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We present the first triangle mesh-based technique for tracking the evolution
of general three-dimensional multimaterial interfaces undergoing complex
topology changes induced by deformations and collisions. Our core repre-
sentation is a non-manifold triangle surface mesh with material labels as-
signed to each half-face to distinguish volumetric regions. We advect the
vertices of the mesh in a Lagrangian manner, and employ a complete set of
collision-safe mesh improvement and topological operations that track and
update material labels. In particular, we develop a unified, collision-safe
strategy for handling complex topological operations acting on evolving
triple- and higher-valence junctions, and a flexible method to merge collid-
ing multimaterial meshes. We demonstrate our approach with a number of
challenging geometric flows, including passive advection, normal flow, and
mean curvature flow.

Categories and Subject Descriptors: I.6.8 [Simulation and Modeling]:
Types of Simulation—Animation

Additional Key Words and Phrases: front tracking, multimaterial flows, tri-
angle meshes, remeshing, topology change

1. INTRODUCTION

Representing and tracking the evolution of dynamic surfaces is a
challenging problem with a host of applications spanning anima-
tion, geometric modeling, scientific computing, processing of im-
age and volume data, and more. The most familiar setting is a do-
main consisting of two materials or phases, one interior and one
exterior, separated by an interface. This is the case for the liquid-
air surface in a simple water animation.

More challenging is the case of general multimaterial interfaces,
that divide space into a set of two or more distinct materials; for
example, a multiphase flow featuring three immiscible fluids, such
as air, oil, and water. Numerous additional physical and mathemat-
ical applications have this same form: soap bubbles and dry foams,
crystal grain growth, geometric flows, minimal surface problems,
and various kinds of multi-cellular structures [Saye and Sethian
2012b].

Recently, Saye and Sethian presented a powerful and flexible
Voronoi Implicit Interface Method (VIIM) to track multimaterial in-
terfaces [Saye and Sethian 2012a; 2012b]. The approach represents
the interfaces implicitly via an unsigned distance function sampled
on a regular grid. Indeed, the dominant paradigms for multimate-
rial interface tracking have thus far built on classic implicit surface
approaches: level sets [Osher and Fedkiw 2002], volume-of-fluid
(VOF) [Hirt and Nichols 1981], and particles [Harlow and Welch
1965].

On the other hand, explicit triangle mesh-based surface track-
ing, or front tracking, has long been suggested as an alternative
in the computational fluid dynamics community [Glimm et al.
1988; Unverdi and Tryggvason 1992; Glimm et al. 1998], at least
in the simpler two-material case. Such methods can better pre-
serve details and thin geometries, and a number of authors [Du
et al. 2006; Brochu and Bridson 2009; Müller 2009; Wojtan et al.
2009; Campen and Kobbelt 2010; Zaharescu et al. 2011] have re-
cently demonstrated implementations of this concept that overcome

its well-known Achilles heel: geometric robustness problems in
resolving complex topology changes caused by collisions. How-
ever, to our knowledge no existing three-dimensional front tracking
method has addressed these challenges when three or more materi-
als are involved.

Contributions: The purpose of the present work is therefore to
develop the first fully general three-dimensional multimaterial front
tracking algorithm, and demonstrate its efficacy, flexibility, and ro-
bustness. Achieving this goal at first appears quite daunting: allow-
ing non-manifold, multimaterial geometries dramatically expands
the space of possible entangled mesh configurations that can arise,
and topological transformations that must be supported. Our cen-
tral contribution is to show how this complexity can be reduced
to handling essentially two fundamental operations: multimaterial
merging and T1 processes.

Merging occurs when closed material regions collide. While the
two-material case has been considered by existing front-tracking
methods, the multimaterial case has not. As an example, when a
droplet of water and a droplet of oil collide in air, they do not
merge into one; instead, a new oil-water interface maintains their
separation. We design a multimaterial merging strategy for this sce-
nario, based on locally remeshing and snapping together nearby
mesh elements. To ensure that our geometry remains a valid, non-
overlapping partition of space throughout this and all other mesh
transformations, we maintain an intersection-free invariant: fol-
lowing Brochu and Bridson [2009], we check each individual mesh
operation for potential intersections, canceling any that violate this
invariant.

T1 Processes occur when the local connectivity of volumetric
regions changes due to deformations [Weaire and Hutzler 2001]. A
familiar example arises for bubbles in a foam structure: as bubbles
push past each other they rapidly rearrange, and their local neigh-
bor relationships adjust accordingly. Non-manifold mesh-based al-
gorithms for simulating T1 (and the simpler T2) processes have
been developed by authors studying minimal surfaces, foams, and
grain growth [Brakke 1992; Lazar 2011]. However, these methods
do not consider collisions, and therefore cannot be directly applied
to the general front tracking problem. To respect our intersection-
free invariant, we must carry out collision-safe T1 processes. We
break down a (potentially quite complicated) T1 process into a se-
quence of fine-grained atomic mesh operations, each treated in an
all-or-nothing fashion. Each operation affects only a small mesh
neighborhood, making it more likely to succeed without introduc-
ing mesh interference. To construct the fine-grain operation se-
quence, we introduce and exploit a region graph, a duality mapping
between the local neighborhood of a multimaterial mesh vertex and
the graph of material incidence relations.

The resulting multimaterial front tracking algorithm is robust in
the face of complex topological transitions and large geometric
deformations, as demonstrated by a number of multimaterial ge-
ometric flows, including prescribed velocity fields, mean curvature
flow, and multimaterial normal flow. In these experiments the algo-
rithm successfully tracks complex configurations of multiple mov-
ing fronts, preserves sharp geometric features and mesh quality, and
introduces new interfaces between distinct colliding materials.
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2. RELATED WORK

There have been a host of surface tracking approaches presented in
the computer graphics, computational physics, and scientific com-
puting literatures, including level sets [Osher and Fedkiw 2002],
volume-of-fluid (VOF) [Hirt and Nichols 1981], particles [Harlow
and Welch 1965], and both surface- and volume-based mesh tech-
niques [Wojtan et al. 2011; Misztal and Baerentzen 2012], along
with various hybrids. Below we briefly review both general mul-
timaterial approaches and existing two-material front tracking ap-
proaches. We then discuss non-manifold front tracking methods, as
exemplified by Surface Evolver [Brakke 1992], and highlight some
relevant literature on surface remeshing.

2.1 Multimaterial Surface Tracking

2.1.1 Level Set Methods. Level set methods are usually ex-
tended to multimaterial settings by replacing the binary sign of the
distance field with an integer material label [Losasso et al. 2006;
Zheng et al. 2006; Kim et al. 2007; Kim 2010; Saye and Sethian
2012a]. In some methods a single unsigned distance field is used,
while in other cases each material requires a signed distance field
to distinguish its interior from all others. Reconstructing quality
multimaterial surface or volume meshes from this labeled implicit
data is also an interesting problem [Wu and Sullivan 2003; Bronson
et al. 2012].

2.1.2 Particle Methods. For particle-based surface representa-
tions, such as in SPH or FLIP methods, each particle can be aug-
mented with a material label or color [Müller et al. 2005; Solen-
thaler and Pajarola 2008], or just directly assigned the appropriate
material properties.

2.1.3 Volume-Of-Fluid Methods. The volume-of-fluid method
uses a volume fraction per cell to implicitly represent the interface.
Its multimaterial generalization takes a similar approach, where
each cell stores one volume fraction per material, summing to one.
As in standard VOF, a major challenge is reconstructing a rea-
sonable, continuous interface geometry from volume fraction data
(e.g., [Dyadechko and Shashkov 2008; Anderson et al. 2010]). The
difficulty of this task is strongly exacerbated by the presence of
greater than two materials.

