Capturing Images with Sparse Informational Pixels using Projected 3D Tags
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ABSTRACT

In this paper, we propose a novel imaging system that enables

the capture of photos and videos with sparse informatioixalg
Our system is based on the projection and detection of 3 apti
tags. We use an infrared (IR) projector to project tempgpredided
(blinking) dots onto selected points in a scene. These tagma
visible to the human eye, but appear as clearly visible wamging
codes to an IR photosensor. As a proof of concept, we have buil
a prototype camera system (consisting of co-located eisibd IR
sensors) to simultaneously capture visible and IR imagese\a
user takes an image of a tagged scene using such a camera,syste
all the scene tags that are visible from the system’s viemipaie
detected. In addition, tags that lie in the field of view bu¢ ac-
cluded, and ones that lie just outside the field of view, ase al-
tomatically generated for the image. Associated with eagged
pixel is its 3D location and the identity of the object thag tlag
falls on. Our system can interface with conventional imaegog-
nition methods for efficient scene authoring, enabling cisjén an
image to be robustly identified using cheap cameras, minomak
putations, and no domain knowledge. We demonstrate sexgral
plications of our system, including, photo-browsing, encoerce,
augmented reality, and objection localization.

Keywords: Optical tags, infrared tags, projected fiducial mark-
ers, temporal coding, tagged pixels, browsing, trackietagging,
mixed and augmented reality.

1 INTRODUCTION

Digital cameras, from professional SLRs to cellphone casier
have become ubiquitous in daily life. Today, cameras aradoei
used not only for photography but also to access informatior
example, some cellphone cameras enable a user to take images
bar-codes (see Figure 1) and obtain information regardiagb-
jects they are attached to.

The appearance of a bar-code in an image depends on itsagistan
and inclination with respect to the camera as well as thenitha-
tion conditions. Given the limited resolution, dynamic ganand
depth of field of a camera, it is difficult to reliably detectizades
from images taken from arbitrary viewpoints and distan@sTo
address this issue, the SONY ID CAM system [9] uses blinking
LEDs that are attached to surfaces of objects in the sceneh Ea
LED sends a unique temporal code that reveals the identitiyeof
object it is attached to. Since the LEDs appear simply asioign
dots to a camera, they are much easier to detect over a wide ran
of viewpoints and distances. A major limitation of this apgech is
that it requires physically installing electronics and powources
on the objects.

In this paper, we propose the use of active illumination &ate
optical (“virtual”) tags in a scene without making physicaintact
with, or alterations to, the objects in the scene. Our baisa iis
simple: We use an infrared (IR) projector to project temppra
coded (blinking) dots onto selected points in a scene. Trege
are invisible to the human eye, but detected as time-varyauigs
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Figure 1: Some cellphones can read a bar-code and search for prod-
uct information online. The user can then choose to purchase the
item (from Amazon Mobile, 2004). The optical tag projection and
detection method described in this paper enables the same function-
ality, but without physically attaching hardware tags on objects.

by an IR-sensitive photo detector. As a proof-of-concet,have
implemented a prototype camera system (consisting of atheff
shelf camcorder and a co-located IR video camera) to simedta
ously capture visible and IR images. In a tagged scene, déniea
can acquire photos as well as videos (taken as the camerasnove
with tagged pixels.

In Figure 2, we show examples of images with tagged pixels
captured using our system. Each detected tag (green doig@<ar
information about the 3D location of the tag and the identity
the object it falls on. By using the 3D positions of the dedelct
tags in a single image, a user camera can robustly and efficien
estimate its pose. This pose information is used to compet@D
coordinates of the invisible tags in the scene on the cagpiumage.
The invisible tags include ones that are occluded in thees¢eu
dots) as well as ones that lie outside the field of view of threera
(blue dots). Such a functionality is very difficult, if not possible,
to achieve by using traditional physical tags (e.g., LEDsjagat
do not convey 3D information.

To handle scenes in which objects can change locationsaghe t
projection system can detect the new locations of the abjefdn-
terest and automatically change the locations of the piejetags
such that they remain attached to the objects. This is agtliby
augmenting the tagging projector with a video camera that-mo
itors the scene and detects the moving object using imagedba
object recognition methods. Note that in this case the mitiog
is performed by the tagging system and not the user camera.

Our paper includes the following major contributions.

Projected Tags: We introduce an optical tagging approach using
temporally-coded IR projection that enables identifyimgl docal-
izing objects without installing hardware tags.

3D Tagging: By augmenting 3D position to each tag, we demon-
strate a tag detection method that reveals both visible raisilble
objects in a captured image.

