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Abstract

We propose a novel readout architecture called coded

rolling shutter for complementary metal-oxide semiconduc-

tor (CMOS) image sensors. Rolling shutter has tradition-

ally been considered as a disadvantage to image quality

since it often introduces skew artifact. In this paper, we

show that by controlling the readout timing and the expo-

sure length for each row, the row-wise exposure discrep-

ancy in rolling shutter can be exploited to flexibly sample

the 3D space-time volume of scene appearance, and can

thus be advantageous for computational photography. The

required controls can be readily implemented in standard

CMOS sensors by altering the logic of the control unit.

We propose several coding schemes and applications:

(1) coded readout allows us to better sample time dimen-

sion for high-speed photography and optical flow based

applications; and (2) row-wise control enables capturing

motion-blur free high dynamic range images from a single

shot. While a prototype chip is currently in development, we

demonstrate the benefits of coded rolling shutter via simu-

lation using images of real scenes.

1. Introduction

CMOS image sensors are rapidly overtaking CCD sen-

sors in a variety of imaging systems, from digital still and

video cameras to mobile phone cameras to surveillance and

web cameras. In order to maintain high fill-factor and read-

out speed, most CMOS image sensors are equipped with

column-parallel readout circuits, which simultaneously read

all pixels in a row into a line-memory. The readout pro-

ceeds row-by-row, sequentially from top to bottom. This is

called rolling shutter. Rolling shutter has traditionally been

considered detrimental to image quality, because pixels in

different rows are exposed to light at different times, which

often causes skew and other image artifacts, especially for

moving objects [11, 13, 6].

From the perspective of sampling the space-time volume

of a scene, however, we argue that the exposure discrepancy

in rolling shutter can actually be exploited using computa-

tional photography to achieve new imaging functionalities
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(a) CMOS image sensor architecture (b) Timing for rolling shutter

Figure 1. The address generator in CMOS image sensors is used to

implement coded rolling shutter with desired row-reset and row-

select patterns for flexible space-time sampling.

and features. In fact, a few recent studies have demonstrated

the use of conventional rolling shutter for kinematics and

object pose estimation [1, 2, 3].

In this paper, we propose a novel readout architecture

for CMOS image sensors called coded rolling shutter. We

show that by controlling the readout timing and exposure

length for each row of the pixel array, we can flexibly sam-

ple the 3D space-time volume of a scene and take pho-

tographs that effectively encode temporal scene appearance

within a single 2D image. These coded images are useful

for many applications, such as skew compensation, high-

speed photography, and high dynamic range imaging.

As shown in Fig. 1, the controls of row-wise readout and

exposure can be readily implemented in standard CMOS

image sensors by altering the logic of the address generator

unit without any further hardware modification. For con-

ventional rolling shutter, the address generator is simply a

shift register which scans all the rows and generates row-

reset (RST) and row-select (SEL) signals. For coded rolling

shutter, new logics can be implemented to generate the de-

sired RST and SEL signals for coded readout and exposure,

as shown in Fig. 2. Since the address generator belongs to

the control unit of CMOS image sensors [9, 17], it is easy to

design and implement new logics in the address generator

using high level tools.

We have begun the process of developing the prototype

sensor. We expect to have a fully programmable coded

rolling shutter sensor in 18 months. Meanwhile, in this pa-

per, we demonstrated coding schemes and their applications
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via simulations. The simulation experiments are performed

with real images, i.e., full space-time volumes of scene ap-

pearance recorded with high-speed cameras were used to

synthesize the output images of a coded rolling shutter sen-

sor. These synthesized images thus have similar character-

istics as the images captured with a real sensor.

2. Rolling Shutter and Related Work

We first introduce some background related to rolling

shutter. As shown in Fig. 1a, the exposure in CMOS image

sensors is controlled by the row-reset and row-select sig-

nals sent from the row address decoder – each row becomes

photosensitive after a row-reset signal, and stops collecting

photons and starts reading out data after a row-select sig-

nal. Because there is only one row of readout circuits, the

readout timings for different rows cannot overlap. In rolling

shutter, as shown in Fig. 1b, the readout timings are shifted

sequentially from top to bottom.