2.1.4 Tetrahedral Methods. Volume-based labeling can be
useful for meshes as well [Pons and Boissonnat 2007a; 2007b; Mis-
ztal et al. 2012; Misztal and Baerentzen 2012]. Using a tetrahe-
dralization of space, each tetrahedron can be labeled, and the in-
terface is the subset of triangles that border two tetrahedra with
different labels. However, evolving a tetrahedral mesh while main-
taining element quality is a complex and potentially expensive en-
deavor [Wicke et al. 2010; Clausen et al. 2013], and is wasteful if
the particular application doesn’t otherwise require a conforming
volumetric mesh. Bronson et al. [2012] also briefly demonstrated
an application of their Lattice-Cleaving tetrahedral mesher to mul-
tiphase flows.

2.2 Two-Material Front Tracking

We consider evolving a triangle mesh representing only the inter-
face itself [Wojtan et al. 2011]. To our knowledge no existing La-
grangian triangle mesh-based surface tracking approach supports
multiple materials.

2.2.1 Mesh Surgery / Boolean Approaches. Traditionally, the
main difficulty with surface mesh approaches has been topology

changes. Colliding surfaces become entangled and must be stitched
together through a mesh surgery process, similar to a mesh-based
Boolean operation. In the past this approach has been prone to ro-
bustness issues [Glimm et al. 1998; Glimm et al. 2000], but ad-
vances in efficient and robust mesh Booleans have made it more
practical [Bernstein and Fussell 2009; Campen and Kobbelt 2010;
Zaharescu et al. 2011; Zhang et al. 2012]. Still, this approach can-
not be directly mapped to the multimaterial setting where topolog-
ical changes involve more than Boolean-like operations. For ex-
ample, the collision and overlap of two fluid regions of different
materials immersed in a third requires that a separating interface be
established, and this interface is not a component of any existing
surface. Glimm et al. [2000] allude in passing to this three-material
case, but it does not appear that such a scheme has ever been devel-
oped.

2.2.2 Hybrid Implicit Approaches. To sidestep numerical ro-
bustness issues, several methods convert colliding regions into im-
plicit surfaces, either globally or locally, apply a surface reconstruc-
tion method to build a new mesh or patch, and if necessary stitch
a final mesh back together [Glimm et al. 2000; Du et al. 2006;
Bargteil et al. 2006; Müller 2009; Wojtan et al. 2009; 2010]. Unfor-
tunately, using basic implicit surfaces to manage topology changes
means they rely crucially on the binary inside/outside classifica-
tion; extension to the multimaterial setting appears non-trivial. Bo
[2009] provides a potential starting point: he proposes a method
that, under some simplifying assumptions, handles two regions bor-
dering a static solid wall using a three-component marching cubes
method.

The SpringLS method [Lucas et al. 2012] is another hybrid
approach which combines a set of disconnected triangles with a
distance field, and has been applied to multi-object segmentation
tasks.

2.2.3 A Proximity-Based, Collision-Safe Approach. A third
strategy, which we adopt, is that used by the El Topo code of
Brochu and Bridson [2009]. They apply local collision-safe topo-
logical operations whenever meshes come in close proximity, and
otherwise use fully robust cloth collision-processing techniques to
maintain an intersection-free guarantee across both time evolution
and remeshing [Bridson et al. 2002; Harmon et al. 2008; Brochu
et al. 2012]. We will see that because this approach is entirely “grid-
free” and relies only on simple, local mesh operations, it is extensi-
ble to the multimaterial setting. Stanculescu et al. [2011] proposed
a related approach using a minimum separating distance bound to
compute safe time step restrictions, rather than employing collision
resolution.

2.3 Non-Manifold Front Tracking

We are inspired by Surface Evolver [Brakke 1992; 2012], which
uses an evolving non-manifold triangle surface mesh to find
equilibrium configurations for myriad variational problems. The
method supports the various foam and film-like topological trans-
formations arising in many multimaterial applications, during
which the local connectivity of material regions changes. Our
method expands on the applications of Surface Evolver in two
ways: (a) we take into account collisions, which induce merging-
type topological changes; (b) we advect the surface along arbitrary
vector fields, not just gradient fields, thereby enabling general front
tracking. Achieving these new goals requires several advances. For
example, we must reframe surface evolution as a (quasi-)dynamical
simulation respecting a no-interpenetration invariant. To respect
this invariant becomes exceedingly difficult when topological tran-
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sitions have many special cases or involve large simultaneous mod-
ifications to the mesh. Therefore we develop a unified topology res-
olution mechanism for the class of topology changes known as T1
processes (§5.1). The new approach avoids special cases and, cru-
cially, iterates only on individual vertex operations. This eliminates
the need for the “edge popping” used by Surface Evolver, and en-
ables robust treatment of collisions.

We also point out recent work by Lazar et al. [2011; 2012] on
normal grain growth. This method is likewise oblivious to colli-
sions, and discretizes cell faces using only a single central vertex
and a triangle fan; however, these simplifications enabled large-
scale simulations of up to 100,000 regions in a grain growth prob-
lem. Lazar et al. also describe a set of five grain-level topological
changes required for such problems; we instead describe a lower-
level set of discrete local mesh operations whose collision-safety
can be verified more readily.

2.4 Surface Remeshing

Remeshing of surfaces is a broad topic [Alliez et al. 2008]; we fo-
cus on incremental local remeshing, since it allows each remesh-
ing operation to be robustly checked for collision-safety [Brochu
and Bridson 2009]. Several authors have specifically considered
remeshing of surfaces undergoing gradual but large deforma-
tions (sometimes called mesh adaptation), as opposed to one-time
remeshing. High quality results have been achieved using remesh-
ing criteria and operations that depend on anisotropy, curvature, and
feature-detection [de Goes et al. 2008; Jiao et al. 2010; Clark et al.
2012; Narain et al. 2012; Wicke et al. 2010; Clausen et al. 2013].
We employ uniform resolution isotropic meshes with one particu-
lar choice of feature detection; combining our method with more
complex remeshing criteria such as these is an interesting future
extension. A few authors have also studied remeshing, subdivision,
and fairing targeted at non-manifold surfaces [Hubeli and Gross
2000; Ying and Zorin 2001; Zilske et al. 2008; Pellerin et al. 2011].

3. MULTIMATERIAL TRIANGLE MESHES

We begin by describing a triangle mesh-based representation of
multimaterial interfaces which forms the basic infrastructure upon
which our method is built.

Existing front tracking approaches generally rely on a binary in-
side/outside classification of space. One common classification ap-
proach is parity counting of ray casts, however this does not readily
extend to multiple materials.

The second common approach to binary classification is the use
of a consistent orientation of triangular mesh faces: each triangle’s
vertex ordering and the right-hand rule define its normal direction,
and by convention the normal points to the interior (for example).
If each triangle is oriented consistently with its neighbors and the
mesh is both watertight and non-self-intersecting, this information
defines a strict interior/exterior classification that can be exploited
to perform safe topological stitching operations.

The non-manifold setting requires n-ary material classification;
therefore, materials cannot be distinguished by the normal alone.
Let each material be identified by an integer label. We assign to
each triangle two material labels, associating one to the front (nor-
mal) and one to the back (anti-normal) sides; equivalently, each
half-face stores a label. The Surface Evolver code uses this ap-
proach to specify different surface tension forces between pairs of
materials [Brakke 2012], and Yuan et al. [2012] applied it in the
context of constructing multimaterial implicit functions from non-
manifold meshes. Figure 1 illustrates the analogous 2D case.

Fig. 1. Left: A 2D multimaterial object, with colors indicating material
labels. Right: Its representation as a polygon mesh with material labels as-
signed to half-edges. The outer region is also assigned a label, shown in
orange.