Tag Tracking: We present a tracking method that matches tem-
poral codes over multiple frames when a user camera moves, en
abling tagging a video.

It is worth noting that, while we demonstrate the 3D tagging
and tag tracking methods using projected tags, these tves icn
also be applied to LED tags as well, if physical modificatidrao
scene is reasonablErom the perspective of users, the proposed ap-
proach has several significant advantages. It enables argam
detailed information regarding objects in an image takemfian
arbitrary location using inexpensive cameras and minimadguta-



(a)
Figure 2: lllustration of photo-browsing using tagged pixels. (a-c) Photos acquired with tagged pixels include visible tags (green dots), occluded
tags (red dots), and tags that lie just outside the field of view (blue dots). Each tag has a unique code that reveals the identity and 3D location of
the object it falls on. By clicking on the red dot on the white unicorn’s mouth in (a), which corresponds to an occluded grey raccoon, one gets a
better view of the raccoon in (b). Similarly, by selecting the red dot on the duck’s head in (b), one gets a better view of the pink elephant in (c).

(b)

tions. Furthermore, no domain knowledge of the object appea
is required at the user camera end, even when the objectaare p
tially or completely occluded. All of these benefits come abst —
the infrastructure needed to project optical tags in anrenuient.

We demonstrate several applications of our method using a va
riety of scenarios. These include exploring paintings anps
tures with photos taken in a museum, purchasing toys usiatpph
taken in a retail store, finding books by taking a picture obaks
shelf in a library, and exploring the anatomy of the humarirbra
by capturing tag-augmented videos of a brain modease visit
http://www1.cs.columbia.edu/CAVE/projects/photatags to see
the videos and demos of these applicatiore conclude the pa-
per with a detailed discussion of the limitations of our ajzmh.

2 RELATED WORK

In this section, we review other tagging methods for objecbg-
nition and localization and discuss the computer visiohnéues
upon which we build our system.

A large number of tagging systems have been implemented for
object identification and localization. Examples includsditional
bar-codes for dedicated scanners [10], the QR Code designed
cellphone camera readérstags for augmented reality applica-
tions [3], and the blinking LEDs used by the Sony ID CAM sys-
tem [9]. Radio Frequency ldentification (RFID) tags [15] dan
used to determine the presence of an object within a ceraiger,
but do not reveal its location. This limitation of RFID tagash
been addressed by attaching a photosensor to the obje@f[¥d|
these systems require attaching physical tags to objectsaene.
In contrast, our optical tags are projected onto the scedelamot
require one to make physical contact with, or alterationsigects
in the scene.

While tagging a scene, we use a structured light approach for
computing the 3D positions of the tags. Structured light veedi-
known technique for 3D shape acquisition — see [13] for arlexc
lent survey. We generalize the idea of structured light éodtbmain
of object recognition. In addition to coding rays in 3D spage use
the codes to convey object identity. In traditional struetulight,
establishing correspondence between projected pattedificult
when the scene changes over time. Hall-Holt and Rusinkizjic
address this issue by tracking projected stripe boundaviestime.

In the first part of our work, we assume that the scene is stdile
the user's camera may move during image/video capture. tagch
detected in the IR spectrum is tracked using motion estitdfaten
visible-lightimages. Inthe second part of our work, we ¢desthe
case where scene objects may change location. This caselietia
by the tagging system by using object recognition to find tew n
locations of the objects and moving their tag locations ediogly.

Thttp://www.denso-wave.com/grcode/index-e.html

©

We also show that the informational pixels produced by our
method can enhance photo-browsing. This application iglaim
to the 3D photo tourism system developed by Snavely et &. [@4
their work, the camera pose is estimated using structure fro-
tion techniques, assuming the photo contains enough agpesar
features. The estimated pose is used to propagate useatonst
through the photos. In our work, since we know the 3D tag loca-
tions, we can efficiently compute the camera pose withoutifea
extraction and matching. Moreover, the annotations aeetlirob-
tained from the detected tags. These benefits of our apptaach
ever come with a price — we require infrastructure and ancairity
process for tagging a scene.

