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ABSTRACT

In this paper, we propose a novel imaging system that enables
the capture of photos and videos with sparse informational pixels.
Our system is based on the projection and detection of 3D optical
tags. We use an infrared (IR) projector to project temporally-coded
(blinking) dots onto selected points in a scene. These tags are in-
visible to the human eye, but appear as clearly visible time-varying
codes to an IR photosensor. As a proof of concept, we have built
a prototype camera system (consisting of co-located visible and IR
sensors) to simultaneously capture visible and IR images. When a
user takes an image of a tagged scene using such a camera system,
all the scene tags that are visible from the system’s viewpoint are
detected. In addition, tags that lie in the field of view but are oc-
cluded, and ones that lie just outside the field of view, are also au-
tomatically generated for the image. Associated with each tagged
pixel is its 3D location and the identity of the object that the tag
falls on. Our system can interface with conventional image recog-
nition methods for efficient scene authoring, enabling objects in an
image to be robustly identified using cheap cameras, minimalcom-
putations, and no domain knowledge. We demonstrate severalap-
plications of our system, including, photo-browsing, e-commerce,
augmented reality, and objection localization.

Keywords: Optical tags, infrared tags, projected fiducial mark-
ers, temporal coding, tagged pixels, browsing, tracking, retagging,
mixed and augmented reality.

1 INTRODUCTION

Digital cameras, from professional SLRs to cellphone cameras,
have become ubiquitous in daily life. Today, cameras are being
used not only for photography but also to access information. For
example, some cellphone cameras enable a user to take imagesof
bar-codes (see Figure 1) and obtain information regarding the ob-
jects they are attached to.

The appearance of a bar-code in an image depends on its distance
and inclination with respect to the camera as well as the illumina-
tion conditions. Given the limited resolution, dynamic range, and
depth of field of a camera, it is difficult to reliably detect bar-codes
from images taken from arbitrary viewpoints and distances [2]. To
address this issue, the SONY ID CAM system [9] uses blinking
LEDs that are attached to surfaces of objects in the scene. Each
LED sends a unique temporal code that reveals the identity ofthe
object it is attached to. Since the LEDs appear simply as blinking
dots to a camera, they are much easier to detect over a wide range
of viewpoints and distances. A major limitation of this approach is
that it requires physically installing electronics and power sources
on the objects.

In this paper, we propose the use of active illumination to create
optical (“virtual”) tags in a scene without making physicalcontact
with, or alterations to, the objects in the scene. Our basic idea is
simple: We use an infrared (IR) projector to project temporally-
coded (blinking) dots onto selected points in a scene. Thesetags
are invisible to the human eye, but detected as time-varyingcodes
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Figure 1: Some cellphones can read a bar-code and search for prod-
uct information online. The user can then choose to purchase the
item (from Amazon Mobile, 2004). The optical tag projection and
detection method described in this paper enables the same function-
ality, but without physically attaching hardware tags on objects.

by an IR-sensitive photo detector. As a proof-of-concept, we have
implemented a prototype camera system (consisting of an off-the-
shelf camcorder and a co-located IR video camera) to simultane-
ously capture visible and IR images. In a tagged scene, this camera
can acquire photos as well as videos (taken as the camera moves)
with tagged pixels.

In Figure 2, we show examples of images with tagged pixels
captured using our system. Each detected tag (green dot) carries
information about the 3D location of the tag and the identityof
the object it falls on. By using the 3D positions of the detected
tags in a single image, a user camera can robustly and efficiently
estimate its pose. This pose information is used to compute the 2D
coordinates of the invisible tags in the scene on the captured image.
The invisible tags include ones that are occluded in the scene (red
dots) as well as ones that lie outside the field of view of the camera
(blue dots). Such a functionality is very difficult, if not impossible,
to achieve by using traditional physical tags (e.g., LED tags) that
do not convey 3D information.

To handle scenes in which objects can change locations, the tag
projection system can detect the new locations of the objects of in-
terest and automatically change the locations of the projected tags
such that they remain attached to the objects. This is achieved by
augmenting the tagging projector with a video camera that mon-
itors the scene and detects the moving object using image-based
object recognition methods. Note that in this case the recognition
is performed by the tagging system and not the user camera.

Our paper includes the following major contributions.
Projected Tags:We introduce an optical tagging approach using

temporally-coded IR projection that enables identifying and local-
izing objects without installing hardware tags.

3D Tagging: By augmenting 3D position to each tag, we demon-
strate a tag detection method that reveals both visible and invisible
objects in a captured image.