This approach no longer requires consistent triangle orientation,
even for triangle pairs sharing a manifold edge; instead, it requires
consistent material labels, in the sense that all half-faces incident
to a closed volumetric region are labeled identically (Figure 1,
right). We will exploit and continually update this extended no-
tion of mesh orientation to ensure our regions remain consistently
watertight.

Throughout, we will use the term region to refer to a closed vol-
ume of space, and the term material to refer to the type of each
region, indicated by its incident triangle labels. Thus, two different
regions may be composed of the same material, but a single region
cannot consist of more than one material.

4. METHOD OVERVIEW

Algorithm 1 lays out the structure of our method, which relies on
the core geometric representation described above.

Algorithm 1 Multimaterial Front Tracking
while simulating do

Compute predicted vertex positions (§4.1)
Eliminate interpenetrations via collision resolution (§4.2)
Perform topological merging (§6)
Perform mesh improvement (§7)
Perform topological separation (§5.1 and §5.2)

end while

4.1 Computing Vertex Positions

The first step in our algorithm takes the current intersection-free
mesh and computes for each vertex a proposed new position. Our
method is agnostic to the source of these vertex motions, which
will depend on the particular application. Typically, this data will
be produced by integrating some physical system or geometric flow
through time. The resulting mesh trajectories are allowed to tem-
porarily leave the geometry in an intersecting state, as this will be
resolved in the next step of the algorithm.

4.2 Collision Resolution and the Intersection-Free
Invariant

Given the set of potentially colliding vertex trajectories, we now
seek to minimally perturb these trajectories such that the new tra-
jectories leave the mesh in a non-intersecting state. We resolve col-
lisions using a standard cloth collision response scheme [Bridson
et al. 2002; Harmon et al. 2008]. Within this scheme, we used the
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exact geometric continuous collision detection method of Brochu
et al. [2012], because it eliminated missed collisions in certain de-
generate scenarios we encountered.

This intersection-free invariant is crucial to our algorithm: sub-
sequent steps fundamentally rely on it to guarantee that remeshing
and topology change can be performed safely and successfully, fol-
lowing the strategy of Brochu and Bridson [2009]. Beginning from
the intersection-free state produced by collision-resolution, every
proposed edit to the mesh is checked for intersections and can-
celed if any would be introduced. That is, individual mesh edits are
treated as atomic operations that either complete in full or are can-
celed, and at all other times the mesh is intersection-free. The need
to treat these operations atomically implies that we should prefer
smaller, more localized operations where possible, since these can
be more cheaply verified and are more likely to succeed in the pres-
ence of complex or tangled geometries.

The remaining three steps comprise our core contributions: han-
dling of multimaterial topology change (§5 and §6) and mesh im-
provement (§7).

5. FOAM-LIKE TOPOLOGY CHANGES: T1 AND T2

Multimaterial scenarios undergo new types of topological transi-
tions that do not arise in the two-material case. Two-dimensional
versions of these transitions are shown in Figure 2 to provide intu-
ition, which will be helpful as we approach the three-dimensional
equivalents.

The first case represents two distinct material regions colliding
while immersed in a third material; the result is that the middle re-
gion is divided in two, and a new interface maintains the separation
between the originally disjoint outer regions (Figure 2, top). This
contrasts with the usual two-material case in which two colliding
regions will always have the same material and therefore merge
into a single region. We defer discussion of merging to §6.

In the case of four or more material regions additional types of
topology change can occur, referred to as T1 and T2 processes
in the literature on soap films and bubbles [Weaire and Hutzler
2001]. In that application, the interior physical material is always
air, but since a thin film keeps bubbles from combining into one,
our method views them as distinct pressure regions or “materials”.
In a T1 process two material regions that originally share a bor-
der become separated from one another, while two other material
regions become connected to form a new interface; the number of
regions remains unchanged (Figure 2, middle). In a T2 process a
region collapses to a point and disappears, reducing the number of
regions by one (Figure 2, bottom). This occurs commonly in con-
vergent velocity fields. We collectively refer to T1 and T2 processes
as “foam-like” operations, since this is the most familiar setting in
which they arise, however they are necessary for any application
involving greater than three materials.

5.1 T1 Processes

5.1.1 The Two-Dimensional Picture. We consider the behavior
of a T1 process in two dimensions by first studying the mesh con-
figurations involved. Most common are mesh vertices with edge
valences of two or three, which we refer to as regular configura-
tions. In most practical applications, vertices with valences greater
than three exist only transiently, so we refer to these as irregular
configurations. Two dimensional regular and irregular vertex con-
figurations are illustrated in Figure 3. For example, Plateau’s laws
describing bubbles and foams only allow stable junctions with va-

Fig. 2. Multimaterial topology changes in 2D. Top: A collision between
two material regions separated by a third leads to a new shared interface.
The reverse operation may also occur, leading to two regions disconnecting.
Middle: A T1 process involving four regions; two regions that share a border
separate and the remaining two regions become connected. This operation is
reversible, depending on the velocity field. Bottom: A T2 process in which
one region (cyan) collapses.

Fig. 3. Regular and irregular vertex configurations in 2D: Left: An
interface separating two regions is regular, as is a triple-point vertex sepa-
rating three regions. Right: Vertices with edge valence of four or higher are
irregular.

lences of three or less [Weaire and Hutzler 2001] in two dimen-
sions.

For a T1 process to occur, however, we cannot avoid irregular
configurations altogether. We must enter such a configuration, and
then resolve it back into appropriate nearby regular configurations
with lower valence vertices. Without an explicit mechanism to to
do so, the single-valued nature of the input velocity field means
that once created, such vertices are artificially preserved even as the
surface continues to evolve, regardless of the underlying physics;
this can be viewed as a kind of locking due to insufficient degrees
of freedom.

A discrete two-dimensional T1 process can therefore be inter-
preted as a two step operation. Considering again Figure 2, middle,
we see that as the two approaching regions (red and cyan) come
close to one another, the horizontal interface in the middle shrinks
to a point via an edge collapse operation, creating a new irregu-
lar configuration (vertex with valence four). This vertex is then re-
solved or separated back into two regular, valence three vertices,
with the red and cyan regions sharing a new interface.

Geometrically, this process is perfectly reversible, so the choice
of separation direction must be made by considering the underlying
physics. Surface Evolver does this by considering surface tension
forces on the vertex in question [Brakke 1992]. We will instead
analyze the local velocity field provided by the user, as illustrated
in Figure 4.

5.1.2 The Three-Dimensional Picture. Our philosophy in the
three-dimensional setting follows the discussion above: we allow
irregular configurations to arise naturally through collapsing of
short edges during mesh improvement. We then seek to separate
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Fig. 5. T1 process in 3D: In this mean curvature flow example, a typical T1 process begins when a short edge between vertices on distinct triple-junction
curves collapses, producing a single vertex incident on four material regions. Nearby edges on the original interface (red) continue to collapse yielding a
sequence of edges on a quadruple-junction curve. Next, a vertex on the curve separates along a perpendicular axis leading to the creation of a new interface
(dark blue). Lastly, nearby vertices along the curve also separate, completing the process.

Fig. 4. Choice of separation direction: The same irregular vertex config-
uration will separate in different directions depending on the velocity field
driving the motion.

them back into regular configurations in a direction dictated by the
velocity field.