3 TAGGING A THREE-DIMENSIONAL SCENE

Temporal Codes: To generate optical tags that are robust for
scenes that may have large color variations, we use bindagkb
and white) temporal codes for the tags. The tags appearsiaspl
blinking dots, which puts minimal requirements on the rasoh
and dynamic range of user cameras for robust tag detectioereT
is a large body of work on binary codes in coding theory; weosieo
to use the “run-length limited codes” [11]. Specifically, &eoid
codes with a large number of consecutive ones. This is becaus
very bright spot (e.g., a highlight) in the IR spectrum maynfie-
taken as a tag that is “ON.” Limiting the maximum number of-con
secutive ones forces a tag to “blink,” which disambiguatésoim
bright spots in the scene. We also avoid using binary se@senc
with a large number of consecutive zeros. This is becausksteet
tags in videos taken when the user camera moves, we needko tra
tags over multiple frames. Limiting the maximum number ofi-co
secutive zeros reduces the chance of losing track of tagellyi
since the codes are projected periodically and the camess: aimt
know the starting bit of the code, all bit sequences that mcelar
shifts of each other (e.g., 0001010 and 0010100) are repezse
by a single code. In short, the number of available codesngjtle

L are on the order o%; with 30 bits, we can encode millions of
unique tags. In the experiments reported here, we only ud#t15
codes with a maximum of 4 consecutive zeros and ones.
Tagging System: We build a projector-camera system to tag
a 3D scene using our temporal codes. Our system consists of an
IR projector, an IR camera, and a color camera, as shown in Fig
ure 3(a). Our IR projector is a modified version of an NEC LRR60
DLP projector. We have removed its color wheel so that itpout
has the full spectrum of the projector lamp. An IR-pass filBe¥W
092) is attached in front of the projector lens to block ot light
projected in the visible spectrdmThe IR camera is a Basler A301f
monochrome camera with the same IR filter attached to its Ems

?Note that our projector is not meant for IR projection. Heritsepower
in the IR spectrum is relatively low. With the advent of LEfactors, one
can create a powerful IR projector by replacing its visiliggat LEDs with
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Figure 3: The 3D tagging system and the authoring procedure. (a)
The tagging system consists of an IR projector with a co-located color
camera and an IR camera. An image from the color camera is used
to select scene points for tagging. The IR camera has a different
viewpoint from the projector and is used to estimate the 3D positions
of the tags. (b) An image used to select scene points (white dots) for
tagging. (c) The corresponding tag locations in the projector image.
(d) One image (contrast enhanced for illustration) from the sequence
captured by the IR camera, in which the tags are clearly visible. (e)
The computed 3D coordinates of the tags.

(d)

color camera is a PointGrey Dragonfly and it is almost cotleta
with the IR projector.

Authoring Procedure: Figures 3(b-e) illustrate the authoring
process. We start by taking an image of the scene using tle col
camera. The scene points to be tagged are selected by siliafly ¢

Color Camcorder IR Camera

Cold Mirror

(@)
Figure 5: lllustration of patch detection. (a) An input IR image
(contrast-enhanced for illustration). (b) The result of peak detection
applied to (a). Red regions are ones that have larger intensity values
than their surroundings. Only regions with areas below a threshold
are considered as candidate patches. Their centroids (cyan aster-
isks) are used to represent their locations.

using a cold mirror (Edmund Optit¥, NT43-962). This mirror
reflects visible light into the camcorder and passes infraene
radiation through to the IR camera. Although this is a custech
imaging system, it can be implemented in a cost effectiveragn
By selecting the appropriate operating mode of the camcghitgh

resolution stills or VGA resolution videos), one can captphotos
or videos with tagged pixels. Here, we will first focus on theture
of tagged photos and later discuss tagged videos in Secton 4

4.2 Tag Detection Algorithm

To capture a tagged photo, the user takes a still picturegubia
Panasonic camcorder and at the same time captures a 15{fRame
video. For ease of description, we will first assume that fRe |
camera is synchronized with the projector, and then disttiessn-
synchronized setting. Our tag detection algorithm hasdheviing

ing on this image, as shown in Figure 3(b). The selected image three stages.

points are mapped to the corresponding points in the prajéct
age (see Figure 3(c)). Next, we compute the 3D coordinatéseof
tagged scene points. This is done by projecting the tempocs
onto the scene and capturing a short video using the IR caifes
frame of this IR video is shown in Figure 3(d), contrast-enteal
for illustration. In the IR video, we detect the tags usingadgo-
rithm that we will describe in Section 4. Given the tag locas in
both the projector and IR camera images, the 3D positionbef t
tags, shown in Figure 3(e), are computed using the triatignla
method described in Appendix A. This concludes the autigorin
process.

