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1 Introduction

The good energy behavior of AVIs was studied in Lew et al. 2003 [5], wherein it is conjectured that this
behavior is due to the integrator possessing the geometric property of multisymplecticity. In the proof that
AVIs are multisymplectic, the paper assumes that the asynchronous potentials act on distinct triangles in a
spatial triangulation of the system. This assumption would seem to preclude incorporation of nested penalty
layers for collision response: since for every (vertex, face) or (edge, edge) pair, potentials depend on that
pair, no required spatial triangulation exists. In this report we show that multisymplecticity holds even for
AVIs whose potentials do not respect a spatial triangulation.

2 Variational Integrators

Let γ(t) be a piecewise-regular trajectory through configuration space Q, and γ̇(t) = d
dtγ(t) be the configu-

rational velocity at time t. For simplicity we shall assume that the kinetic energy of the system T depends
only on configurational velocity, and that the potential energy V depends only on configurational position,
so that we may write the Lagrangian L at time t as

L(q, q̇) = T (q̇)− V (q). (1)

Then given the configuration of the system q0 at time t0 and qf at tf , Hamilton’s principle [3] states
that the trajectory of the system γ(t) joining γ(t0) = q0 and γ(tf ) = qf is a stationary point of the action
functional

S(γ) =
∫ tf

t0

L [γ(t), γ̇(t)] dt

with respect to taking variations δγ of γ which leave γ fixed at the endpoints t0, tf . In other words, γ
satisfies

dS(γ) · δγ = 0. (2)
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Integrating by parts, and using that δγ vanishes at t0 and t1, we compute

dS(γ) · δγ =
∫ tf

t0

(
∂L

∂q
(γ, γ̇) · δγ +

∂L

∂q̇
(γ, γ̇) · δγ̇

)
dt

=
∫ tf

t0

−∂V

∂q
(γ) · δγ dt +

∫ tf

t0

∂T

∂q̇
(γ̇) · δγ̇ dt

=
∫ tf

t0

−∂V

∂q
(γ) · δγ dt +

∂T

∂q̇
(γ̇) · δγ

∣∣∣∣tf

t0

−
∫ tf

t0

d

dt

[
∂T

∂q̇
(γ̇)
]
· δγ dt

=
∫ tf

t0

(
−∂V

∂q
(γ)− ∂2T

∂q̇2
(γ̇)γ̈

)
· δγ dt = 0.

Since this equality must hold for all variations δγ that fix γ’s endpoints, we must have

∂V

∂q
(γ) +

∂2T

∂q̇2
(γ̇)γ̈ = 0, (3)

the Euler-Lagrange equation of the system. This equation is a second-order ordinary differential equation,
and so has a unique solution γ given two initial values γ(t0) and γ̇(t0).

2.1 Symplecticity

The flow Θs : [γ(t), γ̇(t)] 7→ [γ(t + s), γ̇(t + s)] given by (3) has many structure-preserving properties; in
particular it is momentum-preserving, energy-preserving, and symplectic [4]. To see this last property, for
the remainder of this section we restrict the space of trajectories to those that satisfy the Euler-Lagrange
equations. For such trajectories, and relaxing the requirement that δγ fix the endpoints of γ, we have

dS(γ) · δγ =
∂T

∂q̇
[πq̇(q, q̇)] · δγ

∣∣∣∣tf

t0

, (4)

where πq̇ is projection onto the second factor.
Since initial conditions (q, q̇) are in bijection with trajectories satisfying the Euler-Lagrange equation,

such trajectories γ can be uniquely parametrized by initial conditions [γ(t0), γ̇(t0)]. For the remainder of this
section we also restrict variations δγ to those which preserve that γ satisfies the Euler-Lagrange equations;
these are also parametrized by variations of the initial conditions, (δq, δq̇). For conciseness of notation, we
will write ν(t) = (γ(t), γ̇(t)) and δν(t) = [δγ(t), δγ̇(t)]; using this notation we write the above two facts as
ν(t) = Θt−t0ν(t0) and δν(t) = Θt−t0∗δν(t0). The action (1), a functional on trajectories γ, can also be
rewritten as a function Si of the intial conditions,

Si(q, q̇) =
∫ tf−t0

0

L [Θt(q, q̇)] dt,

so that
dS(γ) · δγ = dSi [ν(t0)] · δν(t0).