However, whereas the mesh operations required to perform a
T1 process in two-dimensions are fairly straightforward, the three-
dimensional equivalents are much less obvious. Figure 5 shows a
complete three-dimensional T1 process involving many individ-
ual mesh operations. Rather than attempt to resolve T1 processes
through high-level, special-case code, we will show that all irreg-
ular configurations can be treated in a simple and unified man-
ner by analyzing the local mesh topology and iterating on a single
new type of mesh operation. The local incremental nature of this
approach further enables complete collision safety, by allowing us
to cancel any operations that would yield a self-intersecting mesh.
Consistent with the El Topo method [Brochu and Bridson 2009],
this can temporarily delay the completion of a topological event
in order to preserve the intersection-free invariant; in practice, this
did not lead to any observable artifacts even for problems involving
hundreds of topological operations.

5.1.3 Region Graphs. We first consider the space of possible
configurations about a vertex in three dimensions. The regular con-
figurations again mirror the stable states described by Plateau’s
laws (Figure 6). That is, a manifold surface or film by itself is reg-
ular; three surfaces may meet along a triple curve; and four triple
curves may meet at a point [Weaire and Hutzler 2001]. However,
unlike the two-dimensional case, both vertices and edges may have
high valences, which leads to a tremendous variety of possible ir-
regular configurations. Figure 7 illustrates a few of these.

To simplify the discussion, we adopt the following incidence def-
initions. A vertex and an edge (resp. triangle) are incident to each
other if the vertex is one of the two (resp. three) vertices compos-
ing the edge (resp. triangle). A region and another simplex (i.e.,
vertex, edge, or triangle) are incident if any triangle bordering that
region contains the simplex in question. Two regions are incident
on one another only if they share a triangle; we will not consider
two regions joined only by a vertex or edge to be incident.

Fig. 6. Regular configurations in 3D: Left: A manifold surface separat-
ing two volumetric regions (in this case, the top and bottom half-spaces).
Middle: A triple-curve separating three regions, at which three surfaces
meet. Right: A quadruple-point at which four regions, four triple-curves,
and six surfaces meet.

Fig. 7. Irregular configurations in 3D: Four of the infinitely many pos-
sible irregular non-manifold configurations that must be resolved by vertex
separation.

Regular Irregular

Fig. 8. Region graphs: Left: The region graphs for vertices at: (1) a two-
region surface, (2) a 3-region curve, and (3) a 4-region junction. These reg-
ular cases are shown in Figure 6, and their graphs are complete . Right:
The region graphs for the central vertices in the irregular configurations of
Figure 7 are incomplete.

Because the space of possible irregular configurations is difficult
to visualize and understand in three dimensions, we need a better
tool with which to explore their topology and determine how to
resolve them. We therefore define the concept of a region graph
of a vertex. For each mesh vertex v, its region graph is an undi-
rected graph in which each graph node corresponds to a region in-
cident on v. Two nodes in the graph are joined by an arc if the two
corresponding regions are incident. For clarity, we use the terms
node and arc when referring to graph elements, and vertex and edge
when referring to the three-dimensional mesh. Figure 8 shows the
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region graphs for the regular and irregular configurations in Figures
6 and 7.

Next, we make the key observation that for a regular vertex con-
figuration, the corresponding region graph will be a completely
connected graph (Figure 8, left); all other graphs correspond to ir-
regular vertex configurations (Figure 8, right). This is because two
nodes that do not share an arc in the graph correspond to two re-
gions incident on v but not each other. Therefore one way to charac-
terize a regular vertex v is to say that every pair of regions incident
on v are incident on each other. A missing arc in a graph indicates
a pair of regions that are not incident, an irregularity that must be
corrected. As suggested by Figures 9 and 10, this will be done by
duplicating and separating the irregular vertex in a carefully chosen
manner, and filling the gap that this creates with new geometry. We
will now describe this vertex separation process in detail.

5.1.4 Vertex Separation. To ground our discussion in a con-
crete example, consider the central vertex v of the mesh in Figure
10, left. Its region graph has a missing arc corresponding to the top
and bottom (non-incident) regions A and B. We duplicate and pull
the mesh vertex v apart into new vertices va and vb. Triangles orig-
inally incident to region A are updated to use vertex va rather than
v, which simply requires relabeling one of its vertex indices. Sim-
ilarly, triangles incident to region B are updated to use vb. All of
the remaining triangles incident on v, but not on region A or B, are
updated to use vb. Figure 10, middle, shows the mesh after it has
been pulled apart.

Separating the vertex in this way leaves a disconnected gap in the
mesh that we may need to fill, depending on the material types of
the regions involved. The shape of this gap can be seen to arise from
the set of existing edges incident on v “opening up” into triangular
holes, as the original vertex v separates in two. Therefore, for each
edge vw incident on region A, vertex separation creates a hole that
may be filled by a new triangular face vavbw, as in Figure 10, right.

However, we do not necessarily instantiate all such triangles, be-
cause some of these would erroneously separate regions consisting
of the same material; i.e., the new triangle would have the same
label on both sides making it unnecessary. This can be detected in
advance by examining the two triangles incident on the edge vw
and the region A. If the labels of these triangles on the outside of
region A differ from one another, then the triangle is created to
maintain the separation of these regions.

Returning to the topological view, Figure 10, bottom, shows the
effect of vertex separation on the region graph. The original graph
for vertex v is replaced by two distinct region graphs for the vertices
va and vb, both of which are complete. Therefore the new geometry
is in a regular configuration, as desired.

Vertex separation supercedes the splitting or pinching of “singu-
lar” non-manifold vertices discussed by Brochu and Bridson [2009]
in the two-material case.

5.1.5 Resolving Irregular Configurations. Vertex separation
can be performed in this manner on any irregular vertex. However,
when the original region graph of a vertex contains more than one
missing arc (i.e., multiple pairs of regions are not incident on each
other), a single vertex separation will not fully resolve the irregu-
lar configuration; va or vb may still be irregular. However, instead
of attempting to exhaustively deal with all possible irregular con-
figurations in a single operation, we take an iterative approach by
repeating the above process. This requires two additional ingredi-
ents: a strategy to pick which missing arc to process at each step
(§5.1.6), and a guarantee that all irregular vertex configurations will
ultimately be resolved.

v va vb va vb

v vbva

Mesh (Primal)

Region Graph (Dual)

Fig. 9. Vertex separation in 2D: Top: An irregular vertex v in 2D (left) is
duplicated and separated into two regular vertices, va and vb (middle); the
resulting gap is filled by a new edge with appropriate labels (right). Bottom:
The incomplete region graph of v is correspondingly converted into two
complete region graphs for va and vb.

v vb
va

vb
va

w1 w2
w1 w2

va

vb

v

Mesh (Primal)

Region Graph (Dual)

Fig. 10. Vertex separation in 3D: Top: An irregular vertex in 3D (left) is
duplicated and separated (center), and the resulting gap is filled by new tri-
angles with appropriate labels (right). Bottom: The incomplete region graph
is replaced by two complete region graphs.

For now, consider arbitrarily picking one missing arc and apply-
ing the corresponding vertex separation: each of the two resulting
vertices may still have missing arcs in their region graphs. How-
ever, their region graphs will have strictly fewer nodes, because
the graph for mesh vertex va does not contain node B, and vice
versa. Therefore, we simply put any resulting irregular vertex back
into a queue to be processed, and we are assured that this iterative
process terminates in finitely many steps with a set of complete re-
gion graphs, or equivalently, a set of regular vertex configurations.
Figure 11 shows a vertex initially incident on six regions, which re-
quires three vertex separations to resolve. The corresponding pro-
gression of region graphs is shown in Figure 12.

5.1.6 Choosing Separation Directions. In many cases there
are multiple candidate region pairs {A,B} at a vertex; the correct
choice of which pair to separate is not arbitrary, but is instead de-

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2013.



