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Abstract

In order to produce bright images, projectors have large apertures
and hence narrow depths of field. In this paper, we present meth-
ods for robust scene capture and enhanced image display based on
projection defocus analysis. We model a projector’s defocus using
a linear system. This model is used to develop a novel temporal
defocus analysis method to recover depth at each camera pixel by
estimating the parameters of its projection defocus kernel in fre-
quency domain. Compared to most depth recovery methods, our
approach is more accurate near depth discontinuities. Furthermore,
by using a coaxial projector-camera system, we ensure that depth is
computed at all camera pixels, without any missing parts. We show
that the recovered scene geometry can be used for refocus synthesis
and for depth-based image composition. Using the same projector
defocus model and estimation technique, we also propose a defocus
compensation method that filters a projection image in a spatially-
varying, depth-dependent manner to minimize its defocus blur after
it is projected onto the scene. This method effectively increases the
depth of field of a projector without modifying its optics. Finally,
we present an algorithm that exploits projector defocus to reduce
the strong pixelation artifacts produced by digital projectors, while
preserving the quality of the projected image. We have experimen-
tally verified each of our methods using real scenes.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning, display algorithm; I.4.8 [Im-
age Processing and Computer Vision]: Scene Analysis—Depth
cues, range data, shape.

Keywords: projector defocus, temporal defocus analysis, depth
recovery, multi-focal projection, projector depixelation, refocus
synthesis, image composition.

1 Introduction

Digital projection technologies, such as Digital Light Process-
ing (DLP) and Liquid Crystal Displays (LCD), are increasingly
used in consumer, commercial and scientific applications. In com-
puter graphics and vision, video projectors have recently been used
as per-pixel controllable light sources for real-time shape acquisi-
tion [Huang et al. 2003; Zhang et al. 2004; Davis et al. 2005; Kon-
inckx et al. 2005], for complex appearance capture [Levoy et al.
2004; Sen et al. 2005] and control [Raskar et al. 2001; Grossberg
et al. 2004; Bimber et al. 2005]. All these applications require the
projectors to be focused for best performance. In practice, projec-
tors are built with large apertures to maximize their brightness. As a
result, virtually all projectors have very narrow depths of field; they
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Columbia University. It was supported by an ITR grant from the National
Science Foundation (No. IIS-00-85864). The authors thank Gurunandan
Krishnan for his help with the experiments and the video and Anne Fleming
for her help with the audio recording and the proofreading. The authors also
thank www.dpreview.com for permitting us using their images as some of
the examples shown in the paper.

are designed to produce focused images on a single fronto-parallel
screen. An analysis of the defocus properties of projectors is there-
fore beneficial as it could lead to new methods that take advantage
of, as well as compensate for, projection defocus.
In this paper, we provide the first systematic analysis of projector
defocus and demonstrate its applications to robust scene capture
and enhanced image display. We first present a simple linear model
for projector defocus. Based on this model, we present a frequency-
domain method for estimating the spatially-varying defocus kernel
of a projector. The kernel estimated at each scene point is used to re-
cover the 3D geometry of the scene. Based on the estimated kernel,
we also present a technique that computationally manipulates an
input image to minimize its defocus blur when it is projected onto
a non-planar scene. Finally, we demonstrate that defocusing can
be put to good use. A slight amount of defocusing, in conjunction
with a compensation algorithm, can be used to reduce pixelation, a
strong artifact produced by all digital projectors. Specifically, this
paper makes the following three contributions:
Scene Geometry using Temporal Defocus Analysis: We propose
a method called temporal defocus analysis that estimates depth at
each camera pixel, independently, without using information from
neighboring pixels (Section 3). Our method, compared to exist-
ing methods, such as stereo or even traditional depth from fo-
cus/defocus algorithms, is more accurate near depth discontinuities.
Since the method is not based on triangulation, we can use a coax-
ial projector-camera system and compute depth at all camera pix-
els, without any missing parts. These advantages make the method
uniquely suited to computer graphics applications like refocus syn-
thesis and image composition, both of which we demonstrate.
Focused Projection at Multiple Depths: We present an iterative,
spatially-varying filtering algorithm that compensates for defocus
blur based on scene geometry (Section 4). This technique effec-
tively increases the depth of field of a projector without modifying
its optics. As a result, we are able to use a single projector to project
well-focused images on multiple planes that are at different depths
as well as on curved projection surfaces. We believe this capability
addresses an important limitation of current projectors and widens
their applicability in the real world.
Depixelation by Defocusing: Finally, we generalize our defocus
compensation algorithm to reduce the strong pixelation artifacts
produced by all digital projectors (Section 5). The key idea is to
slightly defocus the projector so as to attenuate the high frequen-
cies produced by pixelation and use the defocus compensation al-
gorithm to make up for the induced projector defocus. This method
is especially suited for projecting high resolution images using a
low resolution projector, and we show several examples of results
to illustrate its effects.

