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Generalized Assorted Pixel Camera: Postcapture
Control of Resolution, Dynamic Range, and Spectrum

Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, and Shree K. Nayar, Member, IEEE

Abstract—We propose the concept of a generalized assorted pixel
(GAP) camera, which enables the user to capture a single image
of a scene and, after the fact, control the tradeoff between spatial
resolution, dynamic range and spectral detail. The GAP camera
uses a complex array (or mosaic) of color filters. A major problem
with using such an array is that the captured image is severely
under-sampled for at least some of the filter types. This leads to
reconstructed images with strong aliasing. We make four contri-
butions in this paper: 1) we present a comprehensive optimization
method to arrive at the spatial and spectral layout of the color filter
array of a GAP camera. 2) We develop a novel algorithm for re-
constructing the under-sampled channels of the image while mini-
mizing aliasing artifacts. 3) We demonstrate how the user can cap-
ture a single image and then control the tradeoff of spatial resolu-
tion to generate a variety of images, including monochrome, high
dynamic range (HDR) monochrome, RGB, HDR RGB, and mul-
tispectral images. 4) Finally, the performance of our GAP camera
has been verified using extensive simulations that use multispectral
images of real world scenes. A large database of these multispectral
images has been made available at http://www1.cs.columbia.edu/
CAVE/projects/gap_camera/ for use by the research community.

Index Terms—Assorted pixels, color filter array, color reproduc-
tion, demosaicing, dynamic range, multispectral imaging, signal to
noise ratio, skin detection, sub-micrometer pixels.

I. INTRODUCTION

M OST color image sensors use a color mosaic which is
an assortment of different spectral filters. A color mo-

saic usually consists of three primary colors (e.g., RGB). One
reason for the use of tri-chromatic filter arrays is that tri-chro-
matic sensing is near-sufficient in terms of colorimetric color
reproducibility. It is also commonly assumed that this pixel as-
sortment is the only practical way to sense color information
with a single semiconductor image sensor.1

Recently, new image sensing technologies have emerged that
use novel pixel assortments to enhance image sensing capabili-
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1The Foveon X3 sensor [1] is an exception.

ties. For high dynamic range (HDR) imaging, a mosaic of neu-
tral density filters with different transmittances have been used
[2], [3]. A new approach to high sensitivity imaging builds upon
the standard Bayer mosaic by using panchromatic pixels [4] that
collect a significantly larger proportion of incident radiation.
Color filter arrays (CFAs) with more than three colors have been
proposed to capture multispectral images [5], [6].

In this paper, we introduce the notion of a generalized as-
sorted pixel (GAP) camera, which uses a mosaic with a richer
assortment of filters and enables a user to produce a variety of
image types from a single captured image. Each filter type in
an assortment can serve to enhance a specific attribute of image
quality. Examples of attributes are color reproduction, spectral
resolution, dynamic range, and sensitivity. We propose a com-
prehensive framework for designing the spatial layout and spec-
tral responses of the color filter array of a GAP camera. The fol-
lowing are the main contributions of our work: 1) We develop an
optimization method to arrive at the spatial and spectral layout
of the color filter array of a GAP camera. The cost function that
we optimize includes terms related to colorimetric/spectral re-
production, dynamic range and signal-to-noise ratio (SNR). 2)
We develop a novel algorithm for reconstructing the under-sam-
pled channels of the image while reducing aliasing artifacts. Our
approach uses a submicrometer pixel size to avoid aliasing for
some of the channels. The high frequency content from these
channels are then used to remove aliasing from the remaining
(under-sampled) channels. 3) We have developed software that
enables a user to capture a single image and then control the
tradeoff of spatial resolution to generate a variety of images. The
output image can be monochrome, HDR monochrome, RGB,
HDR RGB, or multispectral. 4) Finally, the performance of our
GAP camera has been verified using extensive simulations that
use multispectral images of real world scenes. The multispec-
tral images are used to emulate GAP camera images and re-
sults computed from the GAP images are compared with the
original multispectral images. We have released a large data-
base of high quality multispectral images (at http://www1.cs.
columbia.edu/CAVE/projects/gap_camera/) for use by the re-
search community.