Multimaterial Front Tracking • 7

Fig. 11. Resolution of a more complex vertex: This geometry requires multiple vertex separations to return to a regular configuration. The center vertex
is initially incident on six regions, and its region graph has multiple disconnected node pairs. A sequence of three vertex separations resolves this case and
creates a new interface (green) between the front and back regions. The resulting four vertices are regular. The region graphs are shown in Figure 12.

Fig. 12. Complex vertex region graphs: The sequence of region graphs
corresponding to the topology changes in Figure 11. The original irregular
vertex is split into two irregular vertices incident on five regions each. Each
of these regions is subsequently split into two regular vertices, each inci-
dent on four regions. In the second step, while the top vertex is not directly
involved in the mesh edits, its region graph is modified because the newly
created interface connects the front and back regions.

termined by the underlying velocity field. For each candidate pair
{A,B}, we compute the vector between the centroids of the one-
ring vertices of v that are incident to either region, and use it as
the direction of separation. The dot product between the directional
derivative of the velocity with the direction of separation, which we
call separation strength, indicates how strongly the velocity field is
converging along that direction, i.e., how strongly this pair desires
separation. We compute this separation strength for each candidate
pair, selecting the one with the highest value for processing. Algo-
rithm 2 summarizes the complete process.

For settings without a prescribed 3D velocity field, the separation
strength measure is problem-dependent and must be defined by the
user. For example, mean curvature flow seeks to minimize surface
area, so we examine the change in surface area for each proposed
vertex separation. A decrease in the surface area indicates that sep-
aration should be performed. T1 processes do not occur for the nor-
mal flow scenarios considered, so we did not specify a separation
strategy.

Vertex separation is performed in descending order of maximum
separation strength over all irregular vertices. Because edits to the
mesh can slightly change its resulting behavior, complex T1 pro-
cesses may depend on the outcome of prior nearby T1 processes

at the discrete level. This global sort guarantees that irregular junc-
tions are processed in a consistent order, ensuring that the algorithm
is physics-dependent rather than machine-dependent. While this is
more costly than greedily separating in the optimal direction for
each vertex individually, the number of irregular vertices typically
comprises a small and sparse subset of the complete mesh.

Algorithm 2 Vertex Separation
while T1 process has occurred in the last iteration do

Candidate list C = { }
for all vertex v in the mesh do

Construct v’s region graph G = V,E
If the graph G is already complete, skip this vertex
for all {A,B} /∈ E where A ∈ V,B ∈ V do

Compute separation direction dAB

tAB ← separation strength(dAB)
if tAB > 0 then

Add {A,B, tAB ,dAB} into the candidate list C
end if

end for
end for
Sort C with descending t (separation strength)
for all candidate {A,B, tAB ,dAB} in C do

tAB ← separation strength(dAB)
If tAB < 0, skip this candidate
Create vertices va and vb
va ← v+ εdAB

vb ← v − εdAB

for all face f incident to v do
if f is incident to region A then

Change f ’s vertex v to va, keeping its labels
else

Change f ’s vertex v to vb, keeping its labels
end if

end for
for all vertex w adjacent to v and incident to A do

Add face vavbw with proper labels
end for

end for
end while
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5.1.7 Consistency with Edge Collapses. Since edge collapses
create irregular vertices, and vertex separations eliminate them, it is
important that these operations be consistent. If the criterion for a
collapse to occur disagrees with that for vertex separation, tempo-
ral incoherence artifacts can arise in which the same irregular ver-
tex is repeatedly created and destroyed without the actual topology
changing (i.e., a collapse initiates a T1 process but a vertex sepa-
ration immediately reverts it). Therefore, when performing an edge
collapse that would create an irregular vertex, we check whether
the edge length is decreasing due to the velocity field. If not, we
cancel the collapse operation, since this implies that the underlying
physics is driving the geometry away from the potential T1 process,
rather than towards it.

5.1.8 Collision Safety. It remains to ensure collision safety of
vertex separation. To do so, we exploit the concept of pseudo-
motions [Brochu and Bridson 2009], which approximates certain
instantaneous mesh operations as a continuous deformation over
a step of fictitious time. This allows continuous collision detec-
tion (CCD) to identify any collisions that arise between the rele-
vant geometry and the rest of the mesh. Vertex separation can be
viewed as a pseudo-motion transporting vertex v to the position of
vb, followed by a second pseudo-motion that separates va from vb,
bringing the triangles of region A along with it. The newly created
gap-filling triangles vavbw are just the sweeping trajectories of the
edges vbw due to the motion from vb to va.

However in addition to colliding with the rest of the mesh, trian-
gles and edges moved in the second pseudo-motion may also end
up intersecting the geometry they were pulled apart from. This can-
not be tested by CCD since these elements are all initially incident
to vertex v, i.e., trivially colliding. We instead detect such intersec-
tions through instantaneous (static) collision detection on the final
configuration. Specifically, the final positions of triangles incident
on region A are tested against all mesh edges, and the final posi-
tions of edges incident on A are tested against all mesh triangles.
This will guarantee the intersection-free invariant, but could po-
tentially allow tunneling of small components. We rule this out by
further testing for instantaneous collisions between all mesh ver-
tices and the volume swept out by each moving triangle’s pseudo-
motion. Since only a single vertex of each triangle moves during
the pseudo-motion, these volumes are tetrahedra, and a standard
point-in-tetrahedron test suffices.

5.1.9 Ordering of Operations. In Algorithm 1, we order merg-
ing and mesh improvement passes prior to vertex separation. This
choice ensures that potential T1 processes initiated by edge col-
lapses are usually completed by vertex separation operations before
the algorithm returns to the next time integration step. This in turn
allows the underlying physics to continue evolving without locking
four or more regions together.

5.2 T2 Processes

Having described a strategy to handle arbitrarily complex T1 pro-
cesses, we now consider the simpler T2 process in which a region
shrinks until it disappears, as may occur in convergent velocity
fields (Figure 13). In the discrete case, a closed tetrahedron shaped
region may undergo an edge collapse or edge flip during remeshing
(§7) that yields a specific degenerate configuration: a pair of trian-
gles sharing the same three vertices. Their labels nevertheless re-
main consistent; i.e., the conceptual zero-volume region “between”
the two triangles is closed and consistently labeled.

To resolve this degeneracy, we detect if the outer regions of the
two triangles have different material labels; if so, we delete one

Fig. 13. T2 process in 3D: A T2 process occurs when a region shrinks to a
point and disappears, such as this blue tetrahedron-shaped region collapsing
under mean curvature flow.

Fig. 14. Removing degenerate regions in 2D. Due to mesh improvement
operations, shrinking regions eventually lead to degenerate zero-volume ge-
ometry (i.e., coincident but consistently labeled triangle-pairs, shown here
in yellow). These must be deleted and/or relabeled. Left: If the exterior la-
bels are the same, the enclosing elements are deleted. Right: If the exterior
labels are different, one element is deleted, and the other is relabeled to
eliminate the enclosed region. (Top: Volumetric regions, with interfaces in
black. Bottom: Corresponding labels, where each interface becomes two
labeled layers.)

of the two triangles and relabel the other to effectively remove the
degenerate region, while leaving in place the necessary separating
interface between materials. Otherwise, the outer regions have the
same material and should be connected, so we simply delete both
triangles. This latter case is consistent with the two-material situa-
tion described by Brochu and Bridson [2009]. Figure 14 illustrates
this relabeling operation in two-dimensions.

This degeneracy removal can also lead to splitting apart of a sin-
gle region, for example, if a thread-like geometry becomes suffi-
ciently slender that its tetrahedra collapse and are deleted.

