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Coded Aperture Pairs for Depth from Defocus
and Defocus Deblurring
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Abstract— The classical approach to depth from defocus (DFD)
uses lenses with circular apertures for image capturing. We show
in this paper that the use of a circular aperture severely restricts
the accuracy of DFD. We derive a criterion for evaluating a pair
of apertures with respect to the precision of depth recovery. This
criterion is optimized using a genetic algorithm and gradient descent
search to arrive at a pair of high resolution apertures. These two
coded apertures are found to complement each other in the scene
frequencies they preserve. This property enables them to not only
recover depth with greater fidelity but also obtain a high quality all-
focused image from the two captured images. Extensive simulations
as well as experiments on a variety of real scenes demonstrate
the benefits of using the coded apertures over conventional circular
apertures.

Index Terms—Depth from Defocus, Coded Aperture, Defocus De-
blurring, Deconvolution

1 INTRODUCTION

Recent advances in computational photography have given
rise to a new breed of digital imaging tools. By acquiring
greater or more informative scene data, various forms of
post-capture photo processing can be applied to improve
image quality or alter scene appearance. This approach
has made operations such as depth-based image editing,
refocusing, and viewpoint adjustment feasible. Many of
these operations rely on the explicit or implicit recovery
of 3-D scene geometry.

Depth from defocus (DFD) is one of the typical ap-
proaches to recovering 3-D scene geometry. For a given
camera setting, scene points that lie on a focal plane located
at a certain distance from the lens will be correctly focused
onto the sensor, while points at greater distances away from
this focal plane will appear increasingly blurred due to
defocus. Therefore, by estimating the blur size of a point
in the image, one can estimate its depth. Relative to other
passive image-based shape reconstruction approaches such
as multi-view stereo and structure from motion, DFD is
more robust to image noise, occlusion and correspondence
problems because of the two dimensionality of the lens
aperture (in contrast to the one dimension stereo or motion
baseline) (Schechner and Kiryati, 1998).
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Since defocus information was first used for depth
estimation in the 1980s (Pentland, 1987; Subbarao and
Gurumoorthy, 1988), various DFD techniques have been
proposed based on changes in camera settings (e.g., Favaro
and Soatto, 2005; Nayar et al., 1996; Rajagopalan and
Chaudhuri, 1997; Subbarao and Surya, 1994; Watanabe and
Nayar, 1998). Several methods were proposed to compute
DFD using a single image (Dowski, 1993; Levin et al.,
2007; Pentland, 1987). As estimating blur sizes from a
single image is an ill-posed problem, these single-image
methods have to rely heavily on image priors or user
interaction. For more reliable and robust depth estimation,
most DFD methods use two or more images captured at
camera settings with different defocus blurs. One way to
change the defocus blur is to change the focus setting (e.g.,
axially move the sensor). Another approach is to change the
aperture pattern (e.g., change the aperture size). In this pa-
per, we restrict our discussion to the latter implementation.

Although DFD has been studied for decades, most work
presupposes the camera apertures to be circular. A typical
two-image DFD technique captures a pair of images from
a fixed viewpoint, one with a large circular aperture and
one with a small circular aperture (a large/small circular
aperture pair). The image captured with a larger aperture
will exhibit greater degrees of defocus than the one cap-
tured with a small aperture, and this relative defocus is
exploited to estimate depth. Note that the relative defocus
is fundamentally influenced by the shape or pattern of the
camera apertures, and that aperture patterns do not have to
be circular. By restricting ourselves to circular apertures,
we may have severely limited the ability of DFD. Once
we lift the restriction, we can now attempt to answer two
fundamental questions related to DFD:

1) How do the aperture patterns affect the performance
of DFD?

2) What is the optimal coded aperture pair for DFD?

In this work, we propose a comprehensive framework
of evaluating aperture pairs for DFD. First, we formulate
DFD as finding a depthd that minimizes a cost function
E(d), whose form depends upon the aperture patterns of
the pair. Based on this formulation, we then solve for the
aperture pair that yields a functionE(d) with a more clearly
defined minimum at the ground truth depthd∗, which leads
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Fig. 2. Depth from defocus and out-of-focus deblurring using a coded aperture pair. (a-b) Two captured images
using the optimized coded aperture pair. The corresponding aperture patterns are shown at the top-left corner
of each image. (c) The recovered all-focused image. (d) The estimated depth map. (e) Close-ups of four regions
in the first captured image and the corresponding regions in the recovered image. Note that the flower within the
picture frame (green box) is out of focus in the actual scene and this blur is preserved in the computed all-focused
image. For all the other regions, the blur due to image defocus is removed.

to higher precision and stability of depth estimation. Note
that there exist various other factors that influence the
depth estimation functionE(d), including scene content,
camera focus settings, and even image noise level. Our
proposed evaluation criterion takes all these factors into
account to find an aperture pair that provides improved
DFD performance.

The derived evaluation criterion is first used to optimize
the ratio of aperture radii of a large/small circular aperture
pair. A numerical optimization based on our criterion shows
that for a large/small aperture pair with Gaussian patterns,
the optimal ratio is1.7. Interestingly, Rajagopalan and
Chaudhuri (1997) previously derived a similar ratio1.73 in
an analytic manner. While their analytical optimization only
applies to Gaussian aperture patterns, pattern optimizations
based on our proposed criterion can be performed for any
form of coded aperture patterns.

As discussed in several previous works (Levin et al.,
2007; Zhou and Nayar, 2009), solving for the optimal
aperture pattern is a challenging problem – for a binary
pattern of resolutionN × N , the number of possible
solutions for an aperture is2N×N . This problem is made
harder by the fact that the aperture evaluation criterion is
formulated in the Fourier domain and the transmittance
values of the aperture patterns are physically constrained
to lie between 0 and 1 in the spatial domain. To make this
problem more tractable, existing methods have limited the
pattern resolution to13 × 13 or even lower (Levin et al.,
2007; Veeraraghavan et al., 2007; Zhou and Nayar, 2009).

However, solutions at lower resolutions are less optimal due
to limited flexibility.

To address this resolution issue, we propose a novel
recursive strategy for pattern optimization that incorporates
a genetic algorithm (Zhou and Nayar, 2009) with gradient
descent search. This algorithm yields optimized solutions
with resolutions of 33 × 33 or even higher within a
reasonable computation time. Although higher resolutions
usually generate greater diffraction effects, in this particular
case we find that a high-resolution pattern of33 × 33
actually suffers less from diffractions than other lower
resolution patterns, likely due to the smoother features of
the optimized high-resolution pattern.

Figure 1 (a) displays profiles of the depth estimation
function E(d) for the optimized pair and for a pair of
conventional circular apertures. The optimized pair exhibits
a profile with a more pronounced minimum, which leads
to depth estimation that has lower sensitivity to image
noise and greater robustness to scenes with subtle texture.
In addition, our optimized apertures are found to have
complementary power spectra in the frequency domain,
with zero-crossings located at different frequencies for each
of the two apertures, as shown in Figure 1 (b). Owing to this
property, the two apertures thus jointly provide broadband
coverage of the frequency domain. This enables us to also
compute a high quality all-focused image from the two
captured defocused images.