Tag Tracking: We present a tracking method that matches tem-
poral codes over multiple frames when a user camera moves, en-
abling tagging a video.

It is worth noting that, while we demonstrate the 3D tagging
and tag tracking methods using projected tags, these two ideas can
also be applied to LED tags as well, if physical modification of a
scene is reasonable.From the perspective of users, the proposed ap-
proach has several significant advantages. It enables one toobtain
detailed information regarding objects in an image taken from an
arbitrary location using inexpensive cameras and minimal computa-



(a) (b) (c)

Figure 2: Illustration of photo-browsing using tagged pixels. (a-c) Photos acquired with tagged pixels include visible tags (green dots), occluded
tags (red dots), and tags that lie just outside the field of view (blue dots). Each tag has a unique code that reveals the identity and 3D location of
the object it falls on. By clicking on the red dot on the white unicorn’s mouth in (a), which corresponds to an occluded grey raccoon, one gets a
better view of the raccoon in (b). Similarly, by selecting the red dot on the duck’s head in (b), one gets a better view of the pink elephant in (c).

tions. Furthermore, no domain knowledge of the object appearance
is required at the user camera end, even when the objects are par-
tially or completely occluded. All of these benefits come at acost –
the infrastructure needed to project optical tags in an environment.

We demonstrate several applications of our method using a va-
riety of scenarios. These include exploring paintings and sculp-
tures with photos taken in a museum, purchasing toys using photos
taken in a retail store, finding books by taking a picture of a book-
shelf in a library, and exploring the anatomy of the human brain
by capturing tag-augmented videos of a brain model.Please visit
http://www1.cs.columbia.edu/CAVE/projects/phototags to see
the videos and demos of these applications.We conclude the pa-
per with a detailed discussion of the limitations of our approach.

2 RELATED WORK

In this section, we review other tagging methods for object recog-
nition and localization and discuss the computer vision techniques
upon which we build our system.

A large number of tagging systems have been implemented for
object identification and localization. Examples include traditional
bar-codes for dedicated scanners [10], the QR Code designedfor
cellphone camera readers1, tags for augmented reality applica-
tions [3], and the blinking LEDs used by the Sony ID CAM sys-
tem [9]. Radio Frequency Identification (RFID) tags [15] canbe
used to determine the presence of an object within a certain range,
but do not reveal its location. This limitation of RFID tags has
been addressed by attaching a photosensor to the object [12,7]. All
these systems require attaching physical tags to objects ina scene.
In contrast, our optical tags are projected onto the scene and do not
require one to make physical contact with, or alterations to, objects
in the scene.

While tagging a scene, we use a structured light approach for
computing the 3D positions of the tags. Structured light is awell-
known technique for 3D shape acquisition – see [13] for an excel-
lent survey. We generalize the idea of structured light to the domain
of object recognition. In addition to coding rays in 3D space, we use
the codes to convey object identity. In traditional structured light,
establishing correspondence between projected patterns is difficult
when the scene changes over time. Hall-Holt and Rusinkiewicz [4]
address this issue by tracking projected stripe boundariesover time.
In the first part of our work, we assume that the scene is staticwhile
the user’s camera may move during image/video capture. Eachtag
detected in the IR spectrum is tracked using motion estimated from
visible-light images. In the second part of our work, we consider the
case where scene objects may change location. This case is handled
by the tagging system by using object recognition to find the new
locations of the objects and moving their tag locations accordingly.

1http://www.denso-wave.com/qrcode/index-e.html

We also show that the informational pixels produced by our
method can enhance photo-browsing. This application is similar
to the 3D photo tourism system developed by Snavely et al. [14]. In
their work, the camera pose is estimated using structure from mo-
tion techniques, assuming the photo contains enough appearance
features. The estimated pose is used to propagate user annotations
through the photos. In our work, since we know the 3D tag loca-
tions, we can efficiently compute the camera pose without feature
extraction and matching. Moreover, the annotations are directly ob-
tained from the detected tags. These benefits of our approachhow-
ever come with a price – we require infrastructure and an authoring
process for tagging a scene.