6. COLLISION-INDUCED TOPOLOGY CHANGES:
MERGING

T1 and T2 processes consider topology changes involving regions
that are already locally connected by the non-manifold mesh. The
second key requirement of a multimaterial front tracking scheme is
the ability to handle collision-induced topology changes between
regions that are disjoint, either merging them into one or estab-
lishing an appropriate separating interface as in Figure 15. In our
framework, this is done by applying local merge operations when
geometry comes in close proximity, as measured by a proximity
threshold chosen by the user. We first describe a direct multima-
terial extension of the zippering approach of Brochu and Bridson
[2009], and discuss its shortcomings. We then propose a new and
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Fig. 15. Merging in 3D: Two spheres of different materials undergoing
outward normal flow, from left to right. As they collide and merge, a new
separating interface is created. Top: All interfaces visible with transparency.
Bottom: The new interior interface (red) shown in isolation.

Fig. 16. Zipper-based merging: Left: Two nearby edges are identified,
with incident triangles shown in blue. Deleting these triangles produces a
quad-shaped hole in each surface. Middle: If the materials on their interiors
are the same, the holes are zippered together to produce a connecting tube.
Right: If the materials differ, one of the triangle-pairs is left in place but
with its labels modified, to maintain separation of the materials.

more effective merging approach based on snapping vertices to-
gether.

6.1 Zipper-Based Merging

To handle merging of nearly colliding geometry in the two-material
case, Brochu and Bridson [2009] proposed a zippering approach.
First, proximate edge-edge pairs are identified, and for each edge
the incident two triangles are deleted. This creates two quadrilateral
holes which are then zippered together using eight new triangles to
create a seamless tube connecting the previously disjoint regions.
If the resulting geometry would induce interpenetrations, the oper-
ation is canceled. Stanculescu et al. [2011] proposed a similar ap-
proach in which proximate vertices are detected and their complete
one-rings are zippered together, though without ensuring collision
safety.

This approach can be extended to multiple materials by zippering
in the same manner, but leaving in place and relabeling one of the
two-triangle patches to create the separating interface (Figure 16).
However, we experimentally observed that since zippering relies on
colliding geometries being in relatively ideal alignment, many po-
tential merges are canceled because they would induce collisions.
Furthermore, in complex collision scenarios there may not be suf-
ficient space to safely zipper at all, which can permanently prohibit
the topology change. This may account for the lingering surface
noise observed in some of the liquid animations of Brochu et al.
[2010]. We conclude that zippering is overly restrictive, and inef-
fective in certain cases.

Fig. 17. Ideal snapping in 2D: Two edges approach one another in perfect
alignment. First, one pair of vertices is snapped together, yielding a non-
manifold state. Then a second pair is snapped together, the duplicate edge
is removed, and its partner edge is relabeled to complete the merge.

6.2 Snap-Based Merging

We propose a new merging strategy based on snapping together of
nearby vertices. The snapping operation is nearly identical to an
edge collapse, in that it merges two existing vertices into one. The
key difference is that the original vertices do not share an edge.
We will see that this simple operation can lead to more effective
merging.

Consider first an idealized scenario in which two perfectly
aligned triangles approach one another head on. As they come
within the merge proximity threshold, each pair of corresponding
vertices is snapped together, so that the original two triangles be-
come perfectly coincident. The degeneracy removal routine dis-
cussed in §5.2 handles this by removing one or both triangles, in
the case where the two materials are different or the same, respec-
tively. The result is a successful merge. The analogous 2D process
is diagrammed in Figure 17.

Since meshes rarely collide in ideal alignment, we generalize this
approach by adapting notions from compatible remeshing [Kanai
et al. 2000; Alexa 2000]. Concretely, we attempt to locally modify
the nearby meshes such that there are vertex pairs that can be easily
snapped together. To do so, we identify nearly colliding edge-edge
and triangle-vertex pairs, and subdivide them as necessary: each
edge in an edge-edge pair is split at the closest point on the edge,
and the triangle in a triangle-vertex pair is split into three triangles
at the closest point on the face. Each vertex now has a counterpart
on the opposing mesh, and snapping can proceed as in the idealized
setting. Figure 18 illustrates the analogous process in two dimen-
sions.

When snapping a particular vertex pair, we place the new
snapped vertex at the average position of the original vertices. Split-
ting and snapping operations are checked for collision safety in the
same manner as standard edge splits and collapses, respectively,
and canceled if necessary. We also check these operations for the
introduction of poor quality or degenerate geometry just as we do
during mesh improvement (§7). To minimize poor quality geome-
try and unnecessary refinement, we also check if an edge or trian-
gle would be subdivided close to one of its existing vertices, and
instead directly snap to that vertex. Likewise, if a triangle would be
subdivided close to one of its edges, we instead split the edge, and
use the new edge midpoint for snapping. We do not snap vertices
that already share an edge since this is the role of the edge collapse
operation. We allow snapping between components of adjacent tri-
angles only if the angle between the triangles is less than 90◦. This
allows snapping of folded geometry, while preventing snapping in
the plane of the triangles.

Because this split-and-snap strategy involves smaller incremen-
tal edits to the non-manifold mesh rather than the simultaneous cre-
ation of a complete manifold tube, each individual operation is less
likely to be halted by a collision. Furthermore, the splitting strategy
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Fig. 18. Merging in 2D: Left: Snap-based merging begins as two regions come within the merge proximity. The edge in a proximate edge-vertex pair is split
at the closest point, and the resulting vertex pair is snapped together. A second edge-vertex pair is processed in the same way to complete the merge. If the
regions had the same material, the separating edge would then be deleted. Right: A zipper-based merge of the same initial mesh produces skewed geometry
and a larger volume change.

Fig. 19. Zippering vs. Snapping: Top: Zipper-based merging between
two expanding spheres leads to noisy exterior geometry (left) in the collid-
ing region and a discontinuous interior interface (right). Bottom: Our snap-
based merging yields higher quality geometry (left) and a single gradually
expanding interface (right).

actively works to modify the mesh so that merging becomes feasi-
ble; by contrast, zippering passively relies on the physics to put the
mesh into a feasible state, which is problem-dependent and unlikely
for complex deformations. As a result of these factors, we observe
that our approach leads to more successful and smooth merging, as
illustrated in Figure 19.

7. MULTIMATERIAL MESH IMPROVEMENT

As our mesh is advected by the flow and modified by topology
changes, its constituent triangles can become misshapen, neces-
sitating remeshing to improve triangle quality and maintain uni-
form triangle sizing. We apply an incremental feature-preserving
remeshing strategy relying on four standard local operations: edge
splitting, edge collapsing, edge flipping, and vertex smoothing. We
largely follow the collision-safe remeshing strategy of Brochu and
Bridson [2009] to preserve our intersection-free invariant. How-
ever, we have also made a number of modifications to specifically
address non-manifoldness and multimaterial labeling. For com-
pleteness, we provide the details of our remeshing approach in Ap-
pendix A.

8. RESULTS

We will now consider a variety of geometric flows to illustrate
the properties of the multimaterial front tracking scheme we have
proposed. These properties include robustness and collision-safety
under large, complex, and arbitrary multimaterial deformations,
support for general merging, splitting, and foam-type topological
changes, and good preservation of thin features and details. Simu-
lation times ranged from a few minutes for low resolution examples
up to 50 hours for the largest mean curvature flow example involv-
ing 2000 initial regions and up to 220K triangles simulated over
44K frames.