Besides lower robustness, DFD methods using conven-
tional circular apertures (or any other point-symmetric
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Fig. 1. Depth estimation curves and pattern spectra.
(a) Curves of E(d) for the optimized coded aperture
pair (red) and the conventional large/small circular
aperture pair (black). The sign of the x-axis indicates
whether a scene point is farther or closer than the
focus plane. (b) Log of combined power spectra of the
optimized coded aperture pair (red), as well as the
power spectra of each single coded aperture (green
and blue).

apertures) also cannot distinguish whether an object lies
in front of or behind the focus plane, since defocus kernels
could be identical in these two cases. The asymmetric
apertures derived in our work easily avoid this ambiguity.

We demonstrate via extensive simulations and experi-
ments the benefits of using an optimized aperture pair over
other aperture pairs, including circular ones. Our aperture
pair is able to not only produce depth maps of significantly
greater accuracy and robustness, but also produces high-
quality all-focused images (see Figure 2 for an example.)

2 RELATED WORK

2.1 Circular Aperture for Depth from Defocus

Depth from defocus has been studied extensively, at least
for circular apertures, in the past decades (a few examples
are Favaro and Soatto (2005); Nayar et al. (1996); Pentland
(1987); Rajagopalan and Chaudhuri (1997); Subbarao and
Gurumoorthy (1988); Subbarao and Surya (1994); Watan-
abe and Nayar (1998)). These works assume that the point-
spread- functions (PSFs) of an imaging system are either
pillbox (or cylindrical) functions or Gaussian. Partly due
to the good mathematical properties of these functions,

people have been able to develop a variety of effective DFD
algorithms.

Also, a lot of analysis and optimization on these DFD
algorithms and camera settings were conducted based on
the assumption of pillbox or Gaussian PSFs. Subbarao and
Tyan (1997) study how image noise affects the performance
of a spatial-domain DFD approach proposed in (Subbarao
and Surya, 1994). Schechner and Kiryati (1993) analyze the
effect of focus setting on the depth-from-defocus method
implemented by axially moving the sensor, and prove that
the change in focus setting should be less than twice the
depth of field. Rajagopalan and Chaudhuri (1997) discuss
what effect the degree of relative blurring has on the
accuracy of the depth estimation and propose a criterion for
optimal selection of camera parameters. Most relevantly,
they show that for a Gaussian aperture pair, the optimal
radius ratio is 1.73, which is very close to the optimization
result in this paper.

2.2 Single Coded Aperture Techniques

Coded aperture techniques were introduced several decades
ago in the field of high energy astronomy to address the
issues of signal-to-noise ratio related to lensless imaging of
x-ray andγ-ray sources (Caroli et al., 1987; Gottesman and
Fenimore, 1989), and in the field of optics to increase depth
of field (Mino and Okano, 1971; Welford, 1960). In recent
years, coded apertures have received increasing attentionin
the computer vision community. Coded apertures have been
used to improve out-of-focus deblurring (Veeraraghavan
et al., 2007; Zhou and Nayar, 2009). To achieve this goal,
the coded apertures are designed to be broadband in the
Fourier domain. In the work (Zhou and Nayar, 2009), a
detailed analysis is presented on how aperture patterns
affect deblurring. Based on this analysis, a closed-form
criterion for evaluating aperture patterns is proposed. Note
that a high-precision depth estimation is prerequisite for
high-quality defocus deblurring, since depth determines the
size of blur kernel. In this work, they either assume the
depth is known or rely on user interaction to specify the
depth.

To improve depth estimation, Levin et al. (2007) pro-
posed using an aperture pattern with a more distinguishable
pattern of zero-crossings in the Fourier domain than that of
conventional circular apertures. Similarly, Dowski (1993)
designed a phase plate that has responses at only a few
frequencies, which makes their system more sensitive to
depth variations. These methods specifically target depth
estimation from a single image, and rely heavily on specific
frequencies and image priors. A consequence of this strong
dependence is that they become sensitive to image noise
and cannot distinguish between a defocused image of a
sharp texture and a focused image of smoothly varying
texture. Moreover, these methods compromise frequency
content during image capture, which degrades the quality
of image deblurring.

A basic limitation of using a single coded aperture is that
aperture patterns with a broadband frequency response are
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Fig. 3. Performance trade-offs with single apertures.
(a) DFD energy function profiles of three patterns:
circular aperture (red), coded aperture of (Levin et al.,
2007) (green), and coded aperture of (Zhou and Nayar,
2009) (blue). (b) Log of power spectra of these three
aperture patterns. The method of (Levin et al., 2007)
provides the best DFD, because of its distinguishable
zero-crossings and its clearly defined minimum in the
DFD energy function. On the other hand, the aperture
of (Zhou and Nayar, 2009) is best for defocus deblur-
ring because of its broadband power spectrum, but
is least effective for DFD due to its less pronounced
energy minimum, which makes it more sensitive to
noise and weak scene textures.

needed for optimal defocus blurring but are less effective
for depth estimation (Levin et al., 2007), while patterns
with zero-crossings in the Fourier domain yield better depth
estimation but exhibit a loss of information for deblurring.
Figure 3 exhibits this trade-off using the aperture designed
for depth estimation in (Levin et al., 2007) and the aperture
for deblurring in (Zhou and Nayar, 2009). Since high-
precision depth estimation and high-quality defocus deblur-
ring generally cannot be achieved together with a single
image, we address this problem by taking two images with
different coded apertures optimized to jointly obtain a high-
quality depth map and an all-focused image, as shown in
Figure 2.

2.3 Multiple Coded Apertures Techniques

Multiple images with different coded apertures are used for
DFD in previous works (Farid and Simoncelli, 1998; Hiura

and Matsuyama, 1998). In the work (Farid and Simoncelli,
1998), two images are taken with two different aperture
patterns, Gaussian and the derivative of a Gaussian. These
patterns are designed so that depth estimation involves
only simple arithmetic operations, making it suitable for
real-time implementation. Hiura and Matsuyama (1998)
aim for more robust DFD by using a pair of pinhole
apertures within a multi-focus camera. The use of pinhole
pairs facilitates depth measurement. However, this aperture
coding is far from optimal. Furthermore, small apertures
significantly restrict light flow to the sensor, resulting in
considerable image noise that reduces depth accuracy. Long
exposures can be used to increase light flow but will result
in other problems, such as motion blur.

Liang et al. (2008) proposed to take tens of images by
using a set of Hadamard-like coded aperture patterns for
high-quality light field acquisition. From the parallax effects
present within the measured light field, a depth map is
computed by multi-view stereo. In contrast, our proposed
DFD method can recover a broad depth range as well as a
focused image of the scene by capturing only two images.

2.4 Other Related Techniques

Several techniques have been proposed to computationally
extend depth of field by either using custom optical ele-
ments in the aperture plane (Dowski and Johnson, 1999;
Levin et al., 2009), or by moving the sensor/object dur-
ing the exposure (Hausler, 1972; Nagahara et al., 2008).
The purpose of these methods is to create depth-invariant
PSFs so that one can recover an all-in-focus image using
deconvolution without knowing scene depth.

