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Abstract

The classical approach to depth from defocus uses two
images taken with circular apertures of different sizes. We
show in this paper that the use of a circular aperture
severely restricts the accuracy of depth from defocus. We
derive a criterion for evaluating a pair of apertures with re-
spect to the precision of depth recovery. This criterion is
optimized using a genetic algorithm and gradient descent
search to arrive at a pair of high resolution apertures. The
two coded apertures are found to complement each other in
the scene frequencies they preserve. This property enables
them to not only recover depth with greater fidelity but also
obtain a high quality all-focused image from the two cap-
tured images. Extensive simulations as well as experiments
on a variety of scenes demonstrate the benefits of using the
coded apertures over conventional circular apertures.

1. Introduction
Recent advances in computational photography have

given rise to a new breed of digital imaging tools. By
acquiring greater or more informative scene data, various
forms of post-capture photo processing can be applied to
improve image quality or alter scene appearance. This ap-
proach has made operations such as depth-based image edit-
ing, refocusing and viewpoint adjustment feasible. Many of
these operations rely on the explicit or implicit recovery of
3D scene geometry.

One approach to recovering 3D scene geometry that has
received renewed attention in recent years is depth from de-
focus (DFD). For a given camera setting, scene points that
lie on a focal plane located at a certain distance from the
lens will be correctly focused onto the sensor, while points
at greater distances away from this focal plane will appear
increasingly blurred due to defocus. By capturing two im-
ages at camera settings with different defocus characteris-
tics, one can infer the depth of each point in the scene from
their relative defocus. Relative to other image-based shape
reconstruction approaches such as multi-view stereo, struc-
ture from motion, range sensing and structured lighting,

depth from defocus is more robust to occlusion and corre-
spondence problems [12].

Since defocus information was first used for depth esti-
mation in the early 1980’s [8][13], various techniques for
DFD have been proposed based on changes in camera set-
tings. Most commonly, DFD is computed from two im-
ages acquired from a fixed viewpoint with different aperture
sizes (e.g., [7] [10] [16] [3]). Since the lens and sensor are
fixed, the focal plane remains the same for both images. The
image with a larger aperture will exhibit greater degrees of
defocus with respect to given distances from the focal plane,
and this difference in defocus is exploited to estimate depth.

The relative defocus is fundamentally influenced by the
shape of the camera aperture. Though most DFD methods
employ conventional lenses whose apertures are circular,
other aperture structures can significantly enhance the esti-
mation of relative defocus and hence improve depth estima-
tion. In this work, we propose a comprehensive framework
of evaluating aperture pairs for DFD, and use it to solve for
an optimized pair of apertures. First, we formulate DFD
as finding a depth d that minimizes a cost function E(d),
whose form depends upon the aperture patterns of the pair.
Based on this formulation, we then solve for the aperture
pair that yields a function E(d) with a more clearly de-
fined minimum at the ground truth depth d∗, which leads
to higher precision and stability of depth estimation. Note
that there exist various other factors that influence the depth
estimation function E(d), including scene content, camera
focus settings, and even image noise level. Our proposed
evaluation criterion takes all these factors into account to
find an aperture pair that provides improved DFD perfor-
mance.

Solving for an optimized aperture pattern is a challeng-
ing problem – for a binary pattern of resolution N ×N , the
number of possible solutions for an aperture is 2N×N . This
problem is made harder by the fact that the aperture evalu-
ation criterion is formulated in the Fourier domain and the
transmittance values of the aperture patterns are physically
constrained to lie between 0 and 1. To make this problem
more tractable, existing methods [18][15][5] have limited
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Figure 2. Depth from defocus and out-of-focus deblurring using coded aperture pairs. (a-b) Two captured images using the optimized
coded aperture pair. The corresponding aperture pattern is shown at the top-left corner of each image. (c) The recovered all-focused image.
(d) The estimated depth map. (e) Close-ups of four regions in the first captured image and the corresponding regions in the recovered
image. Note that the bee and flower within the picture frame (light blue box) are out of focus in the actual scene and this blur is preserved
in the computed all-focused image. For all the other regions (red, blue, and green boxes) the blur due to image defocus is removed.