2 Previous Work

Many methods have been proposed in computer vision to recover
3D shape from images, including multi-view triangulation methods,
single-view photometric methods, and camera focus/defocus meth-
ods. Triangulation-based methods [Faugeras 1993], e.g., structure
from motion and stereo, require a point to be visible in at least
two views to be reconstructed. Scenes with complex occlusions re-
main a challenging problem for these methods. Photometric meth-
ods [Horn and Brooks 1989], e.g., photometric stereo and shape
from shading, estimate surface normals instead of surface depth.
Converting normals to depths is an ill-posed problem for scenes
with depth discontinuities.



Depth recovery methods based on camera focus and defocus,
e.g. [Pentland 1987; Nayar and Nakagawa 1994; Nayar et al. 1996;
Schechner et al. 2000; Favaro and Soatto 2005], have the potential
to recover depth at every pixel, regardless of the scene complex-
ity and occlusions. To resolve the focus ambiguity of textureless
surfaces, patterns can be projected to force scene texture [Girod
and Scherock 1989]. However, camera defocus kernels depend on
local surface geometry. To simplify the kernel analysis, most previ-
ous works assume that, within a small spatial window, the surface
depth is constant, the so-called equalfocal assumption. This as-
sumption smears shape details and is invalid across depth disconti-
nuities. To alleviate this problem, Jin et al. [2002] and Rajagopalan
and Chaudhuri [1997] estimate depths for all pixels simultaneously
via a large scale energy minimization, which is computationally
expensive and prone to local minima. Our key observation is that,
unlike camera defocus, the kernel for projector defocus is scene in-
dependent, for most scene surfaces. Specifically, when a 3D scene
point sees the entire projector aperture, its defocus kernel depends
only on its distance to the projector lens and not on its neighboring
surface geometry. This difference arises from the fact that projector
defocus convolution happens on the projector’s image plane while
camera defocus convolution happens on the scene surface. Exploit-
ing this scene-independent property, we project a shifting pattern
over the scene and compute depth at each pixel using just its inten-
sity variation over time. Without using the equalfocal assumption,
our method works well at depth discontinuities. Furthermore, it is
simple and not subject to local minima.

Our temporal per-pixel defocus analysis is inspired by previous
structured light range finding methods. In particular, Kanade
et al. [1991] and Curless and Levoy [1995] use temporal intensity
variation to resolve correspondences between camera pixels and a
sweeping laser stripe. Huang et al. [2003] have developed a real-
time range finder by sweeping periodic sinusoidal stripes using a
DLP projector. Zhang et al. [2004] and Davis et al. [2005] have
generalized these ideas to space-time stereo. All these range find-
ing techniques are based on the principle of triangulation, which
cannot estimate depth for points that are visible to only the camera
or the source but not both. Since our method is not based on triangu-
lation, we are able to use a coaxial configuration where the camera
and projector share the same optical center, and compute depth at all
camera pixels (no missing parts). To our knowledge, the only other
technique that is able to estimate a complete depth map with clean
discontinuity boundaries is time-of-flight, e.g., [Gonzales-Banos
and Davis 2004], which requires expensive specialized hardware.
Raskar et al. [2004] proposed a method to detect depth discontinu-
ities using multiple flash lights. The detected discontinuities can
be used to enhance stereo matching algorithms. Compared to this
work, our method directly generates reliable depth estimation for
all pixels, including the ones near discontinuities.

In addition to scene capture, several methods have been proposed
that use cameras to enable projectors to display “better” images.
These include compensating distortions due to surface geome-
try [Raskar et al. 2003] and correcting brightness variations due
to surface color and texture [Grossberg et al. 2004; Bimber et al.
2005]. In these works, the projectors are often used to display im-
ages onto scenes with considerable depth variation, where defocus
blur is inevitable and most often spatially-varying. Complementary
to these previous methods, our work seeks to compensate for de-
focus blur, and hence could be beneficial to the previous methods.
In [Bimber and Emmerling 2006], a system is proposed that can
project focused images on multiple planes at different depths. This
system uses multiple projectors where each projector is focused on
a single plane. In our case, we use a single projector to simulta-
neously project well-focused images at multiple depths. Another
interesting related work is by Majumder and Greg [2001], in which
multiple projectors at different focal settings are combined to gen-
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Figure 1: The principle of depth from projection defocus. Points
at different distances to the projector lens exhibit different amounts
of blur in their temporal radiance profile as a periodic illumination
pattern is shifted across the scene.