Greengard et al. (2006) exploits 3-D diffraction effects to
make spatially rotating PSFs by using a 3-D optical phase
plate. The PSF rotates as the depth changes and is used for
depth estimation. Hasinoff and Kutulakos (2009) propose to
capture a large set of images of a scene with predetermined
foci and apertures of the lens. From these images, one can
reconstruct the scene with high geometric complexity and
fine-scale texture.

3 APERTURE PAIR EVALUATION

3.1 Formulation of Depth from Defocus

For a simple fronto-planar object, its out-of-focus image
can be expressed as

f = f0 ⊗ kd + η, (1)
wheref0 is the latent in-focus image,η is the image noise
assumed to be Gaussian white noiseN(0, σ2), and kd is
the point-spread-function (PSF) whose shape is determined
by the aperture and whose sized is related to the depth. In
this paper, the sign of blur sized indicates whether a scene
point is farther or closer than the focal plane. For a specific
setting, there is a one-to-one mapping from the blur size to
the depth. By estimating the size of defocus blur from the
image, we can calculate the depth. The above equation can
be written in the frequency domain asF = F0 · K

d + ζ,
whereF0,K, and ζ are the discrete Fourier transforms of
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f0, k, and η, respectively. (Throughout this paper, we use
lower case notation for variables in the spatial domain and
upper case for those in the spatial domain.)

A single defocused image is generally insufficient for
inferring scene depth without additional information. For
example, one cannot distinguish between a defocused im-
age of sharp texture and a focused image of smoothly
varying texture. To resolve this ambiguity, two (or more)
imagesFi, i = 1, 2 of a scene are conventionally used, with
different defocus characteristics or PSFs for each image:

Fi = F0 ·K
d∗

i + ζi, (2)
whereKd∗

i denotes the Fourier transform of theith PSF
with the actual blur sized∗. Our objective is to find the
size d̂ and deblurred imagêF0 by solving a maximum a
posteriori (MAP) problem:

< d̂, F̂0 > ∝ argmaxP (F1, F2|d̂, F̂0, σ)P (d̂, F̂0)

= argmaxP (F1, F2|d̂, F̂0, σ)P (F̂0). (3)
According to Equation 2, we have
P (F1, F2|d̂, F̂0, σ) ∝ exp{− 1

2σ2

∑

i=1,2 ‖F̂0 ·K
d̂
i −Fi‖

2}.
(4)

The image prior termP (F̂0) can be written asP (F̂0) ∝
exp{− 1

2‖φ(F̂0)‖
2}, where the potential functionφ varies

with the choice of image priors. To make the later analytical
discussion possible, we choose a linear potential function
φ(F̂0) = Ψ · F̂0 and then have

P (F̂0) ∝ exp{−
1

2
‖Ψ · F̂0‖

2}, (5)
where Ψ is the matrix of weights. Note that different
choices ofΨ lead to different image priors. For example,
when Ψ takes a constant scalar value, it is a simple
Tikhonov regularization; and whenΨ is the derivative filter
in the Fourier domain, it becomes the popular Gaussian
prior of image derivatives.

Then, the blur size is estimated as thed̂ that maximizes:
P (d̂|F1, F2, σ) = max

F̂0

P (F̂0, d̂|F1, F2, σ). (6)

Expressed as a logarithmic energy function, the problem
becomes the minimization of
E(d̂|F1, F2, σ) = minF0

∑

i=1,2 ‖F̂0 ·K
d̂
i − Fi‖

2+‖C·F̂0‖
2,

(7)
whereC = σ·Ψ. Rather than assigning a specific weighting
matrix C, we can optimizeC by making use of the1/f
law of natural images (Van der Schaaf and Van Hateren,
1996; Weiss and Freeman, 2007) and haveC = σ/A, where
|A2| is the expected power spectrum of natural images:
|A(ξ)|2 =

∫

F0
|F0(ξ)|

2µ(F0). Here,ξ is the frequency and
µ(F0) is the possibility measure of the sampleF0 in the
image space. A similar optimization of the weighting matrix
C is given in (Zhou and Nayar, 2009).

3.2 Generalized Wiener Deconvolution

For a givend̂, solving∂E/∂F̂0 = 0 yields

F̂0 =
F1 · K̄

d̂
1 + F2 · K̄

d̂
2

|K d̂
1 |

2 + |K d̂
2 |

2 + |C|2
, (8)

whereK̄ is the complex conjugate ofK and|X|2 = X ·X̄.
This can be regarded as a generalized Wiener deconvolution
algorithm which takes two input defocused images, each
with a different PSF, and outputs one deblurred image.

This deconvolution method can be easily extended to the
multiple-image case as:

F̂0 =
ΣiFi · K̄

d̂
i

Σi|K d̂
i |

2 + |C|2
. (9)

To obtain a good deblurring result, the summed power
spectra of all aperture patterns must be broadband. Since
this property is much easier to satisfy by using more
than one aperture pattern, multiple defocused images with
different PSFs are better.

We note that similar deconvolution algorithms were
derived without a regularization term (Klarquist et al.,
1995) or with a simple Tikhonov regularization (Piana and
Bertero, 1996). Our algorithm significantly improves the
deblurring quality by making use of the1/f law. More im-
portantly, the generalized Wiener deconvolution algorithm
and its important implications have been overlooked in the
computer vision community, as some recent works still do
deblurring only using one input image even if they have two
or more, or solve the two-image deconvolution problem
in an inefficient iterative manner. This algorithm will be
further discussed in Section 6.

3.3 Selection Criterion for Depth from Defocus

Based on the above formulation of DFD, we seek a
criterion for selecting an aperture pair that yields precise
and reliable depth estimates. For this, we first derive
E(d|Kd∗

1 ,Kd∗

2 , σ, F0) by substituting Equations (2) and (8)
into Equation 7. Note that the estimated is related to the
unknownF0 and the noise levelσ. We can integrate outF0

by using the1/f law of natural images as done in (Zhou
and Nayar, 2009):

E(d|Kd∗

1 ,Kd∗

2 , σ) =

∫

F0

E(d|Kd∗

1 ,Kd∗

2 , σ, F0)µ(F0),

whereµ(F0) is the possibility measure of the sampleF0

in the image space. This equation can be rearranged and
simplified to get

E(d|Kd∗

1 ,Kd∗

2 , σ) =
∑

ξ

A · |Kd
1 ·Kd∗

2 −Kd
2 ·Kd∗

1 |2
∑

i |K
d
i |

2 + C2

+σ2 ·
∑

ξ

[
C2

∑

i |K
d
i |

2 + C2
+ 1], (10)

which is the energy corresponding to a hypothesized depth
estimate given the aperture pair, focal plane and noise level.
A proof of Equation 10 is given in Appendix A.

The first term of Equation 10 measures inconsistency
between the two defocused images when the estimated blur
sized deviates from the ground truthd∗. This term will be
zero if K1 = K2 or d = d∗. The second term relates to
exaggeration of image noise.