4 CAPTURING IMAGES WITH TAGGED PIXELS

4.1 A Tag-Enabled Camera

To capture tagged photos, the user camera must be able tiveacqu
a color photo and an IR video, simultaneously. As a proof-of-
concept, we have constructed the hybrid camera shown ird=igu
for this purpose. This camera consists of a Panasonic PV8BS 1
consumer camcorder and an IR camera identical to the ondarsed
authoring. The optical centers of the two cameras are catdody

IR ones.

Patch Detection: In the first stage, we seek to detect all pro-
jected tag patches in each frame independently. Since a pro-
jected patch should produce a local intensity peak, we fiest d
tect regions that have larger intensity values than theghter-
hood. This can be done efficiently using the Matlab function
| mmgeExt endedMax. For the IR image shown in Figure 5(a),
the peak detection result is shown in Figure 5(b), whereddee-
gions are the detected ones. Notice that some of the regares h
very large areas. These are eliminated using an area tldeJte
remaining regions, marked with cyan asterisks at theirroaig
in Figure 5(b), are assumed to be candidate patches. Ndtaltha
though a few spurious regions are detected, all the prajgatches
are found.

Patch Matching: In the second stage, we connect the detected
patches over the 15 captured frames to generate tempores.cod
Specifically, for each patch in the first frame, we look for the
closest detected patct in the second frame. If the distance be-

3Most cameras in the market today use CCD or CMOS chips that are
sensitive in both visible and IR spectra and hence could bd isour ap-
proach if an IR channel were available in addition to the RGRBmmels.
This could be done, for instance, by replacing the R-G-G-Brcmosaic
found on most image detections with an R-G-B-IR mosaic.
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Figure 6: Tag detection rates for different combinations of ambient illumination and surface albedo.
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Figure 7: Tag detection rates for different combinations of viewing
angle and surface inclination with respect to the projector.
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tweena andd’ is within a small threshold, we connect these two
patches and assume they belong to the same tag. This thdéshol
used to account for noise in the tag location that can resuth f
hand-shake during the capture of the 15-frame video. If ttelp

4.4 Robustness of Tag Detection

We now evaluate the robustness of our tag detection algorittih
respect to surface albedo, ambient lighting, viewing dioec and
surface inclination. For the albedo and ambient lightirgjstewe
made a surface with varying albedo by attaching a sheet adrpap
with 11 different printed shades of gray on a flat board (see Fi
ure 6(a)). The projector and the camera were placed rougimg-3
ters from the board. To control the ambient lighting, we &an
on a set of fluorescent ceiling lights and varied the brigsgriev-
els (increasing from 1 to 5) of two halogen lamps. We repéated
projected 1000 unique tags on the board and Figure 6(b) summa
rizes the detection rates for many different combinatidrsudface
albedo and ambient lighting. This table shows that our tagatien
is quite robust to ambient lighting and surface albedo, pixafien
albedois zero.

Next, we evaluate the robustness of tag detection with otspe

a does not have a nearby patch in the next frame, we set its codeto the viewing anglex and surface inclinatiod (see Figure 7(a)).

bit to '0’ in the next frame. If the second frame contains aaych

In this case, we used a surface albedo of 0.7 and ambieninigght

b that does not have a connected patch in the previous frame, weof 3 (see Figure 6(b)). Figure 7(b) shows the detection rfates

include it as a new tag with bit 0" in the previous frame. Wep
this procedure to all the 15 frames. The end result is a setgs, t
each with a temporal code.

Code Verification: In the last stage, we can eliminate spurious
tags by ensuring that each detected temporal code satisiesde
constraints we have imposed, namely, that each code caawmet h
more tharM consecutive zeros amdiconsecutive oned{=N =4
in our codes). Since the capture of the IR video can begin at an
arbitrary time, we do not know the start bit associated withtags.
However, this is not an issue because one of our code camstigi
that all codes that are circular shifts of each other areessprted by
a single code. The above verifications are almost alwaysuadeq
for obtaining a correct set of tag codes. In some scenatics, s
photos taken in a single site (a museum, for instance), amgea
complete list of the codes used at the site. In this case datextdd
codes can be matched with the list and those that do not bédong
the list can be eliminated.

4.3 Handling Synchronization

The above algorithm works fine if the projector and the usereza
are synchronized. This, however, is not a practical assompTo
address this issue, we assume that the user camera op¢Rifsa
and we project the code patterns at 15fps to avoid tempaasiiad).
The user camera takes 30 consecutive frames and these ideddiv
into two sets: one with odd-index frames and the other wignev
index frames. If the user camera and the projector were sgnch
nized, both these sets would be identical in terms of thatglaf
the projected patterns. When the two devices are not syniztem,
one of these two sets will have clear images of the projecatd p
terns, but the other will contain ghosting effects due teaiffitame
transitions. For all candidate patches that have beentdetén the
first stage of the tag detection algorithm), we simply coragheir
brightness variances over time for each of the two image 3éis
set without intra-frame transitions will have a greateliaace and
is used in tag detection.

various combinations af and6. We see that detection works quite
well for a wide range of configurations. The performance hegp
fall when the projection angle approaches the grazing aagte
the surface is viewed head-on. In this case, the projecttmh ig
severely stretched on the surface and produces a largeranghttih

in the image.