Substituting all of these expressions into (4), we get
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dSi [ν(t0)] · δν(t0) =
(

∂T

∂q̇
◦ πq̇

)
[Θt−t0ν(t0)] · δγ(t)

∣∣∣∣tf

t0

=
(

∂T

∂q̇
◦ πq̇

)
[Θt−t0ν(t0)] dq · δν(t)

∣∣∣∣tf

t0

=
(

∂T

∂q̇
◦ πq̇

)
[Θt−t0ν(t0)] dq ·Θt−t0∗δν(t0)

∣∣∣∣tf

t0

=
(

∂T

∂q̇
◦ πq̇

)[
Θtf−t0ν(t0)

]
dq ·Θtf−t0∗δν(t0)−

(
∂T

∂q̇
◦ πq̇

)
[ν(t0)] dq · δν(t0)

= (Θtf−t0
∗θL − θL)ν(t0) · δν(t0),

where θL is the one-form
(

∂T
∂q̇ ◦ πq̇

)
dq. Since dSi is exact,

d2Si = 0 = Θtf−t0
∗dθL − dθL,

so since t0 and tf are arbitrary, Θ∗
sdθL = dθL, and Θ preserves the so-called symplectic form dθL.

2.2 Discretization

Following Hairer et al. [2], we now turn our attention to discretizing Hamilton’s principle, and derive a
numerical integrator that shares many of the structure-preserving properties of the continuous flow Θs.
Consider a discretization of the trajectory γ : [t0, tf ] → Q by a piecewise linear trajectory interpolating n
points q = {q0, q1, . . . qn−1}, with q0 = γ(t0) and qn−1 = γ(tf ), where the discrete velocity q̇i+1/2 on the
segment between qi and qi+1 is

q̇i+1/2 =
qi+1 − qi

h
, h =

tf − t0
n

.

We seek an analogue of (3) in this discrete setting. To that end, we formulate a discrete Lagrangian

Ld(qa, qb) = T

(
qb − qa

h

)
− V (qb) (5)

and discrete action

Sd(q) =
n−2∑
i=0

hLd(qi, qi+1). (6)

Motivated by (2), we impose a discrete Hamilton’s principle:

dSd(q) · δq = 0

for all variations δq = {δq0, δq1, . . . , δqn−1} that fix q at its endpoints, i.e. , with δq0 = δqn−1 = 0. For
ease of notation, we define versions of the kinetic and potential energy terms in (5) that depend on (qa, qb)
instead of (q, q̇):

Td(qa, qb) = T

(
qb − qa

h

)
T ′

d(qa, qb) =
∂T

∂q̇

(
qb − qa

h

)
Vd(qa, qb) = V (qb)

V ′
d(qa, qb) =

∂V

∂q
(qb).
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dSd(q) · δq =
n−2∑
i=0

h (D1Ld(qi, qi+1) · δqi + D2Ld(qi, qi+1) · δqi+1)

=
n−2∑
i=0

h

(
− 1

h
T ′

d(qi, qi+1) · δqi +
1
h

T ′
d(qi, qi+1) · δqi+1 −

∂V

∂q
(qi+1) · δqi+1

)

=
n−2∑
i=0

−T ′
d(qi, qi+1) · δqi +

n−1∑
i=1

(
T ′

d(qi−1, qi) · δqi − h
∂V

∂q
(qi) · δqi

)
= T ′

d(qn−2, qn−1) · δqn−1 − T ′
d(q0, q1) · δq0 − h

∂V

∂q
(qn−1) · δqn−1

+
n−2∑
i=1

(
T ′

d(qi−1, qi)− T ′
d(qi, qi+1)− h

∂V

∂q
(qi)
)
· δqi

=
n−2∑
i=1

(
T ′

d(qi−1, qi)− T ′
d(qi, qi+1)− h

∂V

∂q
(qi)
)
· δqi = 0.