Depth can be estimated with greater precision and relia-
bility if E(d|Kd∗

1 ,Kd∗

2 , σ) increases significantly when the
estimated blur sized deviates from the ground truthd∗. To
ensure this, we evaluate the aperture pair(K1,K2) at d∗



6

and noise levelσ using
R(K1,K2|d

∗, σ)

= min
d∈D/d∗

E(d|Kd∗

1 ,Kd∗

2 , σ)− E(d∗|Kd∗

1 ,Kd∗

2 , σ)

= min
d∈D/d∗

∑

ξ

A
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2
∑

i |K
d
i |

2 + C2

+
σ4

A
·

∑

i |K
d∗

i |2 −
∑

i |K
d
i |

2

(
∑

i |K
d
i |

2 + C2) · (
∑

i |K
d∗

i |2 + C2)
(11)

≈ min
d∈D/d∗

∑

ξ

A ·
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2

|Kd
1 |

2 + |Kd
2 |

2 + C2
, (12)

where D={c1d∗, c2d∗, . . . , cld∗} is a set of blur
size samples. In our implementation,{ci} is set to
{0.1, 0.15, . . . , 1.5}.

According to the derivations, this criterion for evaluating
aperture pairs is dependent on ground truth blur size
d∗ (or object distance) and noise levelσ. However, this
dependence turns out to be weak. We have found Equation
11 to be dominated by the first term, andC to be negligible
in comparison to the other factors. As a result, Equation 11
can be approximated by (12) and is relatively insensitive
to the noise level, such that the dependence onσ can be
disregarded in the aperture pair evaluation (σ is taken to be
0.005 throughout this paper).

We then standardize Equation 12 and get

R(K1,K2|d
∗) ≈ min

d∈D/d∗

[

1
n

∑

ξ

A ·
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2

|Kd
1 |

2+|Kd
2 |

2+C2

]1/2

,

(13)
wheren is the pixel number of the PSF. Letting

M(K1,K2, d, d
∗) =

[

1
n

∑

ξ

A ·
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2

|Kd
1 |

2+|Kd
2 |

2+C2

]1/2

,

(14)
we have

R = min
d∈D/d∗

M(K1,K2, d, d
∗). (15)

A largerR value indicates the energy function for DFD is
steeper and therefore the estimation will be more robust to
image noise and weak texture.

3.3.1 Analysis

When the ratioc = d/d∗ approaches 1, we have
M(K1,K2, d, d

∗)

=

[

1
n

∑

ξ

A ·
(|c−1|d∗)2|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2

]1/2

=|c− 1|d∗ ·

[

1
n

∑

ξ

A ·
|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2

]1/2

, (16)

whereK
′d∗

i is the derivative ofKd∗

i with respect to the
blur size. See Appendix B for the detailed derivation. It
indicates that theM curve is linear inc when |c| → 1.
For a specificd∗ and frequencyξ, the slope is determined
by |K

′d∗
1 Kd∗

2 −K
′d∗
2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2
. Figure 4 (a) showsM curves of a

circular aperture pair at three different depths. We can see
that theM curves are linear whend → d∗.
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Fig. 4. M curves. (a) Three M curves of a circular
aperture pair at d∗ = 33, 15, and 7 pixels, plotted as
red, green, and blue lines, respectively. When d → d∗,
the M curves are linear in d. (b) Three standardized M
curves. Note that the normalization factor s0.7 does not
rely on specific aperture patterns (Equation 18). The
three standardized M curves are quite consistent. It
indicates that the proposed evaluation criterion works
equally well for different scene depths. Once an aper-
ture pair is optimized for a specific blur size d∗ (i.e. a
specific object depth), it will also be optimal for other
depths.

Intuitively, for optimal DFD performance with an aper-
ture pair, the pair must maximize the relative defocus
between the two images. Equation 16 reveals that defocus
depends on differences in amplitude and phase in the
spectra of the two apertures. DFD is most accurate when the
two Fourier spectra are complementary in both magnitude
and phase, such that their phases are orthogonal and a zero-
crossing for one aperture corresponds to a large response
at the same frequency for the other aperture. For example,
if K1 = 0 at a specific frequencyξ, the slope
|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗

1 |2 + |Kd∗

2 |2 + C2
= |K

′d∗

1 |2 ·
|Kd∗

2 |2

|Kd∗

2 |2 + C2
. (17)

Then, a larger derivative ofK1 and a larger|K2| are pre-
ferred at this frequency to maximize the slope. As a result,
although our main objective is to compute optimal apertures
for DFD, the complementary power spectra yielded by our
approach also enables the capture of a broad range of scene
frequencies and hence is effective for defocus deblurring.

Differences ind∗ correspond to variations in the size of
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ground truth PSF, which is in turn determined by the depth.
To assess how the depth variation affects the aperture pair
evaluation, consider two PSF scalesd∗1 andd∗2 with a ratio
s = d∗2/d

∗
1. By assuming that the ratioc = d/d∗ approaches

1 as we derive Equation 16, we are able to get
M(K1,K2, c ·d

∗
2, d

∗
2) ≈ M(K1,K2, c ·d

∗
1, d

∗
1) ·s

α/2, (18)
whereα is a constant related to the power order in the
1/f law (Van der Schaaf and Van Hateren, 1996). See
Appendix C for the detailed derivation. Note the factor
sα/2 is dependent on the choice of aperture patterns. Figure
4 (b) shows three standardizedM curves of the circular
aperture pair by factorssα/2. In our implementation,α
is found to be1.4. We can see the threeM curves are
quite consistent after the standardization. This indicates
our evaluation criterion works equally well for all scene
depths. This property ensures that once an aperture pair is
optimized for a specific blur sized∗ (i.e. a specific object
depth), it will also be optimal for other depths.

In this analysis, the proposed criterion (Equation 15) is
simplified by assumingd/d∗ → 1. While this helps us
better understand the criterion in an intuitive way, it is
not accurate whend is significantly different fromd∗. For
example, as shown in Figure 1,M is no longer linear in
c when |c| deviates far away from 1. Because of this, we
will still use Equation 15 as the criterion for aperture pair
evaluation.

4 OPTIMIZATION OF APERTURE PAIRS

4.1 Circular Aperture Pair

We first use our derived evaluation criterion to determine
the optimal radius ratio of circular aperture pairs for DFD.
In Figure 5 (a), we show curves of the M energy function
from Equation 14 for four different ratios. These plots
highlight the well-known ambiguity with circular aperture
pairs of whether a scene point lies in front of or behind the
focal plane. This problem exists for any point-symmetric
apertures (e.g., the one optimized in (Levin et al., 2007)).
Figure 5 (b) shows a plot of our evaluation measureR with
respect to the radius ratio.R is maximized at the ratio1.5,
which indicates that1.5 is the optimal radius ratio for DFD.

A related analysis specifically for Gaussian aperture
patterns has been previously performed in (Rajagopalan and
Chaudhuri, 1997) and an optimal ratio of 1.73 was derived
based on information theory. For Gaussian PSFs, our nu-
merical optimization yields a similar ratio of 1.70. This
shows the consistency between the theoretical approach and
our numerical approach. While this theoretical approach
requires Gaussian PSFs, our method can be applied to
optimize arbitrary patterns.