8.1 Prescribed Velocity Flows

We begin by performing multimaterial variants of two traditional
surface tracking tests: the Enright and Zalesk disk tests. In the Za-
lesak disk test a disk with a notch cut out is rotated through 360◦

about an external point. The intent is to verify that sharp features
are well-preserved under rigid body motions. In the Enright test a
sphere is advected through a highly deforming velocity field which
causes it to develop very thin features. Enright et al. showed that
purely Eulerian level set methods (of which VIIM is one example)
exhibit severe volume loss and over-smoothing on these tests, even
when using higher order discretizations. On the other hand, hybrid
particle level set methods perform better, at the cost of 32-64 La-
grangian particles per near-surface cell, but cannot handle geomet-
ric flows with merging characteristics such as inward normal flow
[Enright et al. 2002]. By contrast, our Zalesak disk test (included
in our supplementary video) exhibits no perceptible smoothing of
sharp features. Similarly, our multimaterial Enright test, shown in
Figure 20, illustrates that we can preserve thin features even un-
der extreme stretching in multi-layered regions. Some accumulated
wrinkling remains on the final sphere, since this is a purely passive
flow. While further research into remeshing strategies may reduce
these effects, surface tension or similar mechanisms should typi-
cally eliminate them in physical scenarios.

We constructed a more challenging robustness test featuring both
substantial stretching and merging by alternating steps of outward
normal flow and the curl noise velocity field of Brochu and Bridson
[2009]. We applied this process to four spheres of different mate-
rials, which resulted in the complex deformations shown in Figure
21. For this test, we performed normal flow by computing area-
weighted vertex normals and applying a constant offset.
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Fig. 21. Normal Flow + Curl Noise: Alternating steps of normal flow and curl noise applied to four spheres yields complex deformations and topology
changes.

8.2 Constant Velocity Normal Flows

To examine merging in more detail, we consider multimaterial nor-
mal flow applied to two special cases of interfacial speed functions
which were considered by Saye and Sethian [2012a]. (Fully gen-
eral multimaterial normal flow is highly non-trivial even for level
set methods [Reitich and Soner 1996; Zhao et al. 1996], and to our
knowledge has not yet been addressed for triangle meshes; this is
an intriguing question for future work.)

First, we consider material surfaces moving (either inward or
outward) at a constant speed; when they collide, a new interface
is created and assigned a velocity of zero. Figure 15 shows an ex-
ample in which two expanding spheres collide, leading to the for-
mation of a circular internal interface. This non-manifold curve re-
mains sharp, and the surfaces on either side remain smooth, due
to our non-manifold remeshing strategy. Our supplementary video
shows that when the direction of flow is reversed, the spheres seam-
lessly shrink until they pinch off and ultimately disappear.

Figure 22 shows a larger collection of spheres of various ma-
terials, indicated by their colors, which expand until they collide
and merge forming complex intersection surfaces. Several of these
spheres are assigned matching material labels, and therefore these
pairs merge without a separating interface. Reversing the direction
of flow causes the interfaces to smoothly shrink and disappear. Our
supplementary video contains an additional example in which two
Stanford bunnies undergo normal flow and collisions, while main-
taining considerable detail in their expanding outer surfaces. These
details would be rapidly smoothed away by Eulerian schemes.

The second special case of normal flow we consider follows an
example by Saye and Sethian [2012a]. A set of three interfaces
move at constant speed in the normal direction, with the signs of
the velocities chosen to satisfy a cyclical ordering; that is, A flows
normally into B, B flows normally into C, and C flows normally
into A. The initial configuration is two overlapping spheres shar-
ing a flat circular interior interface where they meet. This geome-
try produces a fascinating rotational or curling motion around the
original non-manifold intersection curve, which remains stationary.
The complex evolution of this geometry is shown in Figure 23, with
the front half of the geometry cut away.

For these tests, we performed normal flow using the face offset-
ting method (FOM) developed by Jiao [2007]. This approach al-
leviates certain artifacts in naı̈ve discretizations based on average
vertex normals, at the cost of a more stringent time step restriction.
Brochu and Bridson [2009] previously applied this method to the
two-material case.

8.3 Comparing Snapping and Zippering

To illustrate the advantages of snap-based merging over zippering
we consider the merging of two spheres under normal flow, shown
in Figure 19. With zippering, the growing intersection curve and
internal interface develop in a discontinuous and noisy fashion.
By contrast, snapping yields smoother growth of the new inter-
face, while the outer geometry exhibits greater overall symmetry
and smoothness.

For these tests, we applied normal flow based on area-weighted
vertex normals. This choice induces merging velocities reflective of
typical physical simulations which undergo large numbers of topo-
logical operations during collisions. (Normal flow based on face-
offsetting generates vertex velocities that, combined with a stiff
time step restriction, avoid merge operations after the initial mo-
ments of contact; this yields better normal flow results, as in §8.2,
but is less useful as a general test of merging behavior.)

8.4 Mean Curvature Flows

Figures 5 and 13 demonstrate mean curvature flow applied to two
simple interface configurations inside a cubic domain, illustrating
that we correctly handle T1 and T2 processes, respectively. Fig-
ure 24 illustrates mean curvature flow on a large arrangement of
2000 distinct material regions inside a cubic domain. This example
demonstrates that our method can robustly handle large numbers of
T1 and T2 topology changes, which is crucial for applications such
as foam coarsening and grain growth [Weaire and Hutzler 2001;
Lazar 2011].

For these tests, we applied the mean curvature flow discretization
of Desbrun and collaborators [Desbrun et al. 1999; Meyer et al.
2002]. Since this approach is a gradient flow applied to the sur-
face area of the interfaces, it straightforwardly extends to the non-
manifold case by considering all triangles incident on each vertex.

9. DISCUSSION AND CONCLUSIONS

We have presented a novel and robust front tracking approach to
the evolution of multimaterial interfaces, and applied it to a range
of geometric flows. Our method includes a new more flexible and
effective snapping approach for merging surfaces, and a unified
vertex-based method to characterize and resolve complex topolo-
gies in multimaterial meshes.

A number of challenges and potential extensions remain. Cer-
tain applications would benefit from pervasive support for spatially
adaptive and possibly anisotropic elements [Jiao et al. 2010; Narain
et al. 2012], as well as other advances in basic two-material front
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Fig. 22. Multimaterial normal flow: Twenty-five spheres of different materials and sizes initially undergo normal flow in the outward direction. As they
collide regions of the same material merge, while regions of differing materials form separating interfaces (red) that steadily expand. The direction of normal
flow is then reversed, causing the spheres to shrink and ultimately disappear.

Fig. 23. Cyclical normal flow: Two overlapping spheres sharing a circular internal interface undergo normal flow with a cyclical ordering. The front half is
cut away for visualization. The result is a curling effect around the original triple curve, which remains stationary.

tracking (e.g., [Clark et al. 2012]). In place of our independent split,
flip, collapse, and smoothing passes, a unified local hill-climbing
strategy could also be effective in preserving quality with minimum
modification to the mesh [Wicke et al. 2010].

Collision detection is a key bottleneck. Our broad-phase uses a
simple regular grid, and alternate approaches may provide speed-
ups, especially for scenarios in which the geometry is unevenly dis-
tributed or the mesh resolution varies.

Visible popping can occur when collapse operations modify ver-
tices lying on separate nearby features or non-manifold geometry.
For example, a collapse occurring on a near-planar region is typi-
cally imperceptible, whereas a collapse that initiates a T1 process
involves a discontinuous motion on the order of the minimum mesh
edge length; this will be apparent at low resolutions. We exper-
imented with using a smaller minimum edge length threshold in
these scenarios, however this sacrificed mesh quality and lead to the
need for smaller time steps. Moreover, level set-type methods also
exhibit small instantaneous “popping” effects at the length scale
dictated by the grid resolution, such as when two droplets collide.
Spatial adaptivity may help to alleviate this issue.

Our algorithm currently relies on closed, consistently labeled
volumes. Modeling of soap films and bubble blowing will require
extending our method to open surfaces, which raises a number of
interesting questions.