-1.5 x d*
0

2

4

6

8  

−�

0

�

0

0.5

1

-1 -0.5 0 0.5 -1

Log of Power Spectra

Phase

(b)
-1  0  -0.5 0.5  1  

(a)

E(d)

Figure 1. Depth estimation curves and pattern spectra. (a) Curves
of E(d) for the optimized coded aperture pair (red) and the con-
ventional large/small circular aperture pair (black). The sign of
the x-axis indicates if a scene point is farther or closer than the
focus plane. (b) Top: Log of combined power spectra of the op-
timized coded aperture pair (red), as well as the power spectra of
each single coded aperture (green and blue). Bottom: Phases of
the Fourier spectra of the two coded apertures.

the pattern resolution to 13 × 13 or lower. However, so-
lutions at lower resolutions are less optimal due to limited
flexibility. To address the aperture resolution issue, we pro-
pose a novel recursive pattern optimization strategy that in-
corporates a genetic algorithm [18] with gradient descent
search. This algorithm yields optimized solutions with res-
olutions of 33 × 33 or higher within a reasonable com-
putation time. Although higher resolutions usually mean
greater diffraction effects, in this particular case, we find
that a high-resolution pattern of 33 × 33 suffers less from
diffractions than other lower resolution patterns do.

Figure 1(a) displays profiles of the depth estimation
function E(d) for the optimized pair and for a pair of con-
ventional circular apertures. The optimized pair exhibits a

profile with a more pronounced minimum, which leads to
depth estimation that has lower sensitivity to image noise
and greater robustness to scenes with subtle texture. In ad-
dition, our optimized apertures are found to have comple-
mentary power spectra in the frequency domain, with zero-
crossings located at different frequencies for each of the two
apertures, as shown in Figure 1(b). Owing to this property,
the two apertures thus jointly provide broadband coverage
of the frequency domain. This enables us to also compute a
high quality all-focused image from the two captured defo-
cused images.

We demonstrate via simulations and experiments the
benefits of using an optimized aperture pair over other aper-
ture pairs, including circular ones. Our aperture pair is able
to not only produce depth maps of significantly greater ac-
curacy and robustness, but also produces high-quality all-
focused images (see Figure 2 for an example.)

2. Related Work
Single Coded Apertures Coded apertures have recently
received much attention. In [15] and [18], coded apertures
are used to improve out-of-focus deblurring. To achieve this
goal, the coded apertures are designed to be broadband in
the Fourier domain. In [18], a detailed analysis of how aper-
ture patterns affect deblurring is done. Based on this analy-
sis, a closed-form criterion for evaluating aperture patterns
is proposed. In our work, we employ a methodology simi-
lar to [18], but our goal is to derive an aperture pair that is
optimized for depth from defocus.



To improve depth estimation, Levin et al. [5] proposed
using an aperture pattern with a more distinguishable pat-
tern of zero-crossings in the Fourier domain than that of
the conventional circular apertures. Similarly, Dowski [1]
designed a phase plate that has responses at only a few
frequencies, which makes their system more sensitive to
depth variations. These methods specifically target depth
estimation from a single image, and rely heavily on spe-
cific frequencies and image priors. A consequence of this
strong dependence is that they become sensitive to image
noise and cannot distinguish between a defocused image of
a sharp texture and a focused image of smoothly varying
texture. Moreover, these methods compromise frequency
content during image capture, which degrades the quality
of image deblurring.

A basic limitation of using a single coded aperture is that
aperture patterns with a broadband frequency response are
needed for optimal defocus blurring but are less effective for
depth estimation [5], while patterns with zero-crossings in
the Fourier domain yield better depth estimation but exhibit
a loss of information for deblurring. Figure 3 exhibits this
trade-off using the aperture designed for depth estimation
in [5] and the aperture for deblurring in [18]. Since high-
precision depth estimation and high-quality defocus deblur-
ring generally cannot be achieved together with a single im-
age, we address this problem by taking two images with
different coded apertures optimized to jointly obtain a high-
quality depth map and an all-focused image, as shown in
Figure 2.