We denote the reset time, the readout time, and the ex-

posure time for a row with ∆ts, ∆tr, and ∆te, respectively.
For typical CMOS sensors, ∆ts is around 1∼5µs and ∆tr
is around 15 ∼ 40µs. For an image sensor with M rows,

we denote the reset timing (i.e., the rising edge of row-

reset signals) and the readout timing (i.e., the falling edge

of row-readout signals) for the y-th row (1≤ y ≤M ) with

ts(y) and tr(y), respectively. For rolling shutter, we have

tr(y)=y∆tr and ts(y)= tr(y)−∆te−∆tr−∆ts.
Recent works have modeled the geometric distortion

caused by rolling shutter [1, 11], and proposed methods

to compensate for skew due to planar motion [13, 6].

Wilburn et al. [24] demonstrated the use of rolling shut-

ter with a camera array for high-speed photography. Many

components of CMOS image sensors have also been re-

designed for specific applications, such as HDR imag-

ing [25, 15] and multi-resolution readout [12]. These ideas

are giving rise to a new breed of image sensors, referred to

as “smart” CMOS sensors [20], which have spurred signifi-

cant interest among camera manufactures.

3. Coded Rolling Shutter: An Overview

In coded rolling shutter, both ts(y) and tr(y) can be con-
trolled by the address generator. As a result, the exposure

time, ∆te(y), can also be varied for different rows. Let

E(x, y, t) denote the radiance of a scene point (x, y) at time

t, and S(x, y, t) denote the shutter function of a camera.

The captured image I(x, y) is

I(x, y) =

∫ ∞

−∞

E(x, y, t) · S(x, y, t) dt. (1)

Figure 2 shows four types of shutter functions. For the

global shutter (Fig. 2a) widely used in CCD image sensors,

S(x, y, t) is a 1D rectangular function. Raskar et al. [22]

proposed the flutter shutter (Fig. 2b), which breaks the sin-

gle integration time into multiple chunks and thus intro-

(a) Global shutter (b) Flutter shutter [22]

(c) Rolling shutter (d) Coded rolling shutter

Figure 2. Timing charts for four types of camera shutter function.

duces high frequency components for motion deblur. Since

the coding is fixed for all pixels, it is in effect a coded global

shutter, which is also a 1D function of time t. For conven-
tional rolling shutter (Fig. 2c), S(x, y, t) = S(t−tr(y)) =
S(t−y∆tr). It is still a 1D function because of the fixed

sequential readout order.

In contrast, the proposed coded rolling shutter (Fig. 2d)

extends the shutter function to 2D S(y, t) in which both the
readout timing tr(y) and the exposure time ∆te(y) can be

row-specific. As mentioned earlier, because there is only

one row of readout circuits, the readout timings for different

rows cannot overlap, which imposes a constraint on tr(y).
Specifically, for an image sensor with M rows, the total

readout time for one frame is M∆tr. Each valid readout

timing scheme will correspond to a one-to-one assignment

of the M readout timing slots to the M rows. This is a

typical assignment problem in combinatorial optimization.

Figure 3 shows one simple assignment, which is adopted in

the conventional rolling shutter.

The remainder of the paper demonstrates several coding

schemes and their applications. We limited the coding to be

within one frame time.

1. Coded readout timing tr(y) for better sampling over

the time dimension for optical flow and high-speed

photography, as detailed in Sec. 4.

2. Coded exposure time ∆te(y) for high dynamic range

(HDR) imaging. With this control, we propose a sim-

ple row-wise auto-exposure in Sec. 5.1, which is ef-

fective for outdoor, natural scenes. Moreover, if both

tr(y) and ∆te(y) are controllable, we show in Sec. 5.2

that motion-blur free HDR images can be recovered

from a single coded image.

4. Coded Readout and Its Applications

In this section, we show how to use coded readout to bet-

ter sample the time dimension by shuffling the readout tim-

ings tr(y) among rows. We propose two coding schemes.



Figure 3. Coded rolling shutter is constrained as an assignment

problem because readout timings cannot overlap between rows.

Here we show the assignment of a conventional rolling shutter.

4.1. Interlaced Readout

Figure 4a shows the first scheme called interlaced read-

out, in which the total readout time for one frame is uni-

formly distributed into K sub-images (K = 2 in Fig. 4).

Each sub-image has M/K rows while preserving full res-

olution in the horizontal (x) direction. This is similar to

interlacing in video broadcast systems [5]. We note that

interlaced readout is different from the skip-readout mode

in CMOS image sensors [17] where only a fixed subset of

rows are used for imaging — In contrast, interlaced readout

uses all the rows and allows full-length exposure for each

row. Specifically, for interlaced readout, the readout timing

tr(y) for the y-th row is set as

tr(y) =

(

M(y − 1)

K
−

⌊

y − 1

K

⌋

·(M−1) + 1

)

∆tr, (2)

for an image sensor with M rows, where ⌊·⌋ is the floor

function. Since the time lag between the top and the bot-

tom row of each sub-image is M∆tr/K, the skew in these

sub-images is 1/K time of the conventional rolling shut-

ter. Moreover, the time lag between two consecutive sub-

images is also reduced to M∆tr/K (i.e., the frame rate will

increase K times.)