��� � �����	�
�
� ��

m sp � � �	�����

��������� �

(a) (b)

Figure 2: (a) A coaxial projector-camera system for depth from
projection defocus. The system is made coaxial only to ensure that
depth can be computed at all camera pixels. (b) The illumination
pattern that is shifted across the scene to measure depth at each
pixel, independently.

erate depth of field effects at an interactive rate.
Deblurring is a well-studied topic in image processing where nu-
merous techniques have been proposed, ranging from classical
Wiener filtering and conjugate gradient optimization [Jain 1989] to
more recent algorithms based on graph cuts [Raj and Zabih 2005]
and belief propagation [Tappen et al. 2004]. Our technique is based
on bound-constrained quadratic programming [Nocedal and Wright
1999], which is a variant of existing algorithms that best suits our
formulation of the problem. As we show, our deblurring method
can also reduce pixelation effects produced by digital projectors.

3 Depth from Projection Defocus

In this section, we formulate the problem of recovering 3D shape
from projection defocus and present our solution.

3.1 Temporal Defocus Analysis

Consider a scene that is illuminated by structured light from a pro-
jector which is focused behind the scene, as shown in Figure 1. For
a point q that is in focus, its irradiance comes from a single point
on the projector’s image plane. For a point s that is out of focus,
its irradiance equals the convolution of its defocus kernel with the
structured light pattern on the projector’s image plane. Assuming
that the surface is opaque, the radiance I of s along any given out-
going direction can be written as

I = α f (x;z)∗P(x)+β , (1)

where ∗ denotes convolution, α is a factor depending on surface
reflectance1, β is the radiance due to the ambient light, f (x;z) is the

1To be precise, α takes into account all surface shading factors: BRDF,
orientation with respect to the irradiance direction and the squared distance
fall-off of the projector brightness.
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Figure 3: Illustration of the calibration procedure. (a) A white board with four markers tilted in front of the camera. (b) Depth map of
the board computed using the markers. (c) The board under one of the stripe projection patterns. (d) θ map for the board. (e) θ values in
column 350 of (d). (f,g) Temporal radiance profiles of the points q and s, respectively. (h,i) Discrete-time Fourier series (DFS) of (f) and (g).
(j) Mappings from θ to depth z for columns 100, 350 and 600, respectively.

defocus kernel, and P(x) is the illumination pattern. The defocus
kernel f depends on the depth z.2 We now describe how to recover
the depth z by estimating the kernel f from radiance measurements.

3.2 Depth Estimation

To estimate the kernel f , we note that Eq. (1) defines a linear sys-
tem in which the projection pattern and the scene radiance are the
input and the output, respectively. Estimating the kernel of a linear
system is a classical problem in system identification [Ljung 1998]
and we take a frequency-domain approach to solve it in our setting.
Our basic idea is to shift an illumination pattern with a wide range
of frequencies within it across the scene. The radiance of a surface
point over time is then the response of its defocus kernel to the exci-
tation by the illumination pattern. As the pattern is shifted, points at
different distances to the projector exhibit different amounts of blur
in their temporal radiance profile, as illustrated in Figure 1. We use
this temporal blur for depth recovery.

Given the temporal radiance sequence, Il , l = 0, . . . ,L − 1, for a
point, we quantify its blur by decomposing it into a discrete-time
Fourier series (DFS) [Oppenheim and Willsky 1997] as

Il = A0 +
L−1

∑
k=1

Ak cos(ωkl −φk), (2)

where ωk = 2kπ
L , Ak = (B2

k + C2
k )

1
2 , φk = arctan(Bk,Ck), Bk =

1
L

L−1
∑

k=0
Il sin(ωkl) and Ck = 1

L

L−1
∑

k=0
Il cos(ωkl). Since the kernel f is

a low-pass filter, how quickly the coefficients Ak diminish with k
is a measure of the amount of defocus, which in turn yields depth.
Note that A0 cannot be used to estimate depth because it depends
on the ambient light β . Although both A1 and A2 are scaled by the
albedo α , their ratio can be used to determine how severely the de-
focus kernel attenuates the second-order harmonic with respect to
the first-order one. Therefore, we use the following ratio

θ =
A2

A1
(3)

as a measure of depth. In Eq. (3), A1 > A2 > 0 and θ ∈ [0,1] because
f is a low-pass filter. Deriving the analytic mapping between θ and
z is tedious but possible if we know precisely the optical design of
the specific projector. However, analytically deriving a projector-
specific mapping is not worth the effort as it would not apply to

2Due to lens aberration, f generally also varies across different pixels.

other projectors — each projector tends to have a unique optical
design. Therefore, in the next section, we present a general data-
driven approach that calibrates the θ − z mapping once and for all,
for any given optical setting of any given projector-camera system.

3.3 System Setup and Illumination Pattern

We have built a prototype camera-projector system to implement
our depth from projection defocus method. Our system consists of
an NEC LT260K DLP projector and a Basler A311f monochrome
camera. To avoid shadows and occlusions, we approximately align
the optical centers of the projector and the camera with a beam split-
ter (Edmund Optics stock #NT39-493), as shown in Figure 2(a)3.
The projector is always focused on a plane behind the working vol-
ume to avoid a two-way defocus ambiguity. As the projector is quite
bright4, we stop-down the aperture of the camera to F11 so that it
works approximately as a pinhole camera – any defocus introduced
by the camera is negligible compared to that of the projector.
There are many choices of input sequences (excitation signals) in
system identification theory. We have chosen to use a simple one –
a binary periodic sequence 011011011011... with period 3, which
is one type of M-sequence [Ljung 1998]. We encode this sequence
as a stripe pattern in which each bit corresponds to an 8-pixel wide
stripe, as shown in Figure 2(b). We shift this pattern, one pixel at a
time, and take a total of L = 24 images for each experiment5.