0 0.2 0.4 0.6 0.8 1

0.02

0.06

0.10

0.14

-1 -0.5 0 0.5 1
−2

−1

0

1

(b) (a)
x d*

E(d)

Log of Power Spectra

0.18

Figure 3. Performance trade-offs with single apertures. (a) DFD
energy function profiles of three patterns: circular aperture (red),
coded aperture of [5] (green), and coded aperture of [18] (blue).
(b) Log of power spectra of these three aperture patterns. The
method of [5] provides the best DFD, because of its distinguish-
able zero-crossings and its clearly defined minimum in the DFD
energy function. On the other hand, the aperture of [18] is best
for defocus deblurring because of its broadband power spectrum,
but is least effective for DFD due to its less pronounced energy
minimum, which makes it more sensitive to noise and weak scene
textures.

Multiple Coded Apertures Multiple images with differ-
ent coded apertures were used for DFD in [2] [4]. In [2],
two images are taken with two different aperture patterns,
one being Gaussian and the other being the derivative of
a Gaussian. These patterns are such designed so that depth

estimation involves only simple arithmetic operations, mak-
ing it suitable for real-time implementation. Hiura and
Matsuyma[4] aims for more robust DFD by using a pair
of pinhole apertures within a multi-focus camera. The use
of pinhole pairs facilitates depth measurement. However,
this aperture coding is far from optimal. Furthermore, small
apertures significantly restrict light flow to the sensor, re-
sulting in considerable image noise that reduces depth ac-
curacy. Long exposures can be used to increase light flow
but will result in other problems such as motion blur.

In related work, Liang et al. [6] proposed to take tens
of images by using a set of Hadamard-code based aperture
patterns for high-quality light field acquisition. From the
parallax effects present within the measured light field, a
depth map is computed by multi-view stereo. In contrast,
our proposed DFD method can recover a broad depth range
as well as a focused image of the scene by only capturing
two images.

3. Aperture Pair Evaluation
3.1. Formulation of Depth from Defocus

For a simple fronto-planar object, its out-of-focus image
can be expressed as

f = f0 ⊗ k(d) + η, (1)

where f0 is the latent in-focus image, η is the image noise
which is assumed to be Gaussian white noise N(0, σ2), and
k is the point spread function (PSF) whose shape is deter-
mined by the aperture and whose size d is related to the
depth. In this paper, the sign of blur size d indicates if a
scene point is farther or closer than the focal plane. For a
specific setting, there is a one-one mapping from the blur
size to the depth. By estimating the size of defocus blur
from the image, we can infer the depth. The above equation
can written in the frequency domain as F = F0 ·K(d) + ζ,
where F0,K, and ζ are the discrete Fourier transforms of
f0, k, and η, respectively.

A single defocused image is generally insufficient for in-
ferring scene depth without additional information. For ex-
ample, one cannot distinguish between a defocused image
of sharp texture and a focused image of smoothly varying
texture. To resolve this ambiguity, two (or more) images
Fi, i = 1, 2 of a scene are conventionally used, with differ-
ent defocus characteristics or PSFs for each image:

Fi = F0 ·Kd∗

i + ζi, (2)

where Kd∗

i denotes the Fourier transform of the ith PSF
with the actual blur size d∗. Our objective is to find the
size d̂ and deblurred image F̂0 by solving a maximum a
posteriori (MAP) problem:

< d̂, F̂0 > ∝ arg max P (F1, F2|d̂, F̂0, σ)P (d̂, F̂0)

= arg max P (F1, F2|d̂, F̂0, σ)P (F̂0). (3)



According to Equation 2, we have

P (F1, F2|d̂, F̂0, σ) ∝ exp{− 1
2σ2

∑
i=1,2 ‖F̂0 ·K d̂

i −Fi‖2},
(4)

and our prior assumes the weighted latent focused image
Ψ · F̂0 follows a Gaussian distribution with zero mean:

P (F̂0) ∝ exp{−1
2
‖Ψ · F̂0‖2}, (5)

where Ψ is the matrix of weights. Note that different
choices of Ψ lead to different image priors. For exam-
ple, it is a simple Tikhonov regularization when Ψ takes a
constant scalar value; and it becomes the popular Gaussian
prior of image derivatives when Ψ is the derivative filter in
the Fourier domain.