4.2 Coded Aperture Pair

We then use the evaluation criterion to solve for optimal
coded aperture patterns. Pattern optimization is known to be
a challenging problem (Levin et al., 2007; Veeraraghavan
et al., 2007; Zhou and Nayar, 2009). First, it is difficult
to solve the optimal pattern analytically, because the eval-
uation criterion is defined in the Fourier domain and the
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Fig. 5. Using M and R to determine optimal radius
ratio for DFD in the case of the conventional circular
aperture. (a) M curves of the circular aperture pairs
with four different radius ratios. (b) R values of circular
aperture pairs with respect to radius ratio. The R value
is maximized at a radius ratio of 1.5.

11 x 11 13 x 13 25 x 2517 x 1715 x 15 33 x 33

Fig. 6. Increasing the resolution of an optimized aper-
ture pair by up-sampling and gradient search.
pattern is strictly constrained in the spatial domain - all the
transmittance values of the pattern must lie between 0 and
1. Secondly, it is computationally infeasible to do brute
force search. ForN × N binary patterns, the number of
possible solutions is huge –2N×N . If we use gray-level
patterns, the space will be even larger. Our problem is
made harder since we are attempting to solve for a pair
of apertures rather than a single aperture. To solve this
problem, we propose a two-step optimization strategy.

In the first step, we employ the genetic algorithm pro-
posed in (Zhou and Nayar, 2009) to find the optimized
binary aperture at a low resolution of11 × 11 according
to Equation 15. The optimized aperture pair at11 × 11 is
shown in the first column of Figure 6. Despite the high
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Fig. 7. Pattern spectra of three different aperture pairs, including the optimized large/small circular aperture pair
(Row 1), a pair of circular apertures with shifted centers (Row 2), and our optimized coded aperture pair (Row
3). The log of power spectra of each single pattern in the aperture pairs is illustrated in (a) and (b); and the log
of joint power spectra of the aperture pairs is illustrated in (c). For a clearer illustration, one 1-D slice of each 2-D
power spectra is plotted in (d). In addition, one 1-D slice of phase of each single pattern is also plotted in (d). We
can see that the two patterns in the optimized coded aperture pair compensate each other in both power spectra
and phase.

efficiency of this genetic algorithm, we found it to have
difficulties converging at higher resolutions.

As discussed in Section 3.3.1, the optimality of an
aperture pair is invariant to scale. Therefore, scaling up
the optimized pattern pair yields an approximation to the
optimal pattern pair at a higher resolution. This approx-
imation provides a reasonable starting point for gradient
descent search. Therefore, in the second step, we scale up
the11×11 solution to13×13 and then refine the solution
using gradient descent optimization. This scale-and-refine
process is repeated until reaching a resolution of33× 33.
Figure 6 shows the evolution of this pattern optimization
from 11 × 11 to 33 × 33, from left to right. The far right
aperture pair is our final optimized coded aperture pair for
DFD.

4.3 Discussion
4.3.1 On Depth from Defocus
The optimal radius ratio of a large/small aperture pair is
shown to be1.5 in Section 4.1. For an intuitive visualization

of this ratio’s optimality, we illustrate the large/small aper-
ture pair with radius ratio 1.5 in the Fourier domain (Figure
7 (a, b), Row 1). One slice of the log of power spectrum of
the large circular pattern (log(|K1|

2)) is plotted as a dashed
blue line in the first row of Figure 7 (d); the corresponding
slice of the small circular pattern (log(|K2|

2)) is plotted as
a dashed green line. We can see that due to the optimized
ratio 1.5, these two power spectra compensate each other
with respect to the zero-crossing frequencies. This compen-
sation intuitively increases the relative defocus betweenthe
two PSFs and benefits the depth estimation.

One can also increase the relative defocus by designing
a pair of patterns whose spectra compensate each other
in phase. One example is a pair of small circular patterns
with shifted centers (a stereo-like aperture pair) as shownin
Figure 7, Row 2. These two patterns share the same power
spectra, but compensate each other in phase (Figure 7 (d),
Row 2). This compensation in phase yields a stereo-like
effect in the captured images and increases the performance
of DFD.
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Remarkably, our optimized coded aperture pairs exhibit
significant compensations in both power spectra and phase
as shown in Figure 7 (d), Row 3. Intuitively, this com-
pensation maximizes the score defined in Equation 15,
greatly enhances the relative defocus, and improves the
performance of DFD.

Figure 8 (a) shows the depth estimation curvesM(d,
d∗,K1, K2) for the optimized circular aperture pair (green),
a pair of shifted circular apertures (blue), and our optimized
coded aperture pair (red). We can see the optimized coded
aperture pair exhibits a more pronounced minimum in the
profile of M than the other two pairs. This leads to depth
estimation that is more precise and more robust to noise
and scene variations.

4.3.2 On Defocus Deblurring
Equation 8 implies broadband joint power spectra will bring
great improvements in the quality of defocus deblurring.
Although the aperture pairs are optimized for best DFD,
the resulting complementary power spectra enable us to
also compute a high quality all-focused image from the
two captured defocused images. This is because, with zero-
crossings located at different frequencies for each of the
two apertures, the two apertures jointly provide broadband
coverage of the frequency domain. Logs of the joint power
spectra of the aperture pairs,log(|K1|

2/2 + |K1|
2/2), are

shown in Figure 7 (c). For both the optimized circular
aperture pair and the optimized coded aperture pair, the
joint pattern pairs are much more broadband than the
individual patterns. 1-D Slices of the power spectra of three
single aperture patterns are shown in Figure 7 (d) for a
clearer illustration.

Two defocused images with different blur kernels can
thus be much better than each single image. This is an
important implication of Equation 8. Rav-Acha and Peleg
(2005) discussed a similar idea in the context of motion-
blur deblurring, but do not provide detailed reasoning or a
closed-form deblurring algorithm.

For the stereo-like pair with shifted circular patterns, its
power spectra does not have any compensation, and thus
thus contains many zero-crossings as shown in Figure 7 (b),
Row 2. Therefore, the aperture pair is not ideal for defocus
deblurring. The joint power spectra of the three aperture
pairs are compared in Figure 8 (c).

4.3.3 On Diffraction
The final optimized aperture pair of resolution33 × 33 is
not only superior to the solution at11 × 11 in terms of
the evaluation criterion defined in Equation 15, but also
produces less diffraction because of greater smoothness in
the pattern. In Figure 8 (c), the in-focus diffraction pattern
of one of our optimized apertures is compared to three
other aperture patterns, including a large circular aperture, a
small circular aperture, and an optimized pattern at a lower
resolution (the first pattern in Figure 6). We can see that
the diffraction pattern of the optimized pattern at a high
resolution is more compact than the small circular aperture
and the optimized pattern at a low resolution.