The sub-images can be used to estimate optical flow

for frame interpolation and removing skew, as depicted in

Fig. 4b. The gray and red circles represents the sampled

points from the input coded image. First, we use cubic in-

terpolation to resize the two sub-images I1 and I2 vertically

to full resolution (shown as the gray and red solid lines) and

then compute the optical flow u0 between them. Intermedi-

ate images within the blue parallelogram can be recovered

via bidirectional interpolation [4]:

Iw(p)=(1−w)I1(p−wuw(p))+wI2(p+(1−w)uw(p)), (3)

where 0 ≤ w ≤ 1, p = (x,y) represents one pixel, uw(p)
is the forward-warped optical flow computed as uw(p +
wu0(p)) = u0(p). For example, the black dot-dash line

in Fig. 4b shows the intermediate image Iw=0.5. Moreover,

we can also interpolate a skew-free image, Iskew-freew=0.5 , shown

as the blue dash line in Fig. 4b, by replacing the scalar w in

Eq. (3) with a vector w = 1−(y−1)/(M−1).

(a) Interlaced readout (K =2) (b) Diagram of interpolation

Figure 4. Diagrams of interlaced readout coding and interpolation.

Figure 5 shows an experimental result. The scene is

recorded with a high-speed camera (Casio EX-F1) at 300fps

with image resolution 512×384. The recorded video is used
to synthesize the image captured with conventional rolling

shutter (Fig. 5a) and the coded image captured with the

interlaced readout rolling shutter (Fig. 5b). Figures 5(c,d)

show the two interpolated sub-images, I1 and I2, where the

skew is reduced by half compared to Fig. 5a. Figure 5e

shows the computed optical flow u0, which is used to inter-

polate the intermediate image Iw=0.5 (Fig. 5f) and the skew-

free image Iskew-freew=0.5 (Fig. 5g). Figures 5(h,i) show the errors

between the two interpolated images and the true skew-free

image, which confirms that Iskew-freew=0.5 indeed removes almost

all the skew and is close to the ground truth. The remaining

error in Iskew-freew=0.5 is caused by occlusions during the estima-

tion of optical flow.

4.2. Staggered Readout

Figure 6a shows the second coding scheme, called stag-

gered readout, which reverses the order of readout within

every K neighboring rows (K = 2 in Fig. 6a). Similar to

the previous scheme, K sub-images can be extracted from

a single coded image where each sub-image hasM/K rows.

The readout timing tr(y) in this case is set as

tr(y) =

((

2

⌊

y − 1

K

⌋

+ 1

)

K − y + 1

)

∆tr. (4)

Compared with the interlaced readout, there are two main

differences: (1) The time lag within each sub-image for

staggered readout is (M−K +1)∆tr. This is roughly the

same as conventional rolling shutter (M∆tr), which means

the skew remains unchanged. (2) The time lag between

two consecutive sub-images is ∆tr, which is on the order

of 15 ∼ 40µs. This is the main benefit of this coding—

a simple way to achieve ultra-high speed photography for

time-critical events such as a speeding bullet or a bursting

balloon.

One example is shown in Fig. 6. The original clip is

recorded with a Phantom v7.1 camera at 600 fps [23], which

is used to synthesize the coded image of staggered readout

(K = 8) shown in Fig. 6b. Three extracted sub-images are

shown in Figs. 6(c,d,e), which capture the moment the foot



(a) Conventional rolling shutter (b) Input: interlaced readout (K =2) (c) Interpolated sub-image I1 (d) Interpolated sub-image I2

(e) Optical flow u0 (f) Intermediate: Iw=0.5 (g) Skew-free: Iskew-free
w=0.5

(h) Error of Iw=0.5 (i) Error of Iskew-free
w=0.5

Figure 5. Results of optical flow based interpolation with interlaced readout.

(a) Staggered readout (K =2) (b) Input: staggered readout (K =8)

(c) Sub-image: I1 (d) Sub-image: I4 (e) Sub-image: I8

Figure 6. Staggered readout for high-speed photography.

touches the ground. This precise moment would not be cap-

tured using a conventional rolling shutter. More results can

be found in the supplementary video.