Then, blur size is estimated as the d̂ that maximizes:

P (d̂|F1, F2, σ) = max
F̂0

P (F̂0, d̂|F1, F2, σ). (6)

Expressed as a logarithmic energy function, the problem be-
comes the minimization of

E(d̂|F1, F2, σ) = min
F0

∑
i=1,2

‖F̂0 ·K d̂
i − Fi‖2 + ‖C · F̂0‖2,

(7)
where C = σ · Ψ. Rather than assigning a specific value,
we will optimize C by making use of the 1/f law [17].

3.2. Generalized Wiener Deconvolution

For a given d̂, solving ∂E/∂F̂0 = 0 yields

F̂0 =
F1 · K̄ d̂

1 + F2 · K̄ d̂
2

|K d̂
1 |2 + |K d̂

2 |2 + |C|2
, (8)

where K̄ is the complex conjugate of K and |X|2 = X · X̄ .
As in [18], C can be optimized as σ/A

1
2 , where A is defined

over the power distribution of natural images according to
the 1/f law [17]: A(ξ) =

∫
F0
|F0(ξ)|2µ(F0). Here, ξ is

the frequency and µ(F0) is the possibility measure of the
sample F0 in the image space.

Equation (8) can be regarded as a generalized Wiener de-
convolution which takes two input defocused images, each
with a different PSF, and outputs one deblurred image. This
algorithm yields much better deblurring results than only
deconvolving one input image[14][5][11]. Note that a sim-
ilar deconvolution algorithm was derived using a simple
Tikhonov regularization in [9]. In addition, this deconvo-
lution method can be easily generalized for the multiple-
image case as:

F̂0 =
ΣiFi · K̄ d̂

i

Σi|K d̂
i |2 + |C|2

, (9)

3.3. Selection Criterion
Based on the above formulation of DFD, we seek a

criterion for selecting an aperture pair that yields precise

and reliable depth estimates. For this, we first derive
E(d|Kd∗

1 ,Kd∗

2 , σ, F0) by substituting Equations (2) and (8)
into Equation (7). Note that the estimate d is related to the
unknown F0 and the noise level σ. We can integrate out F0

by using the 1/f law of natural images as done in [18]:

E(d|Kd∗

1 ,Kd∗

2 , σ) =
∫

F0

E(d|Kd∗

1 ,Kd∗

2 , σ, F0)µ(F0).

This equation can be rearranged and simplified to get

E(d|Kd∗

1 ,Kd∗

2 , σ) =
∑

ξ
A·|Kd

1 ·K
d∗
2 −Kd

2 ·K
d∗
1 |2∑

i |Kd
i |2+C2

+σ2 ·
∑

ξ[
C2∑

i |Kd
i |2+C2 + 1], (10)

which is the energy corresponding to a hypothesized depth
estimate given the aperture pair, focal plane and noise level.

The first term of Equation (10) measures inconsistency
between the two defocused images when the estimated blur
size d deviates from the ground truth d∗. This term will be
zero if K1 = K2 or d = d∗. The second term relates to
exaggeration of image noise.

Depth can be estimated with greater precision and relia-
bility if E(d|Kd∗

1 ,Kd∗

2 , σ) increases significantly when the
estimated blur size d deviates from the ground truth d∗. To
ensure this, we evaluate the aperture pair (K1,K2) at d∗

and noise level σ using
R(K1,K2|d∗, σ)

= min
d∈D/d∗

E(d|Kd∗

1 ,Kd∗

2 , σ)− E(d∗|Kd∗

1 ,Kd∗

2 , σ)

= min
d∈D/d∗

∑
ξ

A
|Kd

1 Kd∗
2 −Kd

2 Kd∗
1 |2∑

i |Kd
i |2+C2

+ σ4

A ·
∑

i |K
d∗
i |2−

∑
i |K

d
i |

2

(
∑

i |Kd
i |2+C2)·(

∑
i |Kd∗

i |2+C2)
(11)

≈min
d∈D/d∗

∑
ξ

A · |K
d
1 Kd∗

2 −Kd
2 Kd∗

1 |2

|Kd
1 |2+Kd

2 |2+C2 , (12)

where D={c1d
∗, c2d

∗, . . . , cld
∗} is a set of blur size

samples. In our implementation, {ci} is set to
{0.1, 0.15, . . . , 1.5}.