5 RECOVERY OF DEPTH AND ALL-
FOCUSED IMAGE

With the optimized aperture pair, we use a straightforward
algorithm to estimate the depth mapU and recover the
latent all-focused imageI. For each sampled depth value

d ∈ D, we computeF̂0
(d)

according to Equation 8 and
then reconstruct two defocused images. At each pixel, the
residualW (d) between the reconstructed images and the
observed images gives a measure of how closed is to the
actual depthd∗:

W (d) =
∑

i=1,2

|IFT (F̂0
(d)

∗K d̂
i − Fi)|, (19)

where IFT is the 2-D inverse Fourier transform. With our
optimized aperture pairs, the value ofW (d)(x, y) reaches
an obvious minimum for pixel(x, y) if d is equal to the
real depth. Then, we can obtain the depth mapU as

U(x, y) = argmin
d∈D

W (d)(x, y), (20)

and then recover the all-focused imageI as

I(x, y) = F̂0
(Ux,y)

(x, y). (21)
The most computationally expensive operation in this

algorithm is the inverse Fourier transform. Since it isO(N ·
logN), the overall computational complexity of recovering
U and I is O(l· Nlog(N)), where l is the number of
sampled depth values andN is the number of image pixels.
With this complexity, real-time performance is possible. In
our Matlab implementation, this algorithm takes 15 seconds
for a defocused image pair of size1024 × 768 and 30
sampled depth values. Greater efficiency can be gained by
simultaneously processing different portions of the image
pair in multiple threads.

From the sparsely sampled depth values, we can in-
crease the depth resolution at a location(x, y) by fit-
ting the sequence of residuals{W (d−2)

xy , W
(d−1)
xy , W

(d)
xy ,

W
(d+1)
xy , W

(d+2)
xy } with a 3rd-order polynomial curve:

v = a1d
3 + a2d

2 + a3d + a4. With this interpolating
polynomial, a continuous-valued depth estimate can be
obtained by solvingδv/δd = 0.

6 PERFORMANCE ANALYSIS

6.1 Defocus Deblurring with Known Depth

Equation 8 shows that a high-quality deblurring requires
both a broadband joint power spectra and an accurate
depth estimationd. For simplification, we first assume
the ground truth depthd is given and evaluate via sim-
ulation the performance of the optimized coded aperture
pair in defocus deblurring. The evaluation is performed in
comparison to several other two-aperture or single-aperture
methods, including the optimized circular aperture pair, a
single circular aperture, a single coded aperture optimized
for defocus deblurring (Zhou and Nayar, 2009), and a single
coded aperture optimized for DFD (Levin et al., 2007).

For each aperture pattern configuration, we simulate a
defocused image or image pair of an IEEE resolution chart
using Equation 1 (Figure 9 (b-g)). The same budget of
exposure time is given to each configuration. Therefore,
the brightness of simulated defocused images varies with
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Fig. 8. (a) Comparison of M curves among the optimized coded aperture pair, optimized circular aperture pair
and the stereo-like aperture pair. (b) The in-focus diffraction patterns of four apertures, including a large circular
aperture, a small circular aperture, one of our optimized coded apertures at high resolution, and one of our
optimized coded apertures at low resolution. (c) Comparison of the joint power spectra of the optimized coded
aperture pair with those of the other two aperture pairs. (d) Comparison of the joint power spectra of the optimized
coded aperture pair with the power spectra of several single aperture patterns, including a conventional circular
aperture and one coded aperture optimized for defocus deblurring in (Zhou and Nayar, 2009).

aperture patterns, and the captured images appear darker
for aperture pair methods, since each image only gets half
of the time budget.

The deconvolution algorithm (Equation 8) is then applied
to deblur the simulated defocused image. By comparing
the close-ups of the recovered images, we see that the
optimized coded aperture pair (b), the coded aperture of
(Zhou and Nayar, 2009) (f), and the optimized circular
aperture pair (d) are able to recover much more image
detail and produces less noise and artifacts compared to the
other three pattern configurations (c, e, g). This is because
the power spectra (or joint power spectra) of the aperture
patterns in (b, d, f) are broadband and have few zero-
crossing frequencies, as shown in Figure 8 (c, d).

6.2 Depth from Defocus and Defocus Deblurring
In this work, we are interested in recovering an accurate
depth map and a high-quality focused image simulta-
neously from the captured defocused images. Although
the optimized single aperture of (Zhou and Nayar, 2009)
showed outstanding deblurring performance in the previous
evaluation, it is not ideal for this purpose since it cannot
work well for depth estimation. Also, note that an accurate
depth estimation is a pre-requisite for deblurring.

To quantitatively evaluate the optimized coded aperture
pair, we conducted experiments on a synthetic staircase
scene with two textures, one with strong and dense patterns,
and another of natural wood with weak texture. The virtual
camera (focal length = 50mm, pixel size = 10µ m) is
positioned with respect to the stairs as shown in Figure
10 (a). The corresponding ground truth texture and depth
map are shown in (b) and (c), respectively. Comparisons are
presented with two other typical aperture configurations: a
small/large circular aperture pair, and a circular aperture
with two sensor locations (shift of focus plane rather than
change in aperture radius).

For the DFD algorithm using our optimized aperture pair,
the focal plane is set near the average scene depth (1.2m)

so that the maximum blur size at the nearest/farthest points
is about 15 pixels. For the conventional method using a
small/large circular aperture pair, the focal plane is set at
the nearest scene point to avoid the front/behind ambiguity
with respect to the focal plane and yet capture the same
depth range. This leads to a maximum blur size of about
30 pixels at the farthest point. The radius ratio of the two
circular apertures is set to 1.5, the optimal value. For the
DFD method with two sensor positions, (Schechner and
Kiryati, 1993) reveals that moving the sensor in a DOF
interval is optimal with respect to estimation robustness,
and the depth estimation can be unstable if the interval is
larger than the DOF by a factor of 2 or higher. However, in
many scenes, including this simulated one, the depth range
is often far larger than the DOF and therefore the optimal
interval is practically not achievable. In this simulation, the
two defocused images are synthesized with focal planes set
at the nearest point (0.8m) and the farthest point (1.8m).
Identical Gaussian noise (σ = 0.005) is added to all the
synthesized images.

Figure 10 (d) shows results of the three DFD methods.
Note that no post-processing is applied in this estimation.
By comparing to (c), we can see that the depth precision
of our proposed method is closest to the ground truth. For
a clearer comparison, depth residuals are plotted in (f) for
vertical slices of the computed depth maps, with the strong
texture in the top plot and the wood texture at the bottom.
At the same time, our proposed method generates an all-
focused image of higher quality than the other two methods,
as illustrated in (e).

A quantitative comparison among these dual-image DFD
methods is given in Table 1. Using the optimized coded
aperture pair leads to considerably lower root-mean-squared
errors (RMSE) for both depth estimation and defocus de-
blurring in comparison to the conventional circular aperture
pair and the two focal planes methods. The difference in
performance is particularly large for the natural wood with
weaker texture, which indicates greater robustness of the
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(a) Ground truth 

     focused image

(b) Our optimized coded

      aperture pair

(c) A single circular aperture

(d) The optimized circular aperture pair

(e) Two circular apertures with shifted centers

(f) A single coded aperture optimized for defocus debluring [10]

(g) A single coded aperture optimized for DFD [9]

Defocused
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Close-up

Defocused Recovered Close-up

Defocused Recovered Close-up

Defocused Recovered Close-up

Defocused Recovered Close-up

Defocused Recovered Close-up

Close-up

Fig. 9. Defocus deblurring with known depth. (a) The ground truth focused image of an IEEE resolution chart and
its close-up. (b) to (g) shows six sets of defocused image or image pair, recovered image, and close-up image,
simulated using six different aperture configurations. We can see that the recovered images in (b, d, f) include
much more details and suffer fewer artifacts and noise than those in (c, e, g). (To be fair, it should be noted that
the pattern of Levin et al. (2007) was not designed for defocus deblurring.)
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Fig. 10. Comparison of depth from defocus and defocus deblurring using a synthetic scene. (a) 3-D structure
of synthesized stairs. (b) Ground truth of texture map. (c) Ground truth of the depth map. (d) Estimated depth
maps using three different methods. From left to right: small/large circular aperture pair, two focal planes, and the
proposed coded aperture pair. (e) Close-ups of four regions in the ground truth texture and the images recovered
using the four different methods. (f) Top: The depth residuals of the four depth estimation methods on the strong
texture; bottom: the depth residuals on the wood texture.

optimized pair.