3.4 Calibration

We calibrate the mapping from the θ in Eq. (3) to the depth z in
three steps. Step 1: We compute the correspondence between pro-
jector and camera pixels. This is achieved by projecting shifted si-
nusoids in both horizontal and vertical directions. The details of this
procedure can be found in [Scharstein and Szeliski 2003]. Step 2:

3We align the camera and the projector by projecting an image onto a
white board with a fence in front of it and adjusting the camera position
until it does not see any shadows cast by the projector.

4During depth estimation, we have used the projector as a grayscale one
by removing its color wheel from the light path to boost its brightness.

5In our experiments, we have found that the projector produces several
undesirable effects: it vibrates at a high frequency, possibly due to the ro-
tation of its fan; its brightness is not stable over time; the imprecise syn-
chronization between the camera and projector causes measured radiances
to fluctuate slightly over time. To resolve these issues, we repeat the shifting
of the pattern about 85 times and compute a mean image for each shift. The
camera runs at 60Hz and the total acquisition time is within a minute.



Scene Depth map Magnified depth map Gray-shaded 3D model

Figure 4: Depth recovery results for three scenes. From left to right: An image of the scene, the computed intensity-coded depth map, a
close-up view of the depth map, a gray-shaded 3D model of the scene, as seen from a novel viewpoint. Notice the quality of the computed
depth around scene discontinuities. (Please see the companion video.)

We tilt a foam board in front of the system and compute depth for
each of its points. This is done by taking an image of the board with
a few reference markers, as shown in Figure 3(a),6 and computing
the homography from the board to the projection plane. As detailed
in [Zhang 2000], this homography allows us to estimate the posi-
tion and orientation of the board7, from which the depth of every
point of the board can be easily computed. Figure 3(b) shows the
intensity-coded depth map of the board. Step 3: We compute the θ
values for all points on the board by shifting the stripe pattern and
computing A1 and A2 for each pixel.

Figure 3(c) shows an image of the board under one of the shifted
patterns, and (f) and (g) show the temporal radiance profiles of
two points, q and s, on the board. As s is closer to the projector
and more defocused than q, its temporal radiance profile is more
blurred. Figures 3(h) and (i) show plots of the DFS coefficients Ak
for the profiles in (f) and (g), respectively. Figure 3(d) shows the
intensity-coded θ map and (e) shows a plot of the θ values (blue
curve) for the column 350 in (d). The raw θ values include a small
mount of noise and hence we fit a smooth curve which is shown as
the green curve in (e). Using the depth estimation in Step 2, we can
tabulate the mapping from θ to z. In our current implementation,
we build a lookup table for each column, assuming that the defo-

6The glare is produced by a number of dust particles on the half-mirror.
Since the half-mirror is very close to the projector, these particles are lit with
roughly 100 times the intensity compared to the scene, thereby producing
bright spots in the image that have the shape of the camera aperture.

7Zhang [2000] takes several images of a board at different orientations to
estimate a camera’s intrinsic parameters. In our work, we approximately es-
timate the projector’s intrinsics from the frustum specification in its manual.
Therefore, we only take one image of the board to compute its pose.

cus kernel is vertically invariant but has some horizontal variation.
Figure 3(j) shows three θ–z mapping curves for the columns 100,
350 and 600. An even more comprehensive calibration would in-
volve translating the board across the whole working volume and
generating a lookup table for each pixel. Such a calibration would
account for higher-order projector lens aberrations as well.

3.5 Depth Recovery Results

Once we know the mapping between θ and z, the depth recovery is
straightforward. We take 24 images while shifting the illumination
pattern across the scene. From these images, we compute θ for each
camera pixel using Eqs. (2,3) and then transform the θ image to a
depth image using the pre-computed lookup table. Figure 4 shows
several depth recovery results. In the first row, we show results for
a scene with books and wooden blocks that has simple boundaries.
Our method recovers the sharp depth discontinuities at the bound-
aries. In the second row, we show results for a scene with two
toy wrestlers with similar skin color. Again, our method can sepa-
rate the two figures with clean boundaries, even though the surfaces
have a specular component. In the third row, we show results for
a scene with leaves behind a fence. This result shows that the per-
formance of our method is independent of occlusion complexity.
In fact, it has been shown [Scharstein and Szeliski 2003] that it is
very difficult to obtain a depth map that is complete in any camera
view for a scene like the one with leaves using triangulation-based
methods, even if multiple cameras and projectors are used. All the
results are computed within a minute using Matlab.