3 TAGGING A THREE-DIMENSIONAL SCENE

Temporal Codes: To generate optical tags that are robust for
scenes that may have large color variations, we use binary (black
and white) temporal codes for the tags. The tags appear simply as
blinking dots, which puts minimal requirements on the resolution
and dynamic range of user cameras for robust tag detection. There
is a large body of work on binary codes in coding theory; we choose
to use the “run-length limited codes” [11]. Specifically, weavoid
codes with a large number of consecutive ones. This is because a
very bright spot (e.g., a highlight) in the IR spectrum may bemis-
taken as a tag that is “ON.” Limiting the maximum number of con-
secutive ones forces a tag to “blink,” which disambiguates it from
bright spots in the scene. We also avoid using binary sequences
with a large number of consecutive zeros. This is because, todetect
tags in videos taken when the user camera moves, we need to track
tags over multiple frames. Limiting the maximum number of con-
secutive zeros reduces the chance of losing track of tags. Finally,
since the codes are projected periodically and the camera does not
know the starting bit of the code, all bit sequences that are circular
shifts of each other (e.g., 0001010 and 0010100) are represented
by a single code. In short, the number of available codes of length
L are on the order of2

L

L ; with 30 bits, we can encode millions of
unique tags. In the experiments reported here, we only use 15-bit
codes with a maximum of 4 consecutive zeros and ones.

Tagging System: We build a projector-camera system to tag
a 3D scene using our temporal codes. Our system consists of an
IR projector, an IR camera, and a color camera, as shown in Fig-
ure 3(a). Our IR projector is a modified version of an NEC LP260K
DLP projector. We have removed its color wheel so that its output
has the full spectrum of the projector lamp. An IR-pass filter(B+W
092) is attached in front of the projector lens to block out the light
projected in the visible spectrum2. The IR camera is a Basler A301f
monochrome camera with the same IR filter attached to its lens. The

2Note that our projector is not meant for IR projection. Hence, its power
in the IR spectrum is relatively low. With the advent of LED projectors, one
can create a powerful IR projector by replacing its visible light LEDs with
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Figure 3: The 3D tagging system and the authoring procedure. (a)
The tagging system consists of an IR projector with a co-located color
camera and an IR camera. An image from the color camera is used
to select scene points for tagging. The IR camera has a different
viewpoint from the projector and is used to estimate the 3D positions
of the tags. (b) An image used to select scene points (white dots) for
tagging. (c) The corresponding tag locations in the projector image.
(d) One image (contrast enhanced for illustration) from the sequence
captured by the IR camera, in which the tags are clearly visible. (e)
The computed 3D coordinates of the tags.

color camera is a PointGrey Dragonfly and it is almost co-located
with the IR projector.

Authoring Procedure: Figures 3(b-e) illustrate the authoring
process. We start by taking an image of the scene using the color
camera. The scene points to be tagged are selected by simply click-
ing on this image, as shown in Figure 3(b). The selected image
points are mapped to the corresponding points in the projector im-
age (see Figure 3(c)). Next, we compute the 3D coordinates ofthe
tagged scene points. This is done by projecting the temporalcodes
onto the scene and capturing a short video using the IR camera. One
frame of this IR video is shown in Figure 3(d), contrast-enhanced
for illustration. In the IR video, we detect the tags using analgo-
rithm that we will describe in Section 4. Given the tag locations in
both the projector and IR camera images, the 3D positions of the
tags, shown in Figure 3(e), are computed using the triangulation
method described in Appendix A. This concludes the authoring
process.

4 CAPTURING IMAGES WITH TAGGED PIXELS

4.1 A Tag-Enabled Camera

To capture tagged photos, the user camera must be able to acquire
a color photo and an IR video, simultaneously. As a proof-of-
concept, we have constructed the hybrid camera shown in Figure 4
for this purpose. This camera consists of a Panasonic PV-GS 180
consumer camcorder and an IR camera identical to the one usedfor
authoring. The optical centers of the two cameras are co-located by

IR ones.

Color Camcorder

Cold Mirror

IR Camera

Figure 4: A hybrid camera for capturing images with tagged pixels.

(a) (b)
Figure 5: Illustration of patch detection. (a) An input IR image
(contrast-enhanced for illustration). (b) The result of peak detection
applied to (a). Red regions are ones that have larger intensity values
than their surroundings. Only regions with areas below a threshold
are considered as candidate patches. Their centroids (cyan aster-
isks) are used to represent their locations.

using a cold mirror (Edmund OpticsTM , NT43-962). This mirror
reflects visible light into the camcorder and passes infrared scene
radiation through to the IR camera. Although this is a customized
imaging system, it can be implemented in a cost effective manner3.
By selecting the appropriate operating mode of the camcorder (high
resolution stills or VGA resolution videos), one can capture photos
or videos with tagged pixels. Here, we will first focus on the capture
of tagged photos and later discuss tagged videos in Section 4.5.