For an intuitive understanding of this improvement, we
refer to the analysis in (Schechner and Kiryati, 1998). In
(Schechner and Kiryati, 1998), it is shown that DFD can be
regarded as a triangulation-based method, with the aperture
size corresponding to the stereo baseline in determining
depth sensitivity. Instead of directly increasing the depth
sensitivity, our aperture patterns are optimized such that
the DFD will be more robust to image noise and scene
variation. Furthermore, the complementary power spectra
and large phase displacement between the two optimized
apertures essentially help to avoid matching ambiguity of
the triangulation. Because of this, our DFD method using
the optimized aperture pair can estimate depth with higher
precision (as shown in Table 1), without increasing the
physical dimensions of the aperture.

Table 1. Quantitative evaluation of depth and deblurring error

Strong Texture (RMSE)         Wood Texture (RMSE)

Circular apertures               27.28           0.028            464.04        0.060

Depth (mm)     Grayscale        Depth (mm)      Color

Two focal planes                  6.32            0.027            124.21        0.045

Proposed coded apertures  4.03            0.016             18.82         0.036

(a) A disassembled Canon EF

     50mm f/2.8 lens

(b) Two lenses with the optimized 

      patterns inserted

Fig. 11. Implementation of aperture pair. (a) Lenses
are opened. (b) Photomasks with the optimized aper-
ture patterns are inserted.

7 EXPERIMENTS WITH REAL APERTURES

We printed our optimized pair of aperture patterns on high
resolution (1 micron) photomasks, and inserted them into
two Canon EF 50mmf/1.8 lenses (See Figure (11)). These
two lenses are mounted to a Canon EOS 20D camera in
sequence to take a pair of images of each scene. The camera
is firmly attached to a tripod and no camera parameter is
changed during the capturing. Switching the lenses often
introduces a displacement of around 5 pixels between the
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(a) Optimized Circular Aperture Pair (b) Optimized Coded Aperture Pair

Captured Image Pair Captured Image Pair

Recovered All-focused Image Recovered All-focused Image

Estimated Depth Map Estimated Depth MapClose-ups Close-ups

Captured Captured

Captured Captured

Recovered Recovered

Recovered Recovered

Fig. 12. Campus view example. (a) Conventional DFD method using circular apertures at the optimal ratio of
1.5. The two input images are captured with f/2.8 and f/4.5, respectively. (b) DFD method using the optimized
coded aperture pair. All images are captured with focus set to the nearest point. Note that the only difference
between (a) and (b) is the choice of the aperture patterns.

two captured images. We correct for this with an affine
transformation.

This setting was used to capture real images of several
complex scenes. Figure 2 shows a scene on a study desk
with a depth range of about 0.8-1.5m. Two images (a,
b) were taken using the optimized coded aperture pair
with the focus set to the middle of the depth of field.
From these two captured defocused images, we computed
a high-quality all-focused image and a high-quality depth
map simultaneously as shown in (c, d) using the algorithm
described in Section 5. No user interaction was involved
throughout the whole estimation precedure. By comparing
the close-ups of the captured image with the recovered
image (e), we can see that lots of image details were
recovered. Note that the flower within the picture frame
(green box) is out of focus in the actual scene and this blur
is preserved in the computed all-focused image. In addition,
the defocus of the yellow pencil on the book (blue box)
changes gradually since it is not parallel to the focus plane,
and our algorithm, although is simple and straightforward,
able to achieve good recovery with little artifacts.

Figure 12 shows another scene with large depth variation,
ranging from 3 meters to about 15 meters. We intentionally
set the focus to the nearest scene point so that the conven-
tional DFD method, which uses a circular aperture, can be
applied and compared against. For the conventional method,
the f-number was set tof/2.8 andf/4.5, respectively, such
that the radius ratio is close to the optimal value 1.5 as

determined in Section 4.1. For a fair comparison, all four
of the input images were captured with the same exposure
time.

The results are similar to those from our simulation.
We can see clearly from Figure 12 that depth estimation
using the conventional circular apertures only works well
in regions with strong texture or sharp edges. On the other
hand, depth estimation with the optimized coded apertures
is robust to scenes with subtle texture. As a result, we are
able to recover many more image details by using the coded
aperture pair, as shown in the close-ups.

Figure 13 shows a scene inside a bookstore. The depth
range is about 2-5 m. Two images (a,b) were taken using
the optimized coded aperture pair with the focus set to 3m.
The computed all-focused image and depth map are shown
in (c) and (d). The ground truth images (e) were captured
with a tiny aperture (f/16) and long exposure time. We can
see that the computed all-focused image exhibits accurate
deblurring over a large depth of field and appears very
similar to the ground truth image.

8 DISCUSSION AND PERSPECTIVES

We have presented a comprehensive criterion for evaluating
aperture patterns for the purpose of depth from defocus
(DFD). This criterion is used to solve for an optimized
pair of apertures that complement each other, both for
estimating relative defocus and for preserving frequency
content. This optimized aperture pair enables more robust
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(a) Captured Image 1 (b) Captured Image 2 (c) Recovered All-focused Image (e) Ground Truth

(d) Estimated Depth Map

Fig. 13. Inside a book store. (a-b) Captured images using the coded aperture pair with close-ups of several
regions. The focus is set at the middle of depth of field. (c) The recovered image with close-ups of the
corresponding regions. (d) The estimated depth map without post-processing. (e) Close-ups of the regions in
the ground truth image, captured by using a small aperture f/16 and a long exposure time.

depth estimation in the presence of image noise and weak
texture. The improved depth map is then used to deconvolve
the two captured images, in which frequency content has
been well preserved, and yields a high-quality all-focused
image.

We did not address the effects of occlusion boundaries in
this paper, as it is not a central element of this work. As a
result, some artifacts or blurring along occlusion boundaries
might be observed in the computed depth maps and all-
focused images.

There exist various ways in which coded aperture pairs
may be implemented. Though it is simple to switch lenses
as described in this paper, implementations for real-time
capture with coded aperture pairs are highly desirable. One
simple implementation is to co-locate two cameras using a
half-mirror. A more compact implementation would be to
use a programmable LCD or DMD aperture within a single
camera to alternate between the two aperture patterns in
quick succession.

In this paper, the proposed evaluation criterion was pre-
sented for optimizing patterns of coded aperture; however,it
can be applied more broadly to other PSF coding methods,
such as wavefront coding, which does not occlude light as
coded apertures do. How to use this criterion to optimize
wavefront coding for DFD is an interesting direction for
future work.