According to the derivations, this criterion for evaluat-
ing aperture pairs is dependent on ground truth blur size
d∗ (or object distance) and noise level σ. However, this
dependence is actually weak. Empirically, we have found
Equation (11) is dominated by the first term, and C to be
negligible in comparison to the other factors. As a result,
Equation (11) can be approximated by (12) and is relatively
insensitive to the noise level, such that the dependence on σ
can be disregarded in the aperture pair evaluation (σ is taken
to be 0.005 throughout this paper). Also, we note that dif-
ferences in d∗ correspond to variations in PSF size, which
can be regarded as equivalent to scaling the image itself.
Since the matrix A is basically scale-invariant according to
the 1/f law [17], aperture pair evaluation is also insensitive
to d∗. This insensitivity to d∗ indicates that our evaluation
criterion works equally well for different scene depths.



Discussion For optimal DFD performance with an aper-
ture pair, the pair must maximize the relative defocus be-
tween the two images. The relative defocus depends on dif-
ferences in amplitude and phase in the spectra of the two
apertures. DFD is most accurate when the two power spec-
tra are complementary, such that their phases are orthogo-
nal and a zero-crossing (R1) for one aperture corresponds
to a large response (R2) at the same frequency for the other
aperture. Intuitively, this is because the ratio of their spectra
(R2/R1) would have a more significant peak, which can be
detected more robustly in the presence of noise and weak
textures. The position of this detected peak indicates the
scale of defocus blur, which in turn is related to depth.

With the selection criterion given by Equation (12), our
method accounts for the following properties. Equation
(12) is maximized when K1 and K2 have complementary
power spectra in both magnitude and phase. Optimizing the
aperture patterns according to this criterion maximizes DFD
performance.

4. Optimization of Aperture Pair Patterns
Solving for optimal aperture patterns is known to be

a challenging problem [5][15][18]. Our problem is made
harder since we are attempting to solve for a pair of aper-
tures rather than a single aperture. For a binary pattern pair
of resolution N × N , the number of possible solutions is
4N ·N . To solve this problem, we propose a two-step opti-
mization strategy.

In the first step, we employ the genetic algorithm pro-
posed in [18] to find the optimized aperture according to
Equation (12) at a low resolution of 11x11. The result is
shown in the first column of Figure 4. Despite the high
efficiency of this genetic algorithm, we found it to have dif-
ficulties in converging at higher resolutions.

As mentioned in Section 3.3, the optimality of an aper-
ture pair is invariant to scale. Therefore, scaling up the op-
timized pattern pair yields an approximation to the optimal
pattern pair at a higher resolution. This approximation pro-
vides a reasonable starting point for gradient descent search.
Thus, in the second step we scale up the 11× 11 solution to
13× 13 and then obtain a solution of resolution 13× 13 by
gradient descent optimization. This process is repeated until
reaching a resolution of 33× 33. The evolution of the opti-
mized aperture pair through this process is shown in Figure
4. The final optimized aperture pair of size 33 × 33 is not
only superior to the solution at 11× 11 in terms of the aper-
ture pair criterion in Equation (12), but also produces less
diffraction because of greater smoothness in the pattern.

Figure 1(a) shows the depth estimation curves
E(d|K1,K2), for our optimized pair and a pair of
conventional circular apertures. We can see the curves for
the optimized pair are much steeper. This leads to depth
estimation that is more precise and more robust to noise

11 x 11 13 x 13 25 x 2517 x 1715 x 15 33 x 33

Figure 4. Increasing the resolution of an optimized aperture pair
by upsampling and gradient search.

and scene variations in practice. It is also confirmed that
the curve E(d) is insensitive to the blur size.

As we have shown in Figure 1(b), each of our optimized
coded apertures has a distinct pattern of zero-crossings.
Moreover, there is a large phase displacement between the
two apertures that aids DFD. At the same time, the two aper-
tures together preserve the full range of frequencies, which
is essential for precise deblurring.