4.5 Handling Camera Motion: Capturing Tagged Videos

A user can also capture videos with tagged pixels. Spedifical
after setting the Panasonic camcorder in video mode, thecase
move the hybrid camera around an object or pan it across &scen
In this case, the tags in the IR images will move with time, and
this motion is considerably larger than that due to handkeshden

a still photo is captured. Therefore, we need a more robushpa
matching method for detecting tags in videos.

For ease of description, we consider the situation whererte
jector and the user camera are synchronized; the lack ofytie s
chronization is resolved by applying the method in SectiGedter
the tags are registered using the method described below, Wo
have arL-frame color video segmef€; } and arL-frame IR video
segmenl;}, wheret =1,2,--- L (L = 15 in our implementation).
These two videos are captured from identical viewpointg;esihe
color and IR cameras are co-located. We seek to computedags f
each color imag€; using the IR segmert }.

Our solution uses the three stages described in Sectioro#.2 f
the still photo case: patch detection, patch stringing, ot veri-
fication. The first and the third stages remain the same, l=ititm
patches in a video, we need to know each patch’s motion betwee
neighboring frames. This motion is difficult to estimatengsthe
IR images because most of the pixels are dark and the prdjecte
patches appear and disappear in an unpredictable manngu- Fo
nately, since the IR video and color video share the sameaipti
center, we can use the color video for motion estimation. driee
cise motion of a patch is hard to determine as it depends aresce
geometry (which is unknown even for the tagged points uhgl t
tags are detected). Since the patch motions are only used to a
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Figure 8: lllustration of tag detection for a video taken as the user camera moves. The top row shows a few frames of the captured color video.
We first compute the homographies between neighboring frames in this video. The bottom row shows the corresponding IR frames with four of
the detected tags. (Other tags are not shown to reduce clutter.) The green circles are the locations of detected patches. The red circles are
estimates of where the tags are located in the frames in which the tag is not activated (code bit of 0). These locations are determined from the
green circles and the inter-frame homographies. The code of each tag is obtained by stringing its green and red circles.

frame 1 frame 2

Xg = [Xg,Yg]" be the location of detected tagn the IR image, and

Xg = [Xg,Yg, Zg]" be its 3D scene coordinates. GivensgllandXg,
we compute the & 4 camera projection matri = [pj;] using the

patch stringing, we use a homography transformation toceqppr
mate patch motions between neighboring frathes.
Specifically, the homography transformation between twe im

ages is represented by ax33 matrix H = [hjj]. Using H, a
patch’s motion between the two images is approximated’ as

huax+higy+his 7 _ Poax+hooy+hpg T T
h31x+h32y+h33>3/— R Thoaythes » Where[x, y] and[X,y']" are the lo-

cations of the patch in the two images. We estimate the hoapbgr
between each pair of neighboring color images using the RAGIS
method [5]. This method requires as input a set of matchex-int

est points extracted from the two images. We obtain this get b

applying the SIFT operator [8] to the color images. Duringtea

iteration of RANSAC, we use the 4-point inhomogeneous nettho

to compute the homography [5]. At the end, we obtain homdgrap
estimates that are robust to spurious interest point mgtche

Given the homographies between all pairs of neighboring

frames, we can extend the patch stringing stage in Secti@od-
sider two neighboring frames. For each padcim the first frame,
we first transform it to the second frame using the estimated h

mography. Leabe the transformed patch. We then search for the
nearest patch’ to &in the second frame. If the distance between

d anda’ is within a thresholdwe assume anda’ belong to the
same tag. Otherwise, we set the code bit to '0’ foradg the sec-
ond frame. If there is any patdhin the second frame that is not
matched to a patch in the first frame, we treat it as a new taghitit
‘0’ in the first frame. In this case, we transform the locatdib to
the first frame using the inverse of the homography betwestwth
frames. Figure 8 illustrates the above process using tler eold

IR videos captured by moving the hybrid camera around a human

brain model.