Since δqi is unconstrained for 1 ≤ i ≤ n− 2, we must have

∂T

∂q̇
(q̇i+1/2)−

∂T

∂q̇
(q̇i−1/2) = −h

∂V

∂q
(qi), i = 1, . . . , n− 2, (7)

the discrete Euler-Langrange equations of the system.
Unlike in the continuous settings, the discrete Euler-Lagrange equations do not always have a unique

solution given initial values q0 and q1. We therefore assume in all that follows that Td and Vd are of a form
so that (7) gives a unique qi+1 given qi and qi−1 - this assumption always holds, for instance, in the typical
case where Td is quadratic in q̇. Then the discrete Euler-Lagrange equations give a well-defined discrete flow

F : (qi−1, qi) 7→ (qi, qi+1),

which recovers the entire trajectory from initial conditions, in perfect analogy to the continuous setting.

2.3 Symplecticity of the Discrete Flow

We now would like a symplectic form preserved by F , just as dθL is preserved by Θ. As in the continuous
setting, we restrict trajectories q to those that satisfy the discrete Euler-Lagrange equations, and variations
to first variations, yielding

dSd(q) · δq = T ′
d(qn−2, qn−1) · δqn−1 − T ′

d(q0, q1) · δq0 − h
∂V

∂q
(qn−1) · δqn−1.

We denote by F k the discrete flow F composed with itself k times, or k “steps” of F . We remark
again that all q satisfying (7) can be parametrized by initial conditions ν0 = (q0, q1), and first variations by
δν0 = (δq0, δq1), so that we can rewrite the discrete action as

Sid(ν0) =
n−2∑
i=0

∆tLd(F iν0).
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Putting together all of the pieces,

dSid(ν0) · δν0 = dSd(q) · δq

= T ′
d(qn−2, qn−1) · δqn−1 − T ′

d(q0, q1) · δq0 − h
∂V

∂q
(qn−1) · δqn−1

=
[
T ′

d(F
n−2ν0)− hV ′(Fn−2ν0)

]
· δqn−1 − T ′

d(ν0) · δq0

=
[
T ′

d(F
n−2ν0)− hV ′(Fn−2ν0)

]
dqb · Fn−2

∗δν0 − T ′
d(ν0)dqa · δν0

= θ+
F n−2ν0

· Fn−2
∗δν0 + θ−ν0

· δν0

=
(
Fn−2∗θ+

)
ν0

· δν0 + θ−ν0
· δν0.

for the indicated two-forms θ+ and θ−. Since d(hLd) = θ+ + θ−, d2(hLd) = 0 = dθ+ + dθ−. Moreover ν0 is
arbitrary, hence

d2Sid = 0 = Fn−2∗dθ+ + dθ− = −Fn−2∗dθ− + dθ−,

so
dθ− = Fn−2∗dθ−.

Since n is arbitrary, we conclude that the discrete flow F preserves the symplectic form dθ−. Using backwards
error analysis, it can be shown that this geometric property guarantees that integrating with F introduces
no energy drift for a number of steps exponential in ∆t [2], a highly desirable property when simulating
molecular dynamic or other Hamiltonian systems whose qualitative behavior is substantially affected by
errors in energy.

3 Asynchronous Variational Integrators

In section 2.2 we formulated an action functional (6) as the integration of a single discrete Lagrangian
over a single time step size h. Such a construction is cumbersome when modeling multiple potentials of
varying stiffnesses acting on different parts of the system: to prevent instability we are forced to integrate
the entire system at the resolution of the stiffest force. Given a spacial triangulation T = {Ti} of the system,
asynchronous variational integrators (AVIs), as described in Lew et al. 2003 [5], are a family of numerical
integrators, derived from a discrete Hamilton’s principle, that support integrating potentials on different
triangles at different time steps.