We have also computed noise statistics for our depth estimation.
Specifically, we chose 20 planar patches from the experimented
scenes that are located at different depth within the working vol-
ume. We then computed the mean and standard deviation of the
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Figure 5: Noise statistics in the depth estimation. Twenty planar
patches are chosen from the experimented scenes, shown on the top,
and the mean and standard deviation of the depth for those patches
are plotted at the bottom. Within a 600mm working volume, our
depth estimation noise is around 4mm.
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Figure 6: (a) Refocused images of the book scene in Figure 4. The
defocus effects are synthesized using the recovered depth map. (b)
A collection of playing cards placed at four depth layers and their
estimated depth map. (c) A moving hand from another video is
inserted into the card scene with all the desired occlusion effects.
(Please see the companion video.)

depths inside these patches, as shown in Figure 5. From this fig-
ure, we can see that our depth estimation noise is about 4mm for a
working volume of 600mm.

3.6 Applications: Refocusing & Video Composition

A distinctive feature of our depth recovery method is that it esti-
mates depth at every pixel in the camera’s view and the estimation
is reliable near depth discontinuities. This makes our approach par-
ticularly well-suited for a variety of image-based applications in
computer graphics. Here, we show two examples, namely, refocus-
ing and object insertion to compose a new image or video.

Figure 6(a) shows two refocused images of the book scene in Fig-
ure 4: the top one is focused on the foreground wooden blocks and
the bottom one is focused on the background letters. These two
images were generated with the “lens blur” tool in Adobe Photo-
Shop.8 This tool takes an image and its depth map as inputs to
generate new images that are focused at any desired depth.

8In theory, without having the full light field available, refocusing can
not be simulated exactly. The PhotoShop implementation of lens blur is
proprietary. We think a practical way to implement it would be to heuristi-
cally impaint the occluded layers a little bit to obtain the full light field.

Figure 6(b) shows a collection of playing cards placed at four depth
layers. The repetitive textures on the cards and the complex occlu-
sions make it very hard to segment the scene into layers automati-
cally, or even manually. Using projection defocus, our method pro-
duces a clean depth map that segments the scene into layers. This
segmentation makes it easy to insert objects into the scene with cor-
rect occlusion effects. Figure 6(c) shows a real hand from another
video inserted into the scene with all the desired occlusion effects.
Please see the video for more results.
We believe that when a complete depth map is available for an im-
age, a variety of image editing applications become possible or eas-
ier to implement. Examples other than the ones we have shown are
creating layered representations of complex scenes for view mor-
phing, segmentation for matting, object replacement, and shadow
removal. In the past, such applications have not been easy to imple-
ment as “clean” depth maps have not been easy to obtain. For most
image editing tasks, the depth maps need not be highly precise (as
with time-of-flight sensors), but they need to be complete and they
need to be reliable at discontinuities, as humans are particularly
sensitive to edge artifacts. We hope our depth recovery method, al-
though not as accurate as laser scanners or structured light sensors,
will inspire new types of image editing applications.

4 Focused Projection at Multiple Depths

Due to their optical design, standard projectors can only be focused
on a single fronto-parallel plane. In some applications, it is de-
sirable to project images onto non-planar structures; for example,
multiple planes or a dome to create a virtual environment [Raskar
et al. 1998]. In such cases, most parts of the image are blurred due
to defocus. One way to solve this problem is to design sophisticated
optics. Even if this is possible, the optics cannot be modified to ac-
commodate changes in the structure that is being projected onto.
Another approach is to use multiple projectors [Bimber and Em-
merling 2006], where the number of depths for which the projected
image can be in focus equals the number of projectors. In this sec-
tion, complementary to the multi-projector approach, we propose
a computational method that processes an input image in a scene-
dependent way to minimize the defocus blur at all points in the
projected output image. Our method requires just a camera and can
be applied to any off-the-shelf projector.

4.1 Defocus Compensation Algorithm

Consider the scenario where an image I needs to be projected onto
a surface with given depth variation. The radiance of a point on the
surface due to illumination by the projector is governed by the pro-
jection defocus equation Eq. (1). As in previous work, e.g. [Raskar
et al. 2003; Fujii et al. 2005], we use a camera as a proxy for the
human eye and seek to make the scene radiance captured by the
camera be the same as the input image I. To do so, we can project
a compensation image, P∗, by solving the projection defocus equa-
tion as

P∗ = (α f )−1 ∗ (I −β ), (4)

where (α f )−1 is the inverse of the kernel α f . Theoretically, if P∗ is
projected, the scene brightness will be the same as the input image
I. However, f is a low-pass filter and its inverse will have strong
ringing effects. Therefore, Eq. (4) will not be feasible to implement
unless the projector has an infinite dynamic range. Instead, we cast
the problem of computing the compensation image as a constrained
minimization problem, as follows:

P∗ = argmin
P

{d(α f ∗P+β , I) | ∀x, 0 ≤ P(x) ≤ 255} , (5)

where x is the projector pixel coordinate and d(·, ·) is an image
distance metric. Eq. (5) finds the compensation image P∗, with all
its brightness values within the projector’s dynamic range, that after
defocus blurring most closely matches the input image I.
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Figure 7: Measuring the spatially-varying defocus kernel. (a) A
portion of the dot pattern projected onto the scene. (b) The corre-
sponding camera image with samples of the point spread function.
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Figure 8: Two test scenes for focused projection at multiple depths.
(a) Projection onto three planes at different depths from the projec-
tor. (b) Projection onto a hemispherical dome.