4.2 Tag Detection Algorithm

To capture a tagged photo, the user takes a still picture using the
Panasonic camcorder and at the same time captures a 15-frameIR
video. For ease of description, we will first assume that the IR
camera is synchronized with the projector, and then discussthe un-
synchronized setting. Our tag detection algorithm has the following
three stages.

Patch Detection: In the first stage, we seek to detect all pro-
jected tag patches in each frame independently. Since a pro-
jected patch should produce a local intensity peak, we first de-
tect regions that have larger intensity values than their neighbor-
hood. This can be done efficiently using the Matlab function
ImageExtendedMax. For the IR image shown in Figure 5(a),
the peak detection result is shown in Figure 5(b), where the red re-
gions are the detected ones. Notice that some of the regions have
very large areas. These are eliminated using an area threshold. The
remaining regions, marked with cyan asterisks at their centroids
in Figure 5(b), are assumed to be candidate patches. Note that al-
though a few spurious regions are detected, all the projected patches
are found.

Patch Matching: In the second stage, we connect the detected
patches over the 15 captured frames to generate temporal codes.
Specifically, for each patcha in the first frame, we look for the
closest detected patcha′ in the second frame. If the distance be-

3Most cameras in the market today use CCD or CMOS chips that are
sensitive in both visible and IR spectra and hence could be used in our ap-
proach if an IR channel were available in addition to the RGB channels.
This could be done, for instance, by replacing the R-G-G-B color mosaic
found on most image detections with an R-G-B-IR mosaic.
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Figure 6: Tag detection rates for different combinations of ambient illumination and surface albedo.
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Figure 7: Tag detection rates for different combinations of viewing
angle and surface inclination with respect to the projector.

tweena anda′ is within a small threshold, we connect these two
patches and assume they belong to the same tag. This threshold is
used to account for noise in the tag location that can result from
hand-shake during the capture of the 15-frame video. If the patch
a does not have a nearby patch in the next frame, we set its code
bit to ’0’ in the next frame. If the second frame contains any patch
b that does not have a connected patch in the previous frame, we
include it as a new tag with bit ’0’ in the previous frame. We apply
this procedure to all the 15 frames. The end result is a set of tags,
each with a temporal code.

Code Verification: In the last stage, we can eliminate spurious
tags by ensuring that each detected temporal code satisfies the code
constraints we have imposed, namely, that each code cannot have
more thanM consecutive zeros andN consecutive ones (M = N = 4
in our codes). Since the capture of the IR video can begin at an
arbitrary time, we do not know the start bit associated with the tags.
However, this is not an issue because one of our code constraints is
that all codes that are circular shifts of each other are represented by
a single code. The above verifications are almost always adequate
for obtaining a correct set of tag codes. In some scenarios, such as
photos taken in a single site (a museum, for instance), one can get a
complete list of the codes used at the site. In this case, the detected
codes can be matched with the list and those that do not belongto
the list can be eliminated.

4.3 Handling Synchronization

The above algorithm works fine if the projector and the user camera
are synchronized. This, however, is not a practical assumption. To
address this issue, we assume that the user camera operates at 30fps
and we project the code patterns at 15fps to avoid temporal aliasing.
The user camera takes 30 consecutive frames and these are divided
into two sets: one with odd-index frames and the other with even-
index frames. If the user camera and the projector were synchro-
nized, both these sets would be identical in terms of the clarity of
the projected patterns. When the two devices are not synchronized,
one of these two sets will have clear images of the projected pat-
terns, but the other will contain ghosting effects due to intra-frame
transitions. For all candidate patches that have been detected (in the
first stage of the tag detection algorithm), we simply compute their
brightness variances over time for each of the two image sets. The
set without intra-frame transitions will have a greater variance and
is used in tag detection.

4.4 Robustness of Tag Detection

We now evaluate the robustness of our tag detection algorithm with
respect to surface albedo, ambient lighting, viewing direction, and
surface inclination. For the albedo and ambient lighting tests, we
made a surface with varying albedo by attaching a sheet of paper
with 11 different printed shades of gray on a flat board (see Fig-
ure 6(a)). The projector and the camera were placed roughly 3me-
ters from the board. To control the ambient lighting, we turned
on a set of fluorescent ceiling lights and varied the brightness lev-
els (increasing from 1 to 5) of two halogen lamps. We repeatedly
projected 1000 unique tags on the board and Figure 6(b) summa-
rizes the detection rates for many different combinations of surface
albedo and ambient lighting. This table shows that our tag detection
is quite robust to ambient lighting and surface albedo, except when
albedois zero.