Instead of a global discrete Lagrangian, we instead imbue each triangle Ti with a local discrete Lagragian

Li
d(q

i
a, qi

b) =
∫ tb

ta

T i
[
q̇i(t)

]
dt− hiV i(qi

b),

where T i and V i are the elemental kinetic and potential energies on Ti, respectively, hi = tb − ta is the
elemental time step, and q̇i(t), the elemental velocity at time t, is left imprecise for the moment. We no
longer assume that velocity is constant between times ta and tb—a potential on another triangle that shares a
vertex with Ti might change Ti’s velocity—so unlike for the discrete Lagrangian (5), here we cannot explicitly
integrate the kinetic energy term. For this reason we now write the Lagrangian as an integrated quantity,
instead of deferring the integration to inside the action.

We have that each triangle is only concerned with certains moments in time - namely, integer multiples
of hi - and that these moments are inconsistent across triangles. We therefore subdivide time in a way
compatible with all triangles: for a τ -length interval of time, we define

Ξ(τ) =
⋃

Ti∈T

bτ/hic⋃
j=0

jhi.
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That is, Ξ(τ) is the set of all integer multiples less than τ of all elemental time steps. Ξ can be ordered,
and in particular we let ξ(i) be the (i + 1)-st least element of Ξ. If n is the cardinality Ξ, we then discretize
a trajectory of duration τ by linearly interpolating intermediate configurations q0, q1, . . . , qn−1, where qi is
the configuration of the system at time ξ(i). We discretize velocity as q̇k+1/2 = qk+1−qk

ξ(k+1)−ξ(k) on the segment
of the trajectory between qk and qk+1. We now need to write a global action functional of these trajectories
that sums the above elemental Lagrangians, which we do in the natural way:

SAV I(q) =
∑

Ti∈T

bτ/hic∑
j=0

Li
d

(
qi
j , q

i
j+1

)
. (8)

As before, we consider variations δq = {δq0, . . . , δqn−1} with δq0 = δqn−1 = 0, and impose Hamilton’s
principle,

dSAV I(q) · δq = 0.

To avoid becoming bogged down in notation, we let ωi(j) = ξ−1(jhi)–that is, ω maps local time indices
for T i to global indices into Ξ–and will write qj interchangeably for πiqj , the restriction of the (global)
configuration qj to an elemental configuration on Ti. Then

SAV I(q) =
∑

Ti∈T

bτ/hic−1∑
j=0

Li
d

(
qi
j , q

i
j+1

)
+
∫ T

j=bτ/hichi

T i
[
q̇i(t)

]
dt


=

∑
Ti∈T

bτ/hic−1∑
j=0

Li
d

(
qωi(j), qωi(j+1)

)
+
∫ τ

j=bτ/hichi

T i
[
q̇i(t)

]
dt


=

∑
Ti∈T

bτ/hic−1∑
j=0

(∫ (j+1)hi

jhi

T i
[
q̇i(t)

]
dt− hiV i(qωi(j+1))

)
+
∫ τ

j=bτ/hichi

T i
[
q̇i(t)

]
dt


=

∑
Ti∈T

n−2∑
k=0

[ξ(k + 1)− ξ(k)]T i

(
qk+1 − qk

ξ(k + 1)− ξ(k)

)
−

bτ/hic−1∑
j=0

hiV i(qωi(j+1))

 .

Thus, writing

T i
d(qa, qb, ta, tb) = T i

(
qb − qa

tb − ta

)
T i

d

′
(qa, qb, ta, tb) =

∂T i

∂q̇

(
qb − qa

tb − ta

)
V i

d (qa, qb, ta, tb) = V i(qb)

V i
d

′
(qa, qb, ta, tb) =

∂V i

∂q
(qb),
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dSAV I(q) · δq =
∑

Ti∈T

(
n−2∑
k=0

T i
d

′
[qk, qk+1, ξ(k), ξ(k + 1)] · δqk+1 −

n−2∑
k=0

T i
d

′
[qk, qk+1, ξ(k), ξ(k + 1)] · δqk

)

−
∑

Ti∈T

bτ/hic∑
j=1

hi ∂V i

∂qi
(qωi(j)) · δqωi(j)