The trend in manufacturing has been towards producing sen-
sors with increasing numbers of smaller pixels. The time is
therefore ripe for exploring more interesting pixel assortments
than the ones used in the past. Furthermore, each of the pre-
viously proposed mosaics have been used to generate one spe-
cific type of output image. In contrast, our goal is to create a
mosaic that lends itself to postcapture control over the output
image. Since sensor fabrication is a very expensive endeavor,
we have used high quality multispectral data as our ground truth
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as well as to verify our optimized mosaic and reconstruction al-
gorithm. Given the high quality of results we have obtained, we
have begun to pursue the fabrication of a GAP sensor.

II. BACKGROUND AND RELATED WORK

In this section, we explain the background of optical reso-
lution limit using Airy disk and the concept of the CFA design
for the smaller pixel image sensor which exceeds the optical
resolution limit. The resolution of an optical imaging system
may be limited by multiple factors, but the dominant factors
are diffraction and aberration. While aberrations can be cor-
rected for during lens design, diffraction is a fundamental lim-
itation that cannot be avoided. Therefore, we assume an aber-
ration-corrected optical system and focus on only diffraction.
The 2-D diffraction pattern of a lens with a circular aperture
is called the Airy disk. The width of the Airy disk determines
the maximum resolution limit of the system and is given by:

, where is the intensity in the center of
the diffraction pattern, is the Bessel function of the first kind
of order one, and is the angle of observation. ,
where is the radial distance from the optical axis in the obser-
vation plane, is the wavelength of incident light, and is the
f-number of the system. In the case of an ideal lens, this diffrac-
tion pattern is the point spread function (PSF) for an in-focus
image. The Fourier transformation of the PSF is used to charac-
terize the resolution of the optical imaging system. This quantity
is referred to as the modulation transfer function (MTF). The
MTF of an ideal optical system can be calculated directly from
the wavelength of incident light and the f-number , and is
denoted as , where, denotes
the Fourier transformation.

Pixels typically have a rectangular shape, and their finite
size contributes to the resolution characteristics of the imaging
system. The MTF of an image sensor can be approximated as
the Fourier transformation of a rectangular function which is
denoted by , where

(1)

is the rectangular function, is pixel size, and is the pixel aper-
ture ratio, which is assumed to be 1 due to the use of on-chip
microlenses. Here we define optical resolution limit as the max-
imum resolution limit of the image which is captured by the
lens and sensor system. This is denoted in the frequency domain
as . To compute an
MTF, we use the values nm (corresponding to the peak
of the sensitivity of the human eye) and (which is
a pupil size commonly used in consumer photography). With
these numbers fixed, the fundamental MTF is determined only
by pixel size . The MTFs for various pixel sizes are shown in
Fig. 1. In this figure, the minimum pixel size we use is 0.7 ,
which is the pixel size of the fabricated detector described in
[7]. Note that the MTF for pixel size approaches
zero at about 0.25 , where, is the image sensor’s sampling
frequency. Thus, we can consider the optical resolution limit of
an image sensor with pixel size to be half of the

Fig. 1. Optical resolution limits (MTFs) corresponding to different pixel sizes
(� � ��� nm and � � �����). The MTF for pixel size � � ��� �m ap-
proaches zero at about 0.25� (� is the image sensor’s sampling frequency).
We consider the optical resolution limit of an image sensor with � � ��� �m
pixel size to be half of the image sensor’s Nyquist frequency. The resolution
performance of a sensor with submicrometer pixels exceeds the optical resolu-
tion limit.

Fig. 2. Nyquist limits of previous assorted designs used with submicrometer
pixel image sensors (pixel size � � ��� �m). (a) Three colors and four expo-
sures CFA in [3] and its Nyquist limits; (b) seven colors and one exposure CFA
in [6] and its Nyquist limits.

image sensor’s Nyquist frequency. From this, we can conclude
that the resolution performance of a sensor with submicrometer
pixels exceeds the optical resolution limit.

