 1, steps 16-24 The Gauss-Seidel loop here is parallelized by
graph-color partitioning. I.e., all contacts are colored such
that no two contacts with overlapping stencils have the same
color. Our convergence tolerance is contact tol = 10−6.

Alg. 1, step 21 We use the hybrid solver of Daviet et al. [2011].

Alg. 1, step 31 Get Contacts For Rod(x) returns the contacts
that rod x is involved in.

Alg. 4, step 2 Get Contacting Objects Indices(k) returns
the indices of the rods and/or collision meshes that form
contact k. If x = y we have a self collision. Collision
meshes, when present, are given by the second index y.

Alg. 4, steps 4 & 6-7 The three columns of each Gk ∈ Rn×3 are
sparse with non-zero entries in a small subset of the rows cor-
responding to the DoFs of either one (for rod/mesh or self con-
tact) or two (in contact) rods. In lines 4 and 6 BlockLUSolve
applies an LU solve to the |qx|×3 block in Gk corresponding
to rod x’s DoFs, while in line 7 an analogous solve is applied
to the |qy|×3 block in Pk corresponding to rod y’s DoFs. As
the solves in 6 and 7 are on disjoint elements of Gk they can
be performed in parallel.

References

DAVIET, G., BERTAILS-DESCOUBES, F., AND BOISSIEUX, L.
2011. A Hybrid Iterative Solver for Robustly Capturing
Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30,
6 (Dec.), 139:1–139:12.