Next, we evaluate the robustness of tag detection with respect
to the viewing angleα and surface inclinationθ (see Figure 7(a)).
In this case, we used a surface albedo of 0.7 and ambient lighting
of 3 (see Figure 6(b)). Figure 7(b) shows the detection ratesfor
various combinations ofα andθ . We see that detection works quite
well for a wide range of configurations. The performance begins to
fall when the projection angle approaches the grazing angleand
the surface is viewed head-on. In this case, the projected patch is
severely stretched on the surface and produces a large and dim patch
in the image.

4.5 Handling Camera Motion: Capturing Tagged Videos

A user can also capture videos with tagged pixels. Specifically,
after setting the Panasonic camcorder in video mode, the user can
move the hybrid camera around an object or pan it across a scene.
In this case, the tags in the IR images will move with time, and
this motion is considerably larger than that due to hand-shake when
a still photo is captured. Therefore, we need a more robust patch
matching method for detecting tags in videos.

For ease of description, we consider the situation where thepro-
jector and the user camera are synchronized; the lack of the syn-
chronization is resolved by applying the method in Section 4.3 after
the tags are registered using the method described below. Now, we
have anL-frame color video segment{Ct} and anL-frame IR video
segment{It}, wheret = 1,2, · · · ,L (L = 15 in our implementation).
These two videos are captured from identical viewpoints, since the
color and IR cameras are co-located. We seek to compute tags for
each color imageCt using the IR segment{It}.

Our solution uses the three stages described in Section 4.2 for
the still photo case: patch detection, patch stringing, andcode veri-
fication. The first and the third stages remain the same, but tostring
patches in a video, we need to know each patch’s motion between
neighboring frames. This motion is difficult to estimate using the
IR images because most of the pixels are dark and the projected
patches appear and disappear in an unpredictable manner. Fortu-
nately, since the IR video and color video share the same optical
center, we can use the color video for motion estimation. Thepre-
cise motion of a patch is hard to determine as it depends on scene
geometry (which is unknown even for the tagged points until the
tags are detected). Since the patch motions are only used to aid
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Figure 8: Illustration of tag detection for a video taken as the user camera moves. The top row shows a few frames of the captured color video.
We first compute the homographies between neighboring frames in this video. The bottom row shows the corresponding IR frames with four of
the detected tags. (Other tags are not shown to reduce clutter.) The green circles are the locations of detected patches. The red circles are
estimates of where the tags are located in the frames in which the tag is not activated (code bit of 0). These locations are determined from the
green circles and the inter-frame homographies. The code of each tag is obtained by stringing its green and red circles.

patch stringing, we use a homography transformation to approxi-
mate patch motions between neighboring frames.4

Specifically, the homography transformation between two im-
ages is represented by a 3× 3 matrix H = [hi j ]. Using H, a
patch’s motion between the two images is approximated asx′ =
h11x+h12y+h13
h31x+h32y+h33

,y′ = h21x+h22y+h23
h31x+h32y+h33

, where[x,y]T and[x′,y′]T are the lo-
cations of the patch in the two images. We estimate the homography
between each pair of neighboring color images using the RANSAC
method [5]. This method requires as input a set of matched inter-
est points extracted from the two images. We obtain this set by
applying the SIFT operator [8] to the color images. During each
iteration of RANSAC, we use the 4-point inhomogeneous method
to compute the homography [5]. At the end, we obtain homography
estimates that are robust to spurious interest point matches.

Given the homographies between all pairs of neighboring
frames, we can extend the patch stringing stage in Section 4.Con-
sider two neighboring frames. For each patcha in the first frame,
we first transform it to the second frame using the estimated ho-
mography. Let ˜a be the transformed patch. We then search for the
nearest patcha′ to ã in the second frame. If the distance between
ã anda′ is within a threshold,we assumea anda′ belong to the
same tag. Otherwise, we set the code bit to ’0’ for taga in the sec-
ond frame. If there is any patchb in the second frame that is not
matched to a patch in the first frame, we treat it as a new tag with bit
’0’ in the first frame. In this case, we transform the locationof b to
the first frame using the inverse of the homography between the two
frames. Figure 8 illustrates the above process using the color and
IR videos captured by moving the hybrid camera around a human
brain model.