4.6 Finding Occluded and Outside-View Tags
The tags that are detected for a given photo are caik&tletags.

linear 6-point method described in [5]. The matFixnaps the tags
from the 3D scene to the 2D image as

_ PuX+p12Y +p13Z+pig P21X+ P22Y + P23Z + P24
P31X + p32Y + P33Z+ Paa’ p31X + p32Y + P33Z+ Psa

In Figure 9, we show statistics of the reprojection errortfor
estimated pose using the detected tags in the brain videwnsimo
Figure 8. A majority of the errors are below 0.5 pixels, whish
comparable to typical pose estimation results in compuisov
obtained by using features extracted from conventionagjgaa

The computed projection matrixallows us to project other tags
that are not detected onto the captured image. If these tags a
the field view of the image, we call theatcludedtags. If they are
outside the field view of the image, we call themtside-viewags.
Next, we show how visible, occluded, and outside-view teays c
be used to interact with collections of photos and to autaraly
augment videos with information.

Unit: Pixels
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Figure 9: Statistics of the reprojection error for pose estimation using

From these tags, we can efficiently compute the camera’s posethe detected tags in the brain video in Figure 8. Left: the RMS repro-

since the 3D coordinates of all tags are known. Specificédly,

4Using homography to approximate pixel motion between twages
is a well-established method in computer vision, oftenrreféto as the
plane+parallax method [6]. This approximation is espécieffective for
distant scenes or when the viewpoints of neighboring imagesclose,
which is almost always the case in a captured videdhe presence of sig-
nificant parallex, i.e., a complex object with large depthation, homog-

jection error over time. Right: the distribution of the retrojection error
for all the 225 frames in the video.

5 APPLICATIONS OF TAGGED PIXELS
5.1 Photo Browsing

We have developed a novel interactive viewer called Pha®Ta
for browsing collections of tagged photographs. Its irsteef was

developed using Macromedia Flash 8 and programmed using Ac-
tionScript 2.0. In a real application, PhotoTags can be exported to
the web, where it can accept uploaded photos and their assdci

raphy may be a poor approximation. In that case, we can usgafuental
matrix [5] to model the interframe motion. However, in ouperments,
we found homography is sufficient.
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tag codes and then augment 3D tag locations and details #i#ut
tagged objects to the photdsWhen the user selects a photo, the
viewer shows the photo with all its tags. The detected \ésibhs
are shown in green, while the projected occluded and outsale

(h)

tags are shown in red and blue, respectively.

As shown in Figure 10(a), the list of the tagged objects afgpea
on the right and a slider with all the photos in the folder appet
the bottom. When the user rolls over a tag, a brief descripso
displayed. As shown in (b), if the user clicks on the Egyptiase,

a detailed description of the vase and a thumbnail of its Wiest
(in which the object appears closest to the center of the énaie
displayed on the right. On choosing the thumbnail of the biest,

it appears at higher resolution in the main window of the @gw
as shown in (c). At the same time, the slider automaticallg ge
reordered according to the proximity of the object’s taddenter
of the view. This allows the user to select the next best vieth®

same object, as shown in (d).

By clicking on the outside-view blue tag for the Nefertitigbu
seen in Figure 10(d), details about the bust and its best g@w
be seen, as shown in (e). The red tag in this view of the bust cor
responds to a clay vase that is occluded by the bust. Cliaking
this tag brings up an unobstructed view of the vase, as sho i
This view includes a painting by Monet. All the photos with v
paintings can be found by using the search box at the top ciyht
ner of the viewer. The search results are ordered accorditiget
number of times the desired object appears in the photo,aensh

SWe call PhotoTags aaffline application as it augments 3D and meta
information after the images are taken. Batine applicationsvhere a user
wants to see the 3D and meta information in real time, thefeenration
can be stored in physical media (e.g., flash drives) and gedvio the user

in the field.
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Starry Night (Van Gogh)
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Figure 10: PhotoTags: An interactive viewer for browsing and searching collections of photos with tagged pixels.

in (g). By clicking on one of the search results, one can vieat i
higher resolution in the main window, as shown in (h).

Figure 2 shows three among several photos taken in a toy store
scenario. This example shows how tagged pixels enable gshop
to simply capture photos at the store and later find detaiiémuf-i
mation regarding the toys and purchase the most desirable on

5.2 Video Augmentation

We can also use tagged pixels in a video for augmented regigy

ure 11 shows three frames of a tag-augmented video of therhuma
brain model in Figure 8. In each frame, the detected (greed) a
occluded (red) tags are used to index a database of the ndmes o
the various parts of the human brain. These names are alerlai
on the frame. The layout of the names are manually adjusted to
avoid clutter for illustration purposes. In Figure 11(d)e tCres-
centic Lobe happens to be occludedo get an unobstructed view

of this part, the user simply clicks on its tag. Then, the wiékest-
forwards to the first frame in which the tag becomes visibleiciv

is shown in Figure 11(b). Similarly, by clicking on the ocd&d tag

for the Quadratus Cerebelli in this frame, the video is adedrto

the frame in Figure 11(c) in which it is visible.