=
∑

Ti∈T

(
T i

d

′
[qn−2, qn−1, ξ(n− 2), ξ(n− 1)] · δqn − T i

d

′
[q0, q1, ξ(0), ξ(1)] · δq0

)

+
∑

Ti∈T

n−2∑
k=1

(
T i

d

′
[qk−1, qk, ξ(k − 1), ξ(k)]− T i

d

′
[qk, qk+1, ξ(k), ξ(k + 1)]

)
· δqk

−
∑

Ti∈T

bτ/hic∑
j=1

hi ∂V i

∂qi
(qωi(j)) · δqωi(j)

=
∑

Ti∈T

n−2∑
k=1

(
T i

d

′
[qk−1, qk, ξ(k − 1), ξ(k)]− T i

d

′
[qk, qk+1, ξ(k), ξ(k + 1)]

)
· δqk

−
n−2∑
k=0

∑
hi|ξ(k)

hi ∂V i

∂qi
(qk+1) · δqk+1

=
n−2∑
k=1

∑
Ti∈T

(
T i

d

′
[qk−1, qk, ξ(k − 1), ξ(k)]− T i

d

′
[qk, qk+1, ξ(k), ξ(k + 1)]

)
· δqk

−
n−2∑
k=1

∑
hi|ξ(k)

hi ∂V i

∂qi
(qk) · δqk,

where we abuse the notation hi|m to mean, “all elemental time steps hi which evenly divide m.” Writing
the total kinetic energy of the system

∑
Ti∈T T i as Ttot, for AVIs we recover the discrete Euler-Lagrange

equations

∂Ttot

∂q̇
(q̇k+1/2)−

∂Ttot

∂q̇
(q̇k−1/2) = −

∑
hi|ξ(k)

hi ∂V i

∂qi
(qk). (9)

These equations are similar to those we derived for synchronous vartional integrators (7), except that only
a subset of potentials V i

d contribute during each time step. As in the synchronous case, if, as is typical, Ttot

is quadratic in q̇, (9) give rise to an explicit numerical integrator that is particularly easy to implement in
practice.

3.1 Multisymplecticity

The right hand side of (9) depends on ξ(k), and so unlike (7), the Euler-Lagrange equations for AVIs are
time dependent, and do not give rise to a uniform update rule F (qi−1, qi) 7→ (qi, qi+1). Instead, we consider
the total, time-dependent flow F̂ k(q0, qi) 7→ (qk−1, qk). Once again, we parametrize trajectories satisfying
(9) by ν0 = (q0, q1), and first variations by δν0 = (δq0, δq1). Restricting ourselves to such trajectories and
variations, we rewrite the action (8) as

SiAV I =
∑

Ti∈T

n−2∑
k=0

[ξ(k + 1)− ξ(k)]T i
d

(
F̂ k(ν0), ξ(k), ξ(k + 1)

)
−

bτ/hic−1∑
j=0

hiV i
d (F̂ωi(j+1)(ν0), 0, 0)

 .

Then
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1: loop
2: (E, V, h, t)← Q.pop // Pop event E with potential V , time step h,

// and scheduled time t, from time-ordered queue Q

3: ξ := stencil(E) // global indices of the local stencil

4: for i ∈ ξ do
5: xi ← xi + (t− ti)ẋi // advance vertex to current time (see §3)
6: ti ← t // update vertex’s clock

7: end for
8: if E is a (external, internal, contact) force event then
9: q̇ξ ← q̇ξ − hM−1

ξ ∂V /∂qξ // local impulses, local mass (see §3)
10: Q.push(E, V, h, t + h) // Return the event to the queue, with new time