5. Recovery of Depth and All-Focused Image
With the optimized aperture pair, we use a straightfor-

ward algorithm to estimate the depth map U and recover the
latent all-focused image I . For each sampled depth value

d ∈ D, we compute F̂0
(d)

according to Equation (8) and
then reconstruct two defocused images. At each pixel, the
residual W (d) between the reconstructed images and the ob-
served images gives a measure of how close d is to the ac-
tual depth d∗:

W (d) =
∑

i=1,2 |IFFT (F̂0
(d)

∗K d̂
i − Fi)|, (13)

where IFFT is the 2D inverse Fourier transform. With our
optimized aperture pairs, the value of W (d)(x, y) reaches
an obvious minimum for pixel (x, y) if d is equal to the real
depth. Then, we can obtain the depth map U as

U(x, y) = arg min
d∈D

W (d)(x, y), (14)

and then recover the all-focused image I as

I(x, y) = F̂0
(Ux,y)

(x, y). (15)
The most computationally expensive operation in this

algorithm is the inverse Fourier transform. Since it is
O(N log(N)), the overall computational complexity of re-
covering U and I is O(l ·Nlog(N)), where l is the number
of sampled depth values and N is the number of image pix-
els. With this complexity, real-time performance is possi-
ble. In our Matlab implementation, this algorithm takes 15
seconds for a defocused image pair of size 1024× 768 and
30 sampled depth values. Greater efficiency can be gained
by simultaneously processing different portions of the im-
age pair in multiple threads.

6. Performance Analysis
To quantitatively evaluate the optimized coded aperture

pair, we conducted experiments on a synthetic staircase



Figure 5. Comparison of depth from defocus and defocus deblurring using a synthetic scene. (a) 3D structure of a synthesized stairs. (b)
Ground truth of texture map. (c) Ground truth of the mapped texture. (d) Estimated depth maps using three different methods. From left
to right: small/large circular aperture pair, two focal planes, and the proposed coded aperture pair. (e) Close-ups of two regions in the
ground truth texture. (f-h) The corresponding recovered all-focused patches using small/large circular aperture pair, two focal planes, and
the proposed coded aperture pair.

scene with two textures, one with strong and dense patterns,
and another of natural wood with weak texture. Compar-
isons are presented with two other typical aperture config-
urations: a small/large circular aperture pair, and a circu-
lar aperture with two sensor locations (shift of focus plane
rather than change in aperture radius). The virtual cam-
era (focal length = 50mm) is positioned with respect to the
stairs as shown in Figure 5(a). The corresponding ground
truth texture and depth map are shown in (b) and (c), re-
spectively.

For the DFD algorithm using our optimized aperture
pair, the focal plane is set near the average scene depth
(1.2m) so that the maximum blur size at the nearest/farthest
points is about 15 pixels. For the conventional method us-
ing a small/large circular aperture pair, the focal plane is
set at the nearest scene point to avoid front/behind ambigu-
ity with respect to the focal plane and yet capture the same
depth range. This leads to a maximum blur size of about 30
pixels at the farthest point. For the DFD method with two
sensor positions, the two images are synthesized with focal
planes set at the nearest point (0.8m) and the farthest point
(1.8m). Identical Gaussian noise (σ = 0.005) is added to
all the synthesized image.

Figure 5(d) shows results of the three DFD methods.
Note that no post-processing is applied in this evaluation.
By comparing to (c), we can see that the depth precision of
our proposed method is closest to the ground truth. At the
same time, our proposed method generates an all-focused
image of higher quality than the other two methods, as il-
lustrated in (f)-(h).

A quantitative comparison among the dual-image DFD
methods is given in Table 1. Using the optimized
coded aperture pair leads to considerably lower root-mean-

squared errors (RMSE) for both depth estimation and de-
focus deblurring in comparison to the conventional circular
aperture pair and the two focal planes. The difference in
performance is particularly large for the natural wood tex-
ture with weaker texture, which indicates greater robustness
of the optimized pair.