6 AUTOMATIC RETAGGING OF CHANGING SCENES

Thus far, we have assumed that the tagged objects in a scene do
not move after the scene has been authored. Although thimass
tion is valid in many scenarios, such as museums with pastin
and sculptures and shops with large objects such as fuenituere

6The visibility of the tag and the visibility of the object tohich the
tag is attached are different, because the object is ladgepractice, we
associate each object with several tags, and the occlu$ian object can
be well-approximated by the occlusion of the tags.



(a) (b)

Figure 11: Interacting with Tagged Videos. Using the detected tags, the video is augmented with visible (green dots) and occluded (red dots)
tags as well as the names of the parts of the brain the tags correspond to. (a) In this frame, the Crescentic Lobe is occluded. By clicking on the
corresponding tag, the video quickly advances to the first frame in which the tag for the Crescentic Lobe is visible, which is shown in (b). If the
occluded tag for the Quadratus Cerebelli is selected in this frame, the video advances to the frame shown in (c), in which it is visible.

(a) (b)

Figure 12: Automatic Retagging of a Changing Scene. (a) The color image used for the initial authoring of books on a shelf. For each book, a
tag location and a descriptive appearance feature (rectangular box) on the book are selected. (b) An image of the shelf taken by the authoring
system after the books have been moved. By applying appearance matching, the system automatically finds the four books that have moved
and changes their tag locations. In this image, the tags of the remaining books are not shown for clarity. (c) A person wanting to find a book on
the shelf takes a photo with tagged pixels (green dots) and simply runs a search for the desired book.

are other settings where the objects may move. For example, i scenea more sophisticated image recognition algorithm would be

a library, books are taken off the shelf and put back in a difie
place, possibly changing the locations of all the books ersttelf.

needed to find the objects after they have moved.
One obvious question is: If the authoring system can find the

To handle scenes where the tagged objects may change hgcatio books using appearance matching/object recognition, veimyat

we use appearance-based matching for automatic retaggifeg.

the user camera do the same? The answer is two-fold: Fiest, th

use the example of books on a shelf to describe our method. Asdynamic range and resolution of the user camera may be inatkeq

shown in Figure 12(a), after the initial authoring, eachkmoas-
signed a tag and a descriptive appearance feature (retaaibgu)
on its ridge. Later, a person browsing the books may chargje th
locations on the shelf. The authoring system detects a ehang
the bookshelf by continuously checking if all the appeaeafea-
tures are in their initial locations. When a change is deticthe
new locations of all the moved appearance features are fbynd

for robust appearance matching. For example, in an oversiew
of several bookshelves taken by a cellphone camera, the atlg
one book may be only a tiny noisy rectangular region of 1@&ipix
width. Robust recognition of a book however requires higaligy
images. Second, the user must have all the appearanceste&dur
perform matching, which is not practical in most scenarios.

template matching and the books are retagged, as shown4in Fig 7 Dpscussion

ure 12(b). As an application, a person who wishes to find aifspec
book on the shelf can simply take a photo of the shelf usinga ta
enabled camera, and the location of the book in the capturede
will be highlighted if its tag is detected. Otherwise, theneaa may
prompt its location with respect to its current field of vieasked on
the estimated pose of the camera.

The above retagging algorithm is currently in its simplesnf.
The objects (books) are assumed to translate on a single ptah
hence template matching works well. The template matchamrg c
also be extended to handle in-plane object rotation or teatl@then

We have presented a novel 3D optical tagging method that en-
ables the capture of photos and videos with a sparse setasf inf
mational pixels. This method enables efficient recognitbob-
jects that are in the image as well as of objects that are algver
occluded or lie just outside the field-of-view. Such a fuoitis dif-
ficult, if not impossible, to accomplish by applying objeetogni-
tion to conventional photos or by using traditional phybktaegs that
do not convey 3D information. The example applications weeha
demonstrated include photo-browsing, e-commerce, augdea-

an object is missing in the scene. However, in the case of a 3D ality, and objection localization. We now discuss the latiiins of



our approach and suggest directions for future work.