5. Coded Exposure and Readout for High Dy-

namic Range (HDR) Imaging

HDR imaging typically requires either multiple images

of a given scene taken with different exposures [8, 16], or

special hardware supports [19, 18]. The first requires a

static scene and static camera to avoid ghosting and mo-

tion blur, while the latter is expensive, thus making HDR

imaging inconvenient for hand-held consumer cameras. Re-

searchers have recently proposed methods to remove ghost-

ing [10] and motion blur [27, 14] from multiple images.

In this section, we show that coded row-wise exposure

∆te(y) can be used to alleviate these problems for practi-

cal HDR imaging: (1) The dynamic range of scene radiance

can be better captured by either adaptively setting the expo-

sure per row or interlacing multiple exposures into a single

image, which avoids taking multiple images and effectively

(a) Adaptive row-wise AE (b) Membership functions

Figure 7. Adaptive row-wise AE. Refer to Sec. 5.1 for details.

reduces ghosting and motion blur due to camera shake. (2)

Row-wise exposure is easy to implement within standard

CMOS image sensors, as explained in Sec. 3, and thus the

cost is low. We propose two methods below.

5.1. Adaptive Row­wise Auto­Exposure

When we take a picture with auto-exposure (AE), the

camera often will take two images—first it quickly captures

a temporary image to gauge the amount of light and deter-

mine an optimal exposure, and then adjusts the exposure

and takes a second image as the final output [17]. Most ex-

isting AE algorithms are designed to find a single exposure

that is optimal for an entire image, which is highly limiting

for many scenes.

In our first method, we implement a simple yet effec-

tive auto-exposure method called adaptive row-wise auto-

exposure. As shown in Fig. 7a, the method finds an optimal

exposure for each row of the pixel array, and then takes a

second image where each row is adjusted for best capturing

the scene radiance. The second image is normalized (i.e.,

divided by the row-wise exposure) to generate the final out-

put. Compared with conventional auto-exposure, row-wise

auto-exposure is more flexible and effective, especially for

scenes where the dynamic range is mainly spanned verti-

cally (e.g., outdoor scenes where the sky is much brighter

than the ground).



(a) Conventional AE (b) Input: I(x, y) and ∆te(y) (c) Output: adaptive row-wise AE (d) Insets of (a) and (c)

Figure 8. Results of adaptive row-wise auto-exposure and conventional auto-exposure.

To find the optimal exposure for each row, we propose a

simple method using fuzzy logic. An optimal exposure for a

given row should minimize the number of saturated and un-

derexposed pixels within the row while keeping most pixels

well-exposed. This heuristic is formulated as follows. As

shown in Fig. 7b, we first introduce three membership func-

tions, µs(i), µd(i), and µg(i) which describe the degree of

being overexposed (i.e., saturated), underexposed, or well-

exposed for intensity i. Let I0 denote the temporary image.

It measures the scene radiance everywhere except in the sat-

urated regions, where no information is recorded. We thus

assume the scene radiance is L=I0(1+sµs(I0)), where s≥0
is a scale factor used to estimate the scene radiance in sat-

urated regions. The smaller s is, the more conservative the

AE algorithm will be. The optimal exposure ∆te(y) for the
y-th row is found by maximizing the following functional:

max
∆tl≤∆te(y)≤∆tu

∑

x

µ (L(x, y)∆te(y)) , (5)

where µ(i) is defined as

µ(i) = µs(i) + λdµd(i) + λgµg(i), (6)

with weights λd, λg and lower and upper bounds of expo-

sure adjustment ∆tl and ∆tu. In our experiments, s = 4,
λd = 0.2, λg = 0.05, ∆tl = 0.1, ∆tu = 10.0, and the three

membership functions are designed as µs(i) = 1
1+e245−i ,

µd(i) = 1
1+ei−10 , and µg(i) = 1/(1+

∣

∣

i−128
100

∣

∣

60
). Once the

optimal exposures are found for all rows,1 they are used to

capture the second image I . The final output image is com-

puted as Ir(x, y) = I(x, y)/∆te(y).
The experiments are performed as follows. For each

scene, we use a Canon EOS 20D to take 30 images with

exposures ranging from 1
6400 to 1.5 seconds in the manual

1This calculation can be done within a FPGA built in cameras.