4.6 Finding Occluded and Outside-View Tags

The tags that are detected for a given photo are calledvisible tags.
From these tags, we can efficiently compute the camera’s pose
since the 3D coordinates of all tags are known. Specifically,let

4Using homography to approximate pixel motion between two images
is a well-established method in computer vision, often referred to as the
plane+parallax method [6]. This approximation is especially effective for
distant scenes or when the viewpoints of neighboring imagesare close,
which is almost always the case in a captured video.In the presence of sig-
nificant parallex, i.e., a complex object with large depth variation, homog-
raphy may be a poor approximation. In that case, we can use Fundamental
matrix [5] to model the interframe motion. However, in our experiments,
we found homography is sufficient.

xg = [xg,yg]
T be the location of detected tagg in the IR image, and

Xg = [Xg,Yg,Zg]
T be its 3D scene coordinates. Given allxg andXg,

we compute the 3×4 camera projection matrixP = [pi j ] using the
linear 6-point method described in [5]. The matrixP maps the tags
from the 3D scene to the 2D image as

x =
p11X + p12Y + p13Z+ p14

p31X + p32Y + p33Z+ p34
,y =

p21X + p22Y + p23Z+ p24

p31X + p32Y + p33Z+ p34
.

In Figure 9, we show statistics of the reprojection error forthe
estimated pose using the detected tags in the brain video shown in
Figure 8. A majority of the errors are below 0.5 pixels, whichis
comparable to typical pose estimation results in computer vision
obtained by using features extracted from conventional images.

The computed projection matrixP allows us to project other tags
that are not detected onto the captured image. If these tags are in
the field view of the image, we call themoccludedtags. If they are
outside the field view of the image, we call themoutside-viewtags.
Next, we show how visible, occluded, and outside-view tags can
be used to interact with collections of photos and to automatically
augment videos with information.
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Figure 9: Statistics of the reprojection error for pose estimation using
the detected tags in the brain video in Figure 8. Left: the RMS repro-
jection error over time. Right: the distribution of the retrojection error
for all the 225 frames in the video.

5 APPLICATIONS OF TAGGED PIXELS

5.1 Photo Browsing

We have developed a novel interactive viewer called PhotoTags
for browsing collections of tagged photographs. Its interface was
developed using Macromedia Flash 8 and programmed using Ac-
tionScript 2.0. In a real application, PhotoTags can be exported to
the web, where it can accept uploaded photos and their associated
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Figure 10: PhotoTags: An interactive viewer for browsing and searching collections of photos with tagged pixels.

tag codes and then augment 3D tag locations and details aboutthe
tagged objects to the photos.5 When the user selects a photo, the
viewer shows the photo with all its tags. The detected visible tags
are shown in green, while the projected occluded and outside-view
tags are shown in red and blue, respectively.

As shown in Figure 10(a), the list of the tagged objects appears
on the right and a slider with all the photos in the folder appears at
the bottom. When the user rolls over a tag, a brief description is
displayed. As shown in (b), if the user clicks on the Egyptianvase,
a detailed description of the vase and a thumbnail of its bestview
(in which the object appears closest to the center of the image) are
displayed on the right. On choosing the thumbnail of the bestview,
it appears at higher resolution in the main window of the viewer,
as shown in (c). At the same time, the slider automatically gets
reordered according to the proximity of the object’s tag to the center
of the view. This allows the user to select the next best view of the
same object, as shown in (d).

By clicking on the outside-view blue tag for the Nefertiti bust
seen in Figure 10(d), details about the bust and its best viewcan
be seen, as shown in (e). The red tag in this view of the bust cor-
responds to a clay vase that is occluded by the bust. Clickingon
this tag brings up an unobstructed view of the vase, as shown in (f).
This view includes a painting by Monet. All the photos with Monet
paintings can be found by using the search box at the top rightcor-
ner of the viewer. The search results are ordered according to the
number of times the desired object appears in the photo, as shown

5We call PhotoTags anoffline application, as it augments 3D and meta
information after the images are taken. Foronline applicationswhere a user
wants to see the 3D and meta information in real time, these information
can be stored in physical media (e.g., flash drives) and provided to the user
in the field.

in (g). By clicking on one of the search results, one can view it at
higher resolution in the main window, as shown in (h).