Specular Reflectance:A key challenge for our method is the
tagging of highly specular surfaces. For such surfacedathevill
be detectable only when the viewing direction of the camectoise
to the specular direction. In our system, even if a tag is imisgue
to surface shininess, the user camera can still infer theingtag
based on its pose estimate and the 3D tag position, althoutiisi
case the tag will be mistakenly labeled as an occluded oneurn
implementation, we have worked around this issue by tagging
nearby diffuse surface.

Projector Brightness Falloff: The brightness of any projector
is proportional to 1r2, , wherer is the distance of the surface from
the projector. This fall-off, combined with the fact thatquojector
is not a real IR projector, limits the working range of our reunt
system to about 5 meters. If a true infrared projector is useth
indoor application, we believe the working range can bereled to
10 meters or more. Atypical outdoor scene, however, wowdire
IR laser sources to generate the tags. As a matter of fatt,|aser
sources have been used in outdoor applications for dechdiese

1970s, the US Army began to use IR beams for combat training.

During training, players score points by engaging targeth an
IR-emitting targeting device. Both indoor and outdoor tbpsed
on the same concept are also popllar

Minimum Number of Detected Tags for Pose Estimation:
The inference of occluded and outside-view tags is basedmeia
pose estimation. Our current implementation requires anmuim
of 6 tags with known 3D positions to estimate camera pose.-How
ever, if a picture contains less than 6 tags, or in the worse ce
tags at all, the pose can not be estimated. However, sinagecior
can be used to generate a very large number of tags, one ctretag
scene more densely, i.e., with redudent tags, to reducehtmeces
of detecting too few tags. In addition, if a user takes midtim-

ages of the same scene and some images do not contain tags due t

occlusion, we can estimate the relative poses between itheges
by matching visual features and using structure from matieith-
ods, therefore “transferring” the pose estimation fromgeswith
tags to the ones that do not.

Interface Evaluation for Browsing Augmented Scenesin our
current implementation, the visibility of tags is color eat] shown
as green dots and red dots. However, this might be confugiog.
instance, the fact that occluded points are visible in teever could
be counter-intuitive — the point looks like it is on the foregnd
object, and the fact that it is red does not make it immediatiglar
that it is occluded. It would be desirabe to evalute the &ffeness
of different types of interfaces, for example, usiagblending to
illustrate occluded tags.

Optical Tagging and Recognition: In recent years, object
recognition algorithms have made great progress. We leebev
optical tagging method can make image recognition prdctara
a low-cost consumer camera. To recognize an object, we eed t
know its appearance feature. To recognize many objectseee to
know all their appearance features. It is very demanding faser
camera to know all appearance features of objects in alldbsiple
scenarios he/she may take photos, and to perform recogmiith
limited computing power and low quality sensors. In cortfrass
much more practical for a place, like a store or museum, toaaut
its scene using dedicated computing power and high-quedity-
eras and projectors. For a particular scene, the recogniticdule
only needs to recognize the objects that belong to that scEme
makes the search space much smaller and makes recognitan mu
more likely to work robustly. Our method shifts the workloafl
recognition from the user device to the infrastructure arahd-
casts the recognition results through a set of code pratocol

We would like to further explore this area, for example, iagg
a scene from different viewpoints using multiple projestdn this

http://en.wikipedia.org/wiki/LasefTag

case, we need to calibrate the relative locations of theeptojs
in order to compute the 3D positions of the projected tag$ién t
same coordinate system. Afterwards, our tag detection asd p
estimation methods presented in this paper will still applye tags
projected from different viewpoints will increase the remess of
our tagging system for objects with complex 3D shapes.
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A COMPUTING THE 3D COORDINATES OF TAGS

Let xg = [xg,Yg]" andug = [ug,vg]" be the locations of tag in
the IR camera and projector images, respectively. Giverxall
andug, we first compute the 8 3 fundamental matri¥ between
the projector and the camera, using the 8-point linear niette
scribed in [5]. Then, we calibrate the IR camera using annenli
software [1] and the projector using the method describgd6h
After these calibrations, we obtain two<33 intrinsic matricesk p
andK ¢, for the projector and the IR camera, respectively. These tw
matrices relate image points in the two devices to theislofesight

in 3D space. Using p, K¢, andF, we can estimate the rotatiét
and the translation of the camera with respect to the projector, by
applying SVD to the essential matrix = KCTFKp [5]. GivenR
ando, we can estimate the 3D location for each ggay finding the
intersection of its lines of sights with respect to the pctge and
the camera [5].
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