Table 1. Quantitative evaluation of depth and deblurring error
Strong Texture (RMSE)         Wood Texture (RMSE)

Circular apertures               27.28           0.028            464.04        0.060

Depth (mm)     Grayscale        Depth (mm)      Color

Two focal planes                  6.32            0.027            124.21        0.045
Proposed coded apertures  4.03            0.016             18.82         0.036

For an intuitive understanding of this improvement, we
refer to the analysis in [12]. In [12], it is shown that DFD
can be regarded as a triangulation method, with the aper-
ture size corresponding to the stereo baseline in determining
depth sensitivity. Instead of directly increasing the depth
sensitivity, our aperture patterns are optimized such that the
DFD will be more robust to image noise and scene varia-
tion. Furthermore, the complementary power spectra and
large phase displacement between the two optimized aper-
tures essentially help to avoid matching ambiguity of the
triangulation. Because of these, our DFD method using the
optimized aperture pair can estimate depth with higher pre-
cision as shown in Table 1 without increasing the physical
dimensions of the aperture.

7. Experiments with Real Apertures
We printed our optimized pair of aperture patterns on

high resolution (1 micron) photomasks, and inserted them
into two Canon EF 50mm f/1.8 lenses (See Figure (6)).
These two lenses are mounted to a Canon EOS 20D cam-



(a) (b)
Figure 6. Implementation of aperture pair. (a) Lenses are opened.
(b) Photomasks with the optimized aperture patterns are inserted.

era in sequence to take a pair of images of each scene. The
camera is firmly attached to a tripod and no camera param-
eter is changed during the capturing. Switching the lenses
often introduce a displacement of around 5 pixels between
the two captured images. We correct for this with an affine
transformation.

This setting was used to capture real images of several
complex scenes. Figure 7 shows a scene inside a book-
store with a depth range of about 2-5 m. Two images (a,b)
were taken using the optimized coded aperture pair with
the focus set to 3m. From these two images, we com-
puted a high-quality depth map as shown in (d). Note that
no post-processing was applied here to the depth map. A
high-quality all-focused image was also produced by using
the proposed deconvolution method. By comparison with
the ground truth, which was captured with a tiny aperture
(f/16) and long exposure time, we can see that the com-
puted all-focused image exhibits accurate deblurring over a
large depth of field.

Figure 8 shows another scene with large depth varia-
tion, ranging from 3 meters to about 15 meters. We inten-
tionally set the focus to the nearest scene point so that the
conventional DFD method, which uses a circular aperture,
can be applied and compared against. For the conventional
method, the f-Number was set to f/2.8 and f/4.5, respec-
tively, such that the radius ratio is close to the optimal value
determined in Section 4. For a fair comparison, all of the
four input images were captured with the same exposure
time.

The results are similar to those from our simulation. We
can see clearly from Figure 8(b) that depth estimation us-
ing the conventional circular apertures only works well in
regions with strong texture or sharp edges. On the contrary,
depth estimation with the optimized coded apertures is ro-
bust to scenes with subtle texture. Note that the same depth
estimation algorithm as described in Section 5 is used here
for both settings, and no post-processing of the depth map
has been applied.

8. Discussion and Perspectives

We presented a comprehensive criterion for evaluating
aperture patterns for the purpose of DFD. This criterion is

used to solve for an optimized pair of apertures that com-
plement each other both for estimating relative defocus and
for preserving frequency content. This optimized aperture
pair enables more robust depth estimation in the presence of
image noise and weak texture. This improved depth map is
then used to deconvolve the two captured images, in which
frequency content has been well preserved, and yields a
high-quality all-focused image.

We did not address the effects of occlusion boundaries
in this paper, as it is not a central element of this work. As
a result, some artifacts or blurring along occlusion bound-
aries might be observed in the computed depth maps and
all-focused images.

There exist various ways in which coded aperture pairs
may be implemented. Though it is simple to switch lenses
as described in this paper, implementations for real-time
capture with coded aperture pairs are highly desirable. One
simple implementation is to co-locate two cameras using a
half-mirror. A more compact implementation would be to
use a programmable LCD or DMD aperture within a sin-
gle camera to alternate between the two aperture patterns in
quick succession.

In this paper, the proposed evaluation criterion was pre-
sented for optimizing the patterns of coded aperture; how-
ever, it can be applied more broadly to other PSF coding
methods, such as wave-front coding which does not occlude
light as coded apertures do. How to use this criterion to op-
timize wave-front coding for DFD would be an interesting
direction for future work.
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