Figure 9. Staggered readout and multiple exposure coding for

HDR imaging with hand-held cameras.

mode, as well as an image in the AE mode (denoted as I0).

To create the coded image I , for each row from the captured

30 images we choose the one whose exposure is the clos-

est to the estimated optimal exposure. Figure 8 shows two

sets of experimental results – Fig. 8a shows the images with

conventional AE, Fig. 8b shows the coded images I and the

row-wise exposures, and Fig. 8c shows the final outputs Ir.

As shown in Fig. 8d, the adaptive row-wise AE produces

higher quality photographs, in which the saturation (e.g.,

the clouds and the text) as well as the noise in dark regions

(e.g., the statues and the toys) are significantly reduced.

This method requires almost no image processing. If fur-

ther post-processing (e.g., denoising) is needed, noise am-

plification along the vertical direction (which is known from

the exposure patterns) can be considered. Moreover, for

scenes where the dynamic range is predominantly spanned

horizontally (e.g., a dark room viewed from outside), this

method reverts back to conventional auto-exposure.

5.2. Staggered Readout and Coded Exposure for
HDR Imaging with Hand­held Cameras

The goal of the second method is to recover HDR from

a single image for hand-held cameras. We show that with

staggered readout (shown in Sec. 4.2) and row-wise expo-

sure, not only can we code multiple exposures into one im-

age, but we can also remove image blur due to camera shake

by estimating planar camera motion.



(a) Input: coded image I (b) Sub-image: I1 (c) Sub-image: I2 (d) Sub-image: I3

(e) Optical flow (f) Blur images & kernels (g) Output: recovered HDR Ir (h) Insets

Figure 10. Results of staggered readout and coded exposure for HDR imaging for hand-held cameras.

(a) Input: coded image I (b) Output: recovered HDR Ir (c) Insets

Figure 11. Another result for HDR imaging with coded rolling shutter for hand-held cameras.

As shown in Fig. 9, the pixel array of a CMOS image

sensor is coded with staggered readout (K = 3) and three

exposures, ∆te1, ∆te2, and ∆te3. Thus, from a single in-

put image, I , we can extract three sub-images, I1, I2, and

I3. These sub-images are resized vertically to full resolu-

tion using cubic interpolation. For static scenes/cameras,

these sub-images can be directly used to compose a HDR

image. For hand-held cameras, however, camera shake is

inevitable, especially for long exposures. Because the sub-

images are captured with staggered readout, the time lag be-

tween them is small. We can thus assume camera motion as

translation only with a fixed velocity between sub-images.

The motion vector ~u = [ux, uy] can be estimated from I1

and I2 using optical flow:

~u = mean(computeFlow(I1, I2 − I1)). (7)

The computed flow is used to estimate the two blur ker-

nels for I2 and I3, respectively. Instead of deblurring I2

and I3 directly, we found that deblurring two composed im-

ages, I1⊕I2 and I1⊕I2⊕I3, will effectively suppress the

ringing,2 where the operator ⊕ means the images are first

center-aligned using the motion vector ~u and then added

together. We denote the two deblurred images as Ib1 =
deblur(I1⊕I2, ~u,∆te1,∆te2), and Ib2 = deblur(I1⊕I2⊕
I3, ~u,∆te1,∆te2,∆te3). Finally, the output HDR image is:

Ir =

(

I1

∆te1
+

Ib1

∆te1+∆te2
+

Ib2

∆te1+∆te2+∆te3

)

/3.

(8)

The optimal exposure ratios ∆te3 : ∆te2 : ∆te1 should

be determined by considering both the desired extended dy-

namic range as well as the noise amplification due to the

motion deblurring. Intuitively, the larger ∆te3 : ∆te1 is, the
larger the extended dynamic range should be, but a larger

ratio can also amplify more noise during motion deblurring

and in turn lower the effective dynamic range. An analysis

of the noise amplification and the selection of the exposure

ratios can be found in the supplementary document.

In our experiments, we set ∆te2 = 2∆te1 and ∆te3 =

2More discussion is in Section 6.



8∆te1, and thus the improvement in dynamic range will be

20log(∆te3/∆te1) = 20log8 = 18.06dB. We set the camera

motion to be ~u0 = [1, 1] pixels per ∆te1 time. We use

the deblurring algorithm presented in [7]. Simulation ex-

periments are performed using a set of ten high-res HDR

images, collected from multiple sources online [21].