Figure 2 shows three among several photos taken in a toy store
scenario. This example shows how tagged pixels enable a shopper
to simply capture photos at the store and later find detailed infor-
mation regarding the toys and purchase the most desirable one.
5.2 Video Augmentation
We can also use tagged pixels in a video for augmented reality. Fig-
ure 11 shows three frames of a tag-augmented video of the human
brain model in Figure 8. In each frame, the detected (green) and
occluded (red) tags are used to index a database of the names of
the various parts of the human brain. These names are overlaid
on the frame. The layout of the names are manually adjusted to
avoid clutter for illustration purposes. In Figure 11(a), the Cres-
centic Lobe happens to be occluded.6 To get an unobstructed view
of this part, the user simply clicks on its tag. Then, the video fast-
forwards to the first frame in which the tag becomes visible, which
is shown in Figure 11(b). Similarly, by clicking on the occluded tag
for the Quadratus Cerebelli in this frame, the video is advanced to
the frame in Figure 11(c) in which it is visible.

6 AUTOMATIC RETAGGING OF CHANGING SCENES

Thus far, we have assumed that the tagged objects in a scene do
not move after the scene has been authored. Although this assump-
tion is valid in many scenarios, such as museums with paintings
and sculptures and shops with large objects such as furniture, there

6The visibility of the tag and the visibility of the object to which the
tag is attached are different, because the object is larger.In practice, we
associate each object with several tags, and the occlusion of an object can
be well-approximated by the occlusion of the tags.
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Figure 11: Interacting with Tagged Videos. Using the detected tags, the video is augmented with visible (green dots) and occluded (red dots)
tags as well as the names of the parts of the brain the tags correspond to. (a) In this frame, the Crescentic Lobe is occluded. By clicking on the
corresponding tag, the video quickly advances to the first frame in which the tag for the Crescentic Lobe is visible, which is shown in (b). If the
occluded tag for the Quadratus Cerebelli is selected in this frame, the video advances to the frame shown in (c), in which it is visible.
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Figure 12: Automatic Retagging of a Changing Scene. (a) The color image used for the initial authoring of books on a shelf. For each book, a
tag location and a descriptive appearance feature (rectangular box) on the book are selected. (b) An image of the shelf taken by the authoring
system after the books have been moved. By applying appearance matching, the system automatically finds the four books that have moved
and changes their tag locations. In this image, the tags of the remaining books are not shown for clarity. (c) A person wanting to find a book on
the shelf takes a photo with tagged pixels (green dots) and simply runs a search for the desired book.

are other settings where the objects may move. For example, in
a library, books are taken off the shelf and put back in a different
place, possibly changing the locations of all the books on the shelf.

To handle scenes where the tagged objects may change location,
we use appearance-based matching for automatic retagging.We
use the example of books on a shelf to describe our method. As
shown in Figure 12(a), after the initial authoring, each book is as-
signed a tag and a descriptive appearance feature (rectangular box)
on its ridge. Later, a person browsing the books may change their
locations on the shelf. The authoring system detects a change in
the bookshelf by continuously checking if all the appearance fea-
tures are in their initial locations. When a change is detected, the
new locations of all the moved appearance features are foundby
template matching and the books are retagged, as shown in Fig-
ure 12(b). As an application, a person who wishes to find a specific
book on the shelf can simply take a photo of the shelf using a tag-
enabled camera, and the location of the book in the captured image
will be highlighted if its tag is detected. Otherwise, the camera may
prompt its location with respect to its current field of view based on
the estimated pose of the camera.

The above retagging algorithm is currently in its simplest form.
The objects (books) are assumed to translate on a single plane and
hence template matching works well. The template matching can
also be extended to handle in-plane object rotation or to detect when
an object is missing in the scene. However, in the case of a 3D

scene,a more sophisticated image recognition algorithm would be
needed to find the objects after they have moved.

One obvious question is: If the authoring system can find the
books using appearance matching/object recognition, why cannot
the user camera do the same? The answer is two-fold: First, the
dynamic range and resolution of the user camera may be inadequate
for robust appearance matching. For example, in an overviewshot
of several bookshelves taken by a cellphone camera, the ridge of
one book may be only a tiny noisy rectangular region of 10-pixel
width. Robust recognition of a book however requires high quality
images. Second, the user must have all the appearance features to
perform matching, which is not practical in most scenarios.

7 DISCUSSION

We have presented a novel 3D optical tagging method that en-
ables the capture of photos and videos with a sparse set of infor-
mational pixels. This method enables efficient recognitionof ob-
jects that are in the image as well as of objects that are severely
occluded or lie just outside the field-of-view. Such a function is dif-
ficult, if not impossible, to accomplish by applying object recogni-
tion to conventional photos or by using traditional physical tags that
do not convey 3D information. The example applications we have
demonstrated include photo-browsing, e-commerce, augmented re-
ality, and objection localization. We now discuss the limitations of



our approach and suggest directions for future work.
Specular Reflectance:A key challenge for our method is the

tagging of highly specular surfaces. For such surfaces, thetag will
be detectable only when the viewing direction of the camera is close
to the specular direction. In our system, even if a tag is missing due
to surface shininess, the user camera can still infer the missing tag
based on its pose estimate and the 3D tag position, although in this
case the tag will be mistakenly labeled as an occluded one. Inour
implementation, we have worked around this issue by tagginga
nearby diffuse surface.