11: for j ∈
i∈ξS

contingent(i) do
12: s← failureTime(Ej) // compute new event time (see §5.1)
13: Q.update(Ej , s) // reschedule the contingent event (see §5.2)
14: end for
15: else if E is certificate failure then
16: update KDS certificate, reschedule in Q // see §5.1 and §5.3
17: (de)activate penalty forces // see §4
18: end if
19: end loop

dSiAV I(ν) · δν = dSAV I(q) · δq

=
∑

Ti∈T

(
T i

d

′
[qn−2, qn−1, ξ(n− 2), ξ(n− 1)] · δqn−1 − T i

d

′
[q0, q1, ξ(0), ξ(1)] · δq0

)
−

∑
hi|ξ(n−1)

hi ∂V i

∂qi
(qn−1) · δqn−1

=
∑

Ti∈T

(
T i

d

′
[
F̂n−2(ν0), ξ(n− 2), ξ(n− 1)

]
· δqn−1 − T i

d

′
[ν0, 0, ξ(1)] · δq0

)
−

∑
hi|ξ(n−1)

hiV i
d

′
[
F̂n−1(ν0), 0, 0

]
· δqn−1

=

(
−
∑

Ti∈T
T i

d

′
[ν0, 0, ξ(1)]

)
dqa · δν0

+

∑
Ti∈T

T i
d

′
[
F̂n−2(ν0), ξ(n− 2), ξ(n− 1)

]
−

∑
hi|ξ(n−1)

hiV i
d

′
[
F̂n−2(ν0), 0, 0

] dqb

·F̂n−2
∗ δν0

= θ−ν0
· δν0 + θ+

F̂ n−2ν0
· F̂n−2

∗δν0

= (θ− + F̂n−2∗θ+)ν0 · δν0

for one-forms θ− and θ+. Once again we have that

0 = d2S = dθ− + F̂n−2∗dθ+, (10)

but unlike when our action was a sum of Lagrangians, from the multisymplectic form formula (10) we have
no way of relating dθ− to dθ+, and thus do not recover symplectic structure preservation. Nevertheless, Lew
et al. [5] conjecture that this multisymplectic structure leads to the good energy behavior observed for AVIs.
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4 Triangulation-Free AVIs

The above formulation of AVIs assumed a spatial triangulation over which we defined distinct, local La-
grangians. We now present a simple extension that supports potentials with arbitrary, possibly nondisjoint
spatial stencil.

Let {Vi} be potentials with time steps hi. As in AVIs, for trajectories of duration τ we define the set of
times

Ξ(τ) =
⋃
Vi

bτ/hic⋃
j=0

jhi,

the smallest set of times compatible with the time steps of all of the potentials. Again, let Ξ have cardinality
n, ξ(i) be the (i + 1)-th least element of Ξ, and ωi(j) = ξ−1(j∆ti). Then, for T (q̇) the kinetic energy of the
entire configuration, Td(qa, qb, ta, tb) = T

(
qb−qa

tb−ta

)
, and T ′

d(qa, qb, ta, tb) = ∂T
∂q̇

(
qb−qa

tb−ta

)
, we write the action

Sg(q) =
n−2∑
j=0

[ξ(j + 1)− ξ(j)]Td [qj , qj+1, ξ(j), ξ(j + 1)]−
∑
Vi

bτ/hic∑
j=1

hiVi(qωi(j)).

We have made no attempt to define a Lagrangian pairing the kinetic and potential energy terms; we will see
that an action defined this way still leads to a multisymplectic numeric integrator.

To that end we impose dSg(q) · δq = 0 for variations with δq0 = δqn−1 = 0. Then we rewrite Sg as

Sg(q) =
n−2∑
j=0

[ξ(j + 1)− ξ(j)]Td [qj , qj+1, ξ(j), ξ(j + 1)]−
n−1∑
j=1

∑
hi|ξ(j)

hiVi(qj)

so that

dSg(q) · δq =
n−2∑
j=0

(T ′
d [qj , qj+1, ξ(j), ξ(j + 1)] · δqj+1 − T ′

d [qj , qj+1, ξ(j), ξ(j + 1]) · δqj)