Quantitative evaluation is shown in Table 1. We com-

pared our method (i.e., Ir) with the three other single-shot

methods using a conventional rolling shutter (i.e., short ex-

posure I1/∆te1, medial exposure I2/∆te2, or long expo-

sure I3/∆te3). The performance for each method is mea-

sured as the Normalized Root Mean Square Error (NRMSE)

between the recovered HDR image and the original scene,

taking into account the dynamic range of the original scene:

NRMSE(I0, Î0) =

√
‖I0−Î0‖2/N

max(I0)−min(I0)
, where I0 is the origi-

nal scene, Î0 is the output image for a given method (i.e., Ir

or Ii/∆tei, i = 1, 2, 3), and N is the number of pixels.

We ran the simulation with two types of image noise.

First, we assumed Gaussian additive noise (i.e., scene in-

dependent noise), and performed the simulation with seven

levels of noise. Second, we considered Gaussian photon

noise. We measured the photon noise parameters for a

Canon EOS 20D camera at five ISO values, and used them

to simulate the photon noise in the captured images. For

each method and each level of image noise, we simulated

the captured image with motion blur due to camera shake,

image noise, and saturation due to limited dynamic range.

The simulated images were used to recover HDR image I .
We repeated the simulation on the ten HDR images and took

the average.

The results are listed in Table 1. Our method (the coded

rolling shutter) performs best across all levels of noise.

Moreover, as expected, among the three exposures using

a conventional rolling shutter camera, for low image noise,

the short exposure recovers the HDR image well. As im-

age noise increases, the medial exposure yields better result.

With extensive noise, despite of saturation and motion blur,

the long exposure is better. With a coded rolling shutter, our

method combines the merits of these three exposure settings

and performs consistently better than the others.

Figure 10 shows one example. The simulated input im-

age I is shown in Fig. 10a, generated according to the cod-

ing pattern in Fig. 9. Gaussian noise (σ = 0.005) is added
in I . The three sub-images, I1, I2, and I3, are shown in

Figs. 10(b,c,d). Compared with the final output image Ir,

these sub-images are either too dark and noisy or too blurry

and saturated, as shown in Figs. 10(g,h). Figure 11 shows

another set of experimental results.

6. Conclusion and Discussion

Summary In this paper, we proposed a new readout archi-

tecture for CMOS image sensors, called coded rolling shut-

ter. By controlling the readout timing and exposure per row,

we demonstrated several coding schemes that can be ap-

plied within one frame and their applications. The required

controls can be readily implemented in standard CMOS im-

age sensors. As summarized in Table 2, we achieve bene-

fits such as less skew (i.e., time lag within a sub-image) or

higher temporal resolution (i.e., time lag between two con-

secutive sub-images) or higher dynamic range, at the cost

of reduced vertical resolution. One future direction is to

design coding schemes for multiple frames, where existing

de-interlacing methods could be leveraged to increase ver-

tical resolution.

Vertical Resolution and Aliasing As mentioned, all the

other applications trade off vertical resolution for other fea-

tures (except for the adaptive row-wise auto-exposure in

Sec. 5.1). Aliasing due to the cubic interpolation might

cause noticeable artifacts, especially for the motion deblur-

ring in Sec. 5.2. Based on [26], we analyzed the alias-

ing caused by image down-sampling and up-sampling, and

found that by simply combining the down-sampled images

at different phases (e.g., the image of all odd rows and the

image of all even rows), the aliasing will be effectively al-

leviated (when the blur kernels are the same for the down-

sampled images, aliasing can be completely avoided.) —

this is why we used the combined images for HDR imag-

ing in Sec. 5.2. We note that horizontal resolution is always

fully retained. One interesting future direction is to transfer

the high frequency details from the horizontal direction to

the vertical direction.

Random Coding Pattern and Sparse Reconstruction If

we model the scene brightness for one pixel (x, y) over

time t as a 1-D signal, the corresponding pixel intensity in

the captured image is a linear projection of this 1-D signal

with the exposure pattern. Thus, with (random) coded ex-

posure patterns, we attempted to reconstruct the space-time

volume (with zero skew) from a single shot by exploiting

the sparsity in signal gradients. In simulation, we found

that although the method could effectively remove skew,

many high-frequency artifacts would be present, especially

around strong vertical edges. Removal of these artifacts will

be the subject of our future research.

Pixel-wise Exposure Control CMOS image sensors are

able to address individual pixels [17], provided that there is

enough bandwidth for data transmission on the chip. One

future work is to look into possible implementations of

pixel-wise exposure control on chip and achieve even more

flexibility for space-time sampling.
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