Projector Brightness Falloff: The brightness of any projector
is proportional to 1/r2, , wherer is the distance of the surface from
the projector. This fall-off, combined with the fact that our projector
is not a real IR projector, limits the working range of our current
system to about 5 meters. If a true infrared projector is usedin an
indoor application, we believe the working range can be extended to
10 meters or more. A typical outdoor scene, however, would require
IR laser sources to generate the tags. As a matter of fact, such laser
sources have been used in outdoor applications for decades.In late
1970s, the US Army began to use IR beams for combat training.
During training, players score points by engaging targets with an
IR-emitting targeting device. Both indoor and outdoor toysbased
on the same concept are also popular7.

Minimum Number of Detected Tags for Pose Estimation:
The inference of occluded and outside-view tags is based on camera
pose estimation. Our current implementation requires a minimum
of 6 tags with known 3D positions to estimate camera pose. How-
ever, if a picture contains less than 6 tags, or in the worst case no
tags at all, the pose can not be estimated. However, since a projector
can be used to generate a very large number of tags, one can tagthe
scene more densely, i.e., with redudent tags, to reduce the chances
of detecting too few tags. In addition, if a user takes multiple im-
ages of the same scene and some images do not contain tags due to
occlusion, we can estimate the relative poses between theseimages
by matching visual features and using structure from motionmeth-
ods, therefore “transferring” the pose estimation from images with
tags to the ones that do not.

Interface Evaluation for Browsing Augmented Scenes:In our
current implementation, the visibility of tags is color coded, shown
as green dots and red dots. However, this might be confusing.For
instance, the fact that occluded points are visible in the viewer could
be counter-intuitive – the point looks like it is on the foreground
object, and the fact that it is red does not make it immediately clear
that it is occluded. It would be desirabe to evalute the effectiveness
of different types of interfaces, for example, usingα-blending to
illustrate occluded tags.

Optical Tagging and Recognition: In recent years, object
recognition algorithms have made great progress. We believe our
optical tagging method can make image recognition practical for
a low-cost consumer camera. To recognize an object, we need to
know its appearance feature. To recognize many objects, we need to
know all their appearance features. It is very demanding fora user
camera to know all appearance features of objects in all the possible
scenarios he/she may take photos, and to perform recognition with
limited computing power and low quality sensors. In contrast, it is
much more practical for a place, like a store or museum, to author
its scene using dedicated computing power and high-qualitycam-
eras and projectors. For a particular scene, the recognition module
only needs to recognize the objects that belong to that scene. This
makes the search space much smaller and makes recognition much
more likely to work robustly. Our method shifts the workloadof
recognition from the user device to the infrastructure and broad-
casts the recognition results through a set of code protocols.

We would like to further explore this area, for example, tagging
a scene from different viewpoints using multiple projectors. In this

7http://en.wikipedia.org/wiki/LaserTag

case, we need to calibrate the relative locations of the projectors
in order to compute the 3D positions of the projected tags in the
same coordinate system. Afterwards, our tag detection and pose
estimation methods presented in this paper will still apply. The tags
projected from different viewpoints will increase the robustness of
our tagging system for objects with complex 3D shapes.
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A COMPUTING THE 3D COORDINATES OF TAGS

Let xg = [xg,yg]
T and ug = [ug,vg]

T be the locations of tagg in
the IR camera and projector images, respectively. Given allxg
andug, we first compute the 3×3 fundamental matrixF between
the projector and the camera, using the 8-point linear method de-
scribed in [5]. Then, we calibrate the IR camera using an online
software [1] and the projector using the method described in[16].
After these calibrations, we obtain two 3×3 intrinsic matrices,K p
andKc, for the projector and the IR camera, respectively. These two
matrices relate image points in the two devices to their lines of sight
in 3D space. UsingK p, Kc, andF, we can estimate the rotationR
and the translationo of the camera with respect to the projector, by
applying SVD to the essential matrixE = Kc

TFK p [5]. Given R
ando, we can estimate the 3D location for each tagg by finding the
intersection of its lines of sights with respect to the projector and
the camera [5].