In our implementation, we have used the sum-of-squared pixel dif-
ferences for the image distance metric d(·, ·). The compensation
image P∗ is found by applying an iterative, constrained, steepest-
descent algorithm [Nocedal and Wright 1999]. We represent the
defocus convolution, α f ∗P, as a matrix multiplication, FP, where
each row of F is the defocus kernel of the corresponding pixel mod-
ulated by its albedo. The algorithm starts with P0 = I and iterates
the following two steps:

P̃i+1 = Pi +ηiGi (6)

Pi+1 = CLAMP(P̃i+1; 0,255) (7)

where Gi = FT(I − β −FPi), ηi =
‖Gi‖

2

‖FGi‖2 , and CLAMP is a pixel-
wise clamping operation. Notice that Gi is the gradient of the image
distance ‖FP+β − I‖2 with respect to P. Evaluating Gi is straight-
forward – it involves two image filterings with the kernel matrices F
and FT, respectively. Note that these filterings are spatially-varying
and scene-dependent, unlike the standard sharpening operations
that are often built into projectors by their manufacturers. With-
out Eq. (7), iterating Eq. (6) alone is a standard steepest-descent
algorithm, which converges to the solution of Eq. (4). Combining
Eq. (7) and Eq. (6) minimizes the difference between the defocused
compensation image and the original input image within the dy-
namic range of the projector.

4.2 Kernel Estimation

We now describe how we obtain β and α f for any given scene. We
obtain the ambient term β by turning off the projector and taking
an image. To obtain α f for each pixel, we could shift a dot pattern
across the scene and the temporal radiance profile for each pixel is
then its kernel. This method is effective for a scene with intricate
geometry, such as the scenes shown in Section 3. However, the

scenes used in our experiments here are at least piece-wise smooth.
Therefore, we simply project a sparse binary dot pattern, like the
one in Figure 7(a). In our experiments, the distance between neigh-
boring dots is 12 pixels. The point spread patterns captured by the
camera, shown in Figure 7(b), are approximately the kernels for the
projector pixels that are ’1’. From these kernels, we interpolate the
kernels for other pixels that are ’0’ in a bilinear manner. In the end,
we have a per-pixel kernel map that accounts for spatially-varying
defocus effects. We repeat the same procedure to capture kernels
for each of the three color channels of the projector. Calibrating
such a kernel map also helps to compensate lens aberrations as well.
For the above computations of β and α f , we always warp the image
from the camera to the projector’s coordinate frame, which makes it
convenient to compare the defocused compensation image, FP+β ,
and the input image I. The correspondences between the camera’s
and the projector’s pixels are determined by shifting sinusoidal pat-
terns in both horizontal and vertical directions, as in Section 3.

4.3 Focused Projection on Multiple Planes

In our first experiment, our goal was to project an image of three
fashion models onto three planes that are at different depths, as
shown in Figure 8(a). The projector is focused on the middle plane.
We show the focus compensation results for the three face regions
in the left three columns of Figure 9. The first row of Figure 9
shows the original image regions for the three faces. The third row
shows the defocused original image regions, captured by a camera,
without any compensation. This row represents the best the projec-
tor (without compensation) can produce. Notice that even though
the middle plane is in focus, the face still looks a little blurred
for this plane due to projector artifacts.9 As expected, the faces
on the left and right planes are even more blurred due to defocus.
The second row shows the compensation image regions resulting
from Eqs. (6,7), which represent the new input to the projector.
These image regions look like high-pass filtered versions of the
original input ones. This is expected as our method boosts high-
frequency components to compensate for the defocus induced by
scene geometry. The fourth row shows the defocused compensa-
tion image regions captured by the same camera, which represent
our results. Notice that these image regions are less blurry and more
closely resemble the input image regions. Among these three de-
focused compensation image regions, the one on the middle plane
(second column) is almost identical to the input. The ones on the
left and right planes (first and third columns) are slightly blurred
with respect to their inputs because defocus is more severe in these
two cases, and certain high frequencies in the input image that are
cut by the defocus cannot be fully compensated for due to the lim-
ited dynamic range of the projector.