−
n−1∑
j=1

∑
hi|ξ(j)

hi ∂Vi

∂q
(qj) · δqj

= T ′
d [qn−2, qn−1, ξ(n− 2), ξ(n− 1)] · δqn−1 − T ′

d [q0, q1, ξ(0), ξ(1)] · δq0

−
∑

hi|ξ(n−1)

hi ∂V i

∂q
(qn−1) · δqn−1

+
n−2∑
j=1

T ′
d [qj−1, qj , ξ(j − 1), ξ(j)]− T ′

d [qj , qj+1, ξ(j), ξ(j + 1)]−
∑

hi|ξ(j)

hi ∂V i

∂q
(qj)

 · δqj

=
n−2∑
j=1

T ′
d [qj−1, qj , ξ(j − 1), ξ(j)]− T ′

d [qj , qj+1, ξ(j), ξ(j + 1)]−
∑

hi|ξ(j)

hi ∂V i

∂q
(qj)

 · δqj .

The Euler-Lagrange equations are then

∂T

∂q̇
(q̇k+1/2)−

∂T

∂q̇
(q̇k−1/2) = −

∑
hi|ξ(k)

hi ∂V i

∂qi
(qk), (11)

exactly the same as the Euler-Lagrange equations (9) for ordinary AVIs. Triangulation-free AVIs can thus
be integrated in exactly the same manner as ordinary AVIs, for instance, by using Algorithm 3.
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Figure 1: Total energy over time of a thin sphere colliding against a thin plate, simulated using our method
(red) and decomposition contact response (dark blue).

4.1 Multisymplecticity

To show that triangulation-free AVIs still satisfy the multisymplectic form formula (10), we follow the
derivation for multisymplecticity of ordinary AVIs. Replacing

∑
Ti∈T T i

d with Td in Section 3.1, an identical
calculation shows triangulation-free AVIs satisfy (10).

5 Choice of Layer Distribution Function

The nested penalty layer construction described in the paper has as an algorithmic parameter the layer
distribution function η(l). The choice of this function has performance ramifications.

The total potential energy V of the nested penalty layers as a pair of colliding elements are about to
enter layer n is given by

V (n) =
n−1∑
l=1

V r
η(l)(η(n)) ≈

∫ n

1

V r
η(l)(η(n))dl. (12)

Assuming that penalty forces are integrated continuously, energy is exactly conserved, and no other forces
act on the two elements, (12) can be used to continuously relate, for different η, the pre-collision kinetic
energy of the elements (and thus their pre-collision relative velocities) to the approximate deepest penalty
layer that needs to be activated to resolve the collision.

For simulations that tend to have primitives approaching each other at low velocities, a quickly-shrinking
η is more efficient. Such an η bunches penalty layers nearer g(q) = 0, and away from thickness g(q) = η(1),
so that q will activate only a few low-stiffness penalty layers before being rebuffed. A collision is then averted
without resorting to deeper layers and smaller time steps.

On the other hand, for simulations where primitives tend to approach at high velicities, a slowly-shrinking
η is more efficient. Such a distribution function activates penalty layers earlier, so that each can exert a
force over a greater distance. Stopping the collision then avoids needing to activate deep penalty layers of
high stiffness and small time step.

Accordingly, we’ve found that η(l) = η(1)l−1 works well for simulations with a lot of contact and low
velocities, and η(l) = η(1)l−1/4 works better for simulations with high-velocity impact. We note that this
choice affects performance, but both choices guarantee safety, correctness, and progress for all scenarios.
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6 Sphere-plate Impact

As an experimental test of the good energy behavior expected of our multisympletic approach, we simulated
the impact of a spherical shell with a thin plate, as described in Cirak and West’s article on Decomposition
Contact Response [1]. A sphere of radius 0.125 approaches a plate of radius 0.35 with relative velocity 100.
Both the sphere and the plate have thickness 0.0035. The time steps of our material forces (stretching and
bending) are 10−7 (the same as those chosen by Cirak and West.)

Figure 1 compares energy over time when this simulation is run using both our method and DCR.
Although both methods exhibit reasonably good energy behavior, under DCR the simulation slowly loses
energy, whereas under our method there is no noticeable long-term drift. Closely examining the energy
data produced by our method reveals the high-frequency, low-amplitude, qualitatively-negligible oscillations
characteristic of symplectic integrators.
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