APPENDIX A: PROOF OF EQUATION 10

Given a coded aperture pair (K1,K2), a ground truth blur
size d∗, and a noise levelσ, the energyE corresponding
to a hypothesized blur estimated is as follows:

E(d|Kd∗

1 ,Kd∗

2 , σ) (22)

=
∑

ξ

A · |Kd
1 ·Kd∗

2 −Kd
2 ·Kd∗

1 |2
∑

i |K
d
i |

2 + C
(23)

+
∑

ξ

σ2 · (
∑

i |K
d∗

i |2 + C)
∑

i |K
d
i |

2 + C
+ n · σ2. (24)

Proof:
E(d|Kd∗

1 ,Kd∗

2 , σ) (25)

= E
F0

E(d|Kd∗

1 ,Kd∗

2 , σ, F0) (26)

= E
F0,F1,F2

E(d|Kd∗

1 ,Kd∗

2 , F1, F2, F0) (27)

= E
F0,F1,F2





∑

i=1,2

‖F̂0 ·Ki − Fi‖
2 + ‖C · F̂0‖

2



, (28)

where E(x) is the expectation ofx, and Fi is the ith

captured image. SubstitutinĝF0 with Equation 8, we get:
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E(d|Kd∗

1 ,Kd∗

2 , σ) (29)

= E
F0,F1,F2





∑

i=1,2

‖
F1 · K̄

d
1 + F2 · K̄

d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
·Ki − Fi‖

2

(30)

+ ‖C ·
F1 · K̄

d
1 + F2 · K̄

d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
‖2
]

. (31)

Then, by substitutingFi with Equation 2, we have:

E(d|Kd∗

1 ,Kd∗

2 , σ) (32)

= E
F0,ζ1,ζ2





∑

i=1,2

‖(F0 ·K
d∗

i + ζi)− (33)

(F0 ·K
d∗

1 + ζ1) · K̄
d
1 + (F0 ·K

d∗

2 + ζ2) · K̄
d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
·Ki‖

2+

(34)

‖C ·
(F0 ·K

d∗

1 + ζ1) · K̄
d
1 + (F0 ·K

d∗

2 + ζ2) · K̄
d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
‖2
]

.

(35)
Since ζ1 and ζ2 are independent Gaussian white noise

N(0, σ), we haveE ζ2i = σ2, E ζi = 0, andE ζ1ζ2 = 0.
LetB = K2

1+K2
2+C. Then, Equation 35 can be rearranged

to be:

E(d|Kd∗

1 ,Kd∗

2 , σ) (36)

= E
F0,ζ1,ζ2

∑

i=1,2

[

‖
F0[(K

d∗

1 K̄1 +Kd∗

2 K̄d
2 ) ·K

d
i −Kd∗

i B]

B
‖2

(37)

+‖
(ζ1K̄d

1 + ζ2K̄d
2 )K

d
i

B
− ζi‖

2

]

(38)

+ ‖C ·
F0 · (K

d∗

1 K̄d
1 +Kd∗

2 K̄d
2 )

B
+

ζ1 · K̄d
1 + ζ2 · K̄d

2

B
‖2

(39)

= E
F0

∑

i=1,2

‖
F0[(K

d∗

1 K̄d
1 +Kd∗

2 K̄d
2 ) ·K

d
i −Kd∗

i B]

B
‖2

(40)

+ σ2 · (‖
Kd

i
2
+ C

B
‖2 + ‖

Kd
1K

d
2

B
‖2 + ‖C ·

Kd
i

B
‖2) (41)

+ ‖C ·
F0 · (K

d∗

1 K̄d
1 +K∗

2 K̄
d
2 )

B
‖2. (42)

According to the1/f law, we define the expectation of
the power spectrum ofF0 asA, whereA(ξ) =

∫

F0
|F0(ξ)|

2

µ(F0). In addition, it is known thatC = σ2/A. Then,
Equation 42 can be further re-arranged and simplified as:

E(d|Kd∗

1 ,Kd∗

2 , σ) (43)

=
∑

ξ

A · |Kd
1 ·Kd∗

2 −Kd
2 ·Kd∗

1 |2
∑

i |K
d
i |

2 + C
(44)

+
∑

ξ

σ2 · (
∑

i |K
d∗

i |2 + C)
∑

i |K
d
i |

2 + C
+ n · σ2. (45)

xyz
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When the ratioc = d/d∗ approaches 1, we have
M(K1,K2, d, d

∗) (46)

=





1

n

∑

ξ

A ·
(|c− 1|d∗)2|K

′d∗

1 Kd∗

2 −K
′d∗
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2 |2 + C2





1/2
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=|c− 1|d∗ ·





1

n
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ξ

A ·
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1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗

1 |2 + |Kd∗

2 |2 + C2





1/2

,

(48)
whereK

′d∗

i is the derivative ofKd∗

i with respect to the
blur size.

Proof: A kernel K can be regarded as a function of both
the frequencyξ and the scaled∗. Assume the derivative of
K with respect tod∗ exists and is denoted byK

′d∗

, we
haveKd = Kd∗

+δd ·K
′d∗

whenδd = d−d∗ = (c−1)d∗

approaches zero. Then, we get
M(K1,K2, d, d

∗) (49)

=
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1
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1 |
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(50)

=
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(51)

=|δ|d∗ ·

[

1
n

∑

ξ

A ·
|K

′d∗
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1 |2
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. (52)
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1
n
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2 Kd∗
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]1/2

. (53)

APPENDIX C: PROOF OF EQUATION 18

Consider two scalesd∗1 and d∗2 with a ratio s = d∗2/d
∗
1.

Whenc = d/d∗ approaches 1, we have
M(K1,K2, c ·d

∗
2, d

∗
2) ≈ M(K1,K2, c ·d

∗
1, d

∗
1) ·s

α/2, (54)
whereα is a constant related to the power order in the1/f
law (Van der Schaaf and Van Hateren, 1996).

Proof: According to Equation 16, we have
M(K1,K2, c · d

∗
2, d

∗
2) (55)

=|c− 1|d∗2 ·

[

1
n

∑

ξ

A ·
|K
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1 K

d∗2
2 −K

′d∗2
2 K
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1 |2

|K
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1 |2+|K
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2 |2+C2

]1/2

. (56)

SinceK∗
2 is a scaledK∗

1 of factor s, K∗
2 (ξ) = K∗

1 (sξ).
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Therefore,
M(K1,K2, c · d
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,

(61)

(62)
whereη = sξ.

According to the 1/f law (Van der Schaaf and
Van Hateren, 1996), the prior power spectra of natural
imageA(ξ) statistically takes a form ofD exp 1/ξ2, where
the power order may vary slightly around2 with scenes
andD is a normalization factor. This spectra function can
be roughly approximated asA(ξ) = D 1

ξα with a proper
α, especially when this prior function is applied to finite-
resolution images. Then,A(η/s) ≈ A(η) · sα. Therefore,
we have

M(K1,K2, c · d
∗
2, d

∗
2) (63)

≈|c−1|d∗
1 ·
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

1
n

n
∑
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
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,

(64)

=M(K1,K2, c · d
∗
1, d

∗
1) · s

α/2. (65)
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