4.4 Focused Projection on a Dome

In our second experiment, we project an image of a tiled flower
texture onto the inside of a hemispherical dome, as shown in Fig-
ure 8(b). The projector is focused on the front plane of the dome.
In the right two columns of Figure 9, we show the focus compen-
sation results for two patches on the dome – one is from the top
of the dome and the other is from the center. The top patch is less
blurred than the center one because the former is closer to the fo-
cal plane of the projector. As with the three-plane experiment, the
compensation results closely resemble the input images.

5 Depixelation

In this section, we show how the defocus compensation method
discussed in Section 4 can be used to reduce projector pixelation.

9We found that even if we focus a projector on a fronto-parallel plane,
when projecting a binary dot pattern, we see ”light leakage” from one pixel
into its neighbors. We observed this effect on different projector models.
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Figure 9: Results for defocus compensation. The three faces on the left were projected onto the three planar surfaces in Figure 8(a). The
two flower textures on the right were projected onto the hemispherical dome in Figure 8(b). The defocus compensation method results in
less blurry image regions (fourth row) than the uncompensated image regions (third row). The original image regions are shown in the first
row and the compensation image regions computed by the method and used as input to the projector are shown in the second row. The
compensation method is scene independent as it can handle a spatially-varying defocus kernel. (Please see the companion video.)

Pixelation is a clearly noticeable artifact produced by all digital pro-
jectors. It is caused by two factors. The first is the spatial digitiza-
tion due to the finite resolution of the projector. The second is the
gap (dead-zone) between adjacent pixels on the projector’s physical
image plane that arises because the pixel fill-factor is never 100 %.
The digitization is known to create jaggy boundaries when the reso-
lution of the projector is not high enough for the given application.
This effect is observed particularly when high quality captured im-
ages are projected, as the resolution of most LCD and DLP projec-
tors has remained at 1024x768 or less for the last seven years, while
digital cameras have tripled in their resolution during the same time
period. The dead-zone between pixels does not generate light and
produces thin black lines on the projection screen, known as the
screen-door effect. This effect makes pixelation more pronounced
as it clearly marks out pixel boundaries on the screen.

In our implementation of depixelation, we assume that the images
are projected onto a single fronto-parallel screen, i.e., the traditional
projection scenario. Our basic approach is to focus the projector
slightly in front of (or behind) the projection screen so that the im-
age on the screen is slightly blurred. In this case, a slight amount of

light is leaked into the black gaps and neighboring pixels, which re-
duces the screen-door effect as well as smoothes out the jaggy pixel
boundaries. However, doing so also creates blurry images. Since
this purposely induced blur is very slight, we can use the compen-
sation method in Section 4 to process the input image so that the
defocused projection looks very similar to the original input image.
Therefore, the compensation method can be used in conjunction
with the minor induced defocus to achieve depixelation.

Specifically, we use the compensation method to compute an op-
timal image P∗ at the projector resolution whose defocused pro-
jection most closely resembles the input image, which may have
higher resolution. Note that if the input image resolution is higher
than the projector’s native resolution, the number of rows in F is
larger than the number of columns. Each row of F is a defocus ker-
nel modulated by both surface albedo and the screen-door effect.

We have tested the depixelation method on several high resolution
input images (each one with 3 times the projector resolution). The
capture of β and F is done using the method in Section 4, except
that we capture a higher resolution kernel map by zooming-in our
camera so that 3×3 camera pixels see about one projector pixel.
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Figure 10: Examples of Projector Depixelation. (a) An original image of 3× projector resolution. (b) A patch in (a) of projector resolution.
(c,d) Projection of (b) under focused and defocused settings, respectively. (e) Our depixelation result. (f-k) Three more examples of depix-
elation with (f,h,j) as focused projection and (g,i,k) as depixelated projection. In all examples, the compensation greatly reduces pixelation
effects while preserving image quality. (Please see the companion video.)
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Figure 11: Albedo-correlated bias and halo effects in depth estima-
tion. (a) The depth profile for row 380 of the scene. (b) The depth
profile after removing noise and halo by a 7×7 median filter.

Figure 10 shows four examples of depixelation. In all the cases,
spatial digitization and screen-door effects are greatly reduced and
yet image sharpness is preserved. Our current implementation of
the compensation algorithm uses Matlab. The algorithm takes about
10 iterations to converge and takes 3-5 minutes to produce the final
compensation image. Since the compensation method only involves
filtering with F and FT, we believe it can be implemented on image
processing chips or graphics hardware to achieve real-time (frame-
rate) performance.

6 Discussion

In this paper, we have modelled projection defocus as a linear sys-
tem and developed a temporal defocus method that recovers depth
at all pixels in an image, regardless of the scene complexity. We
also proposed a scene-dependent filtering algorithm that increases
the depth of field of a projector without modifying its optics. Fi-
nally, we showed that defocus can be exploited to reduce pixelation
artifacts produced by digital projectors. We now discuss the limita-

tions of our work and open problems as topics for future research.