The proposed method has the potential to make feasible a uni-
fied triangle-mesh based approach to a very large class of interface
evolution problems, including a superset of those for which the
widely adopted Surface Evolver and FronTier software packages
were designed [Brakke 1992; Du et al. 2006]. Examples include
multimaterial elastoplastic deformations, complex multiphase and
foam flows, PDEs on deforming non-manifold interfaces, segmen-
tation and shape reconstruction problems, multimaterial sculpting

and modeling, and grain boundary evolution. We hope to explore
many of these applications in future work. To encourage adoption
and extension of our method, we will make the code publicly avail-
able.
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APPENDIX

A. DETAILS OF MULTIMATERIAL MESH
IMPROVEMENT

At each iteration, we perform passes of edge splitting, edge collaps-
ing, edge flipping, and vertex smoothing. We cancel any operations
that would introduce collisions, as well as those that would yield
unacceptably poor quality angles, inverted normals, tiny-area trian-
gles, and large volume loss; following Brochu and Bridson [2009]
we expose the angle bounds, edge length bounds, minimum area
bound, and volume change bound as user parameters, as these may
be problem-dependent. These bounds are respected by our topolog-
ical operations as well. (In particular, the maximum volume change
bound should be chosen with this in mind; an overly strict limit can
hinder merging.)

We detect feature edges by thresholding dihedral angles between
triangle pairs sharing an edge [Botsch and Kobbelt 2004; Dunyach
et al. 2013], rather than analyzing the local quadric metric tensor
[Brochu and Bridson 2009; Jiao et al. 2010]; we found this to be
more robust and intuitive to control, and it extends naturally to the
non-manifold case. We used a threshold of 30◦. Vertices lying on
one or two feature edges are considered to belong to a feature curve
or ridge, and vertices lying on three or more feature edges are iden-
tified as peaks.

A.1 Edge Flipping

The primary subtlety in performing edge flips is to ensure that tri-
angle labeling remains correct, since two consistently labeled trian-
gles sharing a manifold edge may nevertheless have opposing ori-
entations. We pick one of the two incident triangles as a reference
triangle, and use it to construct the resulting flipped two-triangle
patch with the same vertex winding order (i.e., orientation) for both.
The new triangles can then simply be assigned the label of the ref-
erence triangle. To preserve sharp features we disallow flipping of
feature edges, though we do allow flipping of smooth non-feature
edges that connect two feature vertices. We do not perform flip-
ping on non-manifold edges, as this operation is not well-defined.
Collision-checking follows Brochu and Bridson [2009].

Rather than flipping based on a Delaunay(-like) criterion, we fol-
low Botsch and collaborators in seeking a mesh with more regular
connectivity [Botsch and Kobbelt 2004; Dunyach et al. 2013]. That
is, we perform flips that drive valences towards six for interior man-
ifold vertices and four for boundary vertices. To handle manifold
patches that border on non-manifold edges or vertices, we concep-
tually trim off the incident non-manifold geometry for the purposes
of valence-counting, so that non-manifold vertices are treated as
boundary vertices (i.e., with an ideal valence of four). We perform
the flip if it reduces the total least squares difference between the

ideal valences and the current valences.

min

4∑
i=1

(
deg(vi)− deg(vi)

opt
)2 (1)

In the above, vi is one of the four vertices of the two-triangle patch,
deg indicates the vertex valence (or degree), and deg(vi)

opt is the
optimal valence of vi (either four or six).

A.2 Edge Splitting and Collapsing

Splitting and collapsing of non-manifold edges are straightforward
extensions of the manifold case (Figure 25), and can be checked for
collisions in the same way [Brochu and Bridson 2009]. We use an
upper and lower edge-length bound to trigger splitting and collaps-
ing, respectively. Child triangles created by an edge split inherit
the labels of their parents. Edge collapses do not require relabel-
ing, since the two triangles bordering the edge are deleted and the
surrounding labels remain correct.

To generate new vertex positions when splitting or collapsing,
we use the modified butterfly scheme, as previous authors have ad-
vocated [Brochu and Bridson 2009; Wojtan et al. 2010]. We extend
this scheme to treat both non-manifold edges and feature edges in
exactly the same manner as boundary edges [Zorin et al. 1996].
This has two benefits. First, sequences of non-manifold or feature
edges are subdivided by fitting a smooth cubic curve, thereby bet-
ter preserving their shape. Second, a smooth region separated by a
non-manifold curve or sharp feature curve from an adjacent smooth
region uses information only from the “same side” to perform sub-
division; just like in the boundary edge case, reflection is used to de-
rive ghost-data for “missing” triangles. This preserves the smooth-
ness of patches on either side, such as in the case of the sharp in-
tersection curve produced by the merging of two spheres (Figure
15). Similarly, for situations in which two or more smooth patches
are connected at only a single non-manifold vertex (but no edges),
each patch is treated as a distinct manifold.

When collapsing an edge to a point, we can choose the position
of the final point to be either one of the existing endpoints or a
new point computed using subdivision. In smooth regions, subdivi-
sion is preferred, whereas near sharp features selecting one of the
end points better maintains the shape. Following Brochu and Brid-
son [2009], we preserve peak vertices over ridge vertices, and ridge
vertices over smooth non-feature vertices. In our non-manifold set-
ting, when two vertices have the same feature type, we prefer to
keep a non-manifold vertex over a manifold one. If two vertices are
equivalent in terms of features and manifoldness, we simply use the
midpoint. Taken together, these choices minimize the disruption of
features and non-manifold boundaries that collapses can otherwise
cause.

A.3 Vertex Smoothing

We apply smoothing of vertex positions to improve the shape
of mesh triangles. Because naı̈ve Laplacian smoothing tends to
rapidly destroy volume, particularly in high curvature regions,
we follow previous authors in applying tangential or null-space
smoothing, which removes the normal component of the displace-
ment induced by smoothing [Botsch and Kobbelt 2004; Jiao and
Alexander 2005; Jiao et al. 2010]. For feature ridge vertices,
smoothing-induced displacement perpendicular to the ridge direc-
tion is projected out instead so that smoothing occurs only along
the ridge. For peak vertices, no smoothing is applied. We compute
the vertex normal and ridge direction as in the work of Jiao and
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Split Collapse

Fig. 25. Non-manifold edge splits and collapses closely parallel their
manifold counterparts.

Bayyana [2008]. No special treatment is required for non-manifold
geometry.

For strongly folded geometry (dihedral angles exceeding 165◦)
we instead perform Laplacian vertex smoothing in the average
plane of the fold. The goal is to widen the angle at the fold, un-
der the assumption that such sharp folds correspond to a crease
that is in the process of merging. Treating this case with smoothing
rather than relying entirely on collision-induced merging produces
smoother intersection curves, for example during the initial colli-
sions of spheres undergoing normal flow (Figure 22).

Smoothing yields an updated position for each vertex; these dis-
placements are treated as pseudo-motions allowing collisions to
be detected and resolved in the same manner as time integration
[Brochu and Bridson 2009].

A.4 Eliminating Very Poor Triangles

Individual remeshing operations are canceled if they damage fea-
tures or violate bounds on volume change, areas, angles, or edge
lengths, as described by Brochu and Bridson [2009]. However,
in complex scenarios these potentially conflicting constraints can
limit the remesher’s ability to resolve poor triangles. For example,
eliminating a poor quality triangle may require smoothing a ver-
tex in a manner that damages a feature, or performing a collapse
that temporarily introduces a very small angle. Therefore, if trian-
gles with very poor angles (e.g., outside [2◦, 178◦]) remain after our
standard remeshing pass, we apply a more aggressive strategy: we
apply our remeshing operations on those elements alone while ig-
noring all constraints beyond intersection-safety. This infrequently
invoked fail-safe is effective at eliminating poor triangles at the cost
of additional localized regularization.
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