First, our temporal defocus method should, in principle, be invari-
ant to surface albedo. In practice, we found that the surface albedo
sometimes does affect the depth estimation, as shown in Figure 11.
We believe that this is only an issue with our current implemen-
tation. Our beam-splitter not only reflects light from the scene to
the camera, but also transmits light from a black backdrop placed
behind it. Therefore, the defocus kernel f in Eq. (1) is actually
a sum of the defocus kernels of both the scene and the backdrop.
If the scene is much brighter than the black backdrop, Eq. (3) is
dominated by the scene’s defocus kernel. However, when the scene
point is dark, due to low albedo or because its surface orientation
is near-grazing for the projector, the light from the scene point to
the camera is weak and comparable to the light from the backdrop.
In this case, Eq. (3) will depend also on the defocus kernel of the
backdrop, which causes errors in depth estimation. The backdrop
kernel remains constant and can be calibrated to reduce depth es-
timation errors. Alternatively, the beam-splitter can be placed in a
custom-designed chamber that absorbs all forms of stray light.

The projector defocus is for most cases independent of scene ge-
ometry, and this independence makes is superior to camera defocus
for depth estimation. However, there is a special case that this inde-
pendence does not hold. Specifically, when a closer object occludes
a distant object, there will be a narrow band of points near the oc-
cluding contour on the distant object that “see” only part of the pro-
jector’s aperture; so the projected pattern will be more infocus than
it would be if the entire aperture were visible. This partial aperture
effect results in a halo artifact: depth estimation biased toward the
focal plane, as shown in Figure 11. However, even in this special
case, projector defocus is still better than camera defocus. Camera
defocus will cause estimation errors for both the foreground and
background pixels near the occluding boundary. In contrast, projec-
tor defocus will only cause errors at the background pixels, while
leaving the foreground pixels unaffected. Furthermore, in practice,
because the solid angle subtended by the projector aperture is only
about 1 degree with respect to a scene point, the number of affected
background pixels is small. Therefore, as shown in Figure 11, the
halo effect can be greatly reduced by a simple median filtering.



In practice, using projector defocus for depth estimation does not
require moving detectors or changing optical settings as traditional
camera defocus methods do [Pentland 1987; Nayar and Nakagawa
1994]. Therefore, our method can be more conveniently imple-
mented. However, a coaxial implementation of depth from camera
defocus, as in [Nayar et al. 1996], allows for capturing dynamic
scenes, which our method currently is incapable of, because we
use 24 images for depth estimation. We believe this number can
be greatly reduced, which would enable us to develop a real-time
sensor that can handle dynamic scenes. In Eq. (1), there are three
unknowns: α , β , and z. If we can calibrate the defocus kernel f a
priori, then, in theory, 3 images are enough to solve for these un-
knowns. Interestingly, this minimum number is the same for other
shape acquisition methods, like the phase-shift method [Huang
et al. 2003], the time-of-flight method [Gonzales-Banos and Davis
2004], and photometric stereo [Horn and Brooks 1989].

Our temporal defocus method can deal with specular surfaces,
whenever the BRDF’s are approximately constant within the solid
angle subtended by the projector aperture from the scene point.
Nevertheless, the extreme case of near-mirror reflection, as well as
saturated highlight pixels, will cause errors. Although our method
is developed under the direct illumination assumption, it’s not very
sensitive to the indirect illumination. This is because indirect illu-
mination usually creates only very low frequency intensity fluctua-
tion, which will mainly affect Fourier coefficient A0. Our depth is
however estimated via A1 and A2. Of course, for extremely specu-
lar reflection, the global illumination can change dramatically with
the projected patterns and hence our method will break down.

One challenging open problem for defocus-based methods is han-
dling translucent objects. A translucent material introduces addi-
tional blur due to subsurface scattering, which would cause a sys-
tematic bias in our methods. The amount of bias depends on the
amount of translucency blur compared to defocus blur. If the de-
focus blur dominates the translucency blur, the error will be small.
Otherwise, the error will be large. It would be interesting to extend
our analysis to handle blur induced by translucency. In practice, the
depth of mixture pixels at boundaries is often a blend of its neigh-
boring depth values. It would be interesting to accurately model the
mixture pixels, e.g., combining our approach with the defocus mat-
ting method [McGuire et al. 2005], to estimate mattes for scenes
with continuous depth variations.

Our method for defocus compensation essentially extends the depth
of field of the projector. However, when the blur is very severe,
our method cannot fully compensate for the blur due to the lim-
ited dynamic range of the projector. In such a case, combining our
method with multiple-projector solutions [Bimber and Emmerling
2006] could be beneficial. Finally, we plan to extend our work on
depixelation to make it a practical and useful projector feature. How
objectionable pixelation artifacts are, is really a subjective issue.
For our technique to be incorporated into commercial projectors, a
few preset options can be provided so that the user can decide how
much focus quality they are willing to tradeoff for depixelation.
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