Fig. 2 shows the Nyquist limits when the CFA patterns of pre-
vious assorted pixels are used with the submicrometer pixel size
image sensor. When the highest frequency of the input signal is
lower than the Nyquist limit, aliasing does not occur, according
to the sampling theorem. Therefore, aliasing is not generated at
pixels marked “1” in Fig. 2(b).

Before the submicrometer image sensor is envisaged, the
several advanced methods [8], [9] have been proposed for the
demosaicing problem (the inverse problem of reconstructing
a spatially under-sampled set whose components correspond
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Fig. 3. Our proposed GAP mosaic (seven colors and two exposures) used with
a submicrometer pixel image sensor (pixel size � � ��� �m) and its Nyquist
limits.

to particular tristimulus values). In these methods, the demo-
saicing problem have been solved by the frequency domain
demultiplexing of a luminance component and two chromi-
nance components. On the other hand, the CFA design method
that simultaneously maximizing the spectral radii of luminance
and chrominance channels is proposed in [10]. These methods
are effectual to achieve the high quality RGB image from a
number of under-sampled pixels. However, the CFA design
for submicrometer image sensor get relief from complication
to design CFA at the frequency domain, due to a lot of not
under-sampled pixels. Because it became possible to arrange
many aliasing-free pixels in submicrometer image sensor, we
propose novel method to arrive at the spatial and spectral layout
of the color filter array to provide an high quality RGB image
as well as HDR and multispectral images with minimal image
degradation.

III. SPATIAL DESIGN OF GAP MOSAIC

The problem of CFA design can be simplified with the as-
sumption that the optical resolution limit is limited to almost
1/4 of the sampling frequency , where is the
sampling pitch. This limit is caused by both diffraction by the
lens aperture and averaging within the pixel area. In designing
a CFA, our aim is to provide an aliasing-free full-color image
(i.e., a full set of color triples) as well as HDR and multispectral
images with minimal image degradation. To exploit this prop-
erty, we propose a novel CFA to be used in conjunction with
a submicrometer image sensor, which is shown in Fig. 3. This
CFA consist of three primary color filters (the pixels marked
“ ,” “ ,” and “ ” in Fig. 3) and four secondary color filters (the
pixels marked “ ,” “ ,” “ ,” and “ ” in Fig. 3). The number and
arrangement of the primary and secondary color filters are de-
cided as follows.

To provide an aliasing-free and full-color image, three color
filters must be arranged dense enough to capture the full spatial
resolution of the incident optical image. Because the incident
image is band-limited to 0.25 (described in Section II), each
of the three color filters must have a pitch of no more than 2
pixels in both the horizontal and vertical directions. This con-
straint is used to arrange the primary color filter (marked “ ,”
“ ” and “ ” in Fig. 3). If any of the three primary filters have
a pitch of less than 2 pixels, either the remaining primary fil-
ters would be forced to have a pitch greater than 2 pixels, or
there would not be sufficient space to accommodate the four
secondary filters. In the former case, the CFA cannot produce

an aliasing-free and full-color image. To this end, the primary
color filters are arranged as shown in Fig. 3. These aliasing-free
pixels are used for reconstruction of high resolution images.

Next, we arrange the secondary filters using the remaining
space on the sensor. Since the secondary filters are more
sparsely arranged on the sensor, they will produce aliasing. Our
approach is to remove these aliasing artifacts using the high
frequencies captured (without aliasing) by the primary filters.
To ensure this approach is effective, the sampling frequency of
the secondary filters must be no less than 0.125 . To this end,
each of secondary filters must have a pitch no greater than four
pixels in the horizontal and vertical directions. Therefore, the
number of secondary color filters can be no more than four (see
Fig. 3). The accuracy of spectral reconstruction gets better as
the number of basis functions increases [11]. However, previous
work indicates that good reconstructions can be obtained with
even seven or eight basis functions [12]. In short, the primary
and secondary filters we use are reasonable to obtain better
spectral reconstruction results than that supported by conven-
tional RGB mosaic. We have validated this in our simulations
and experiments. Note that we have increased the number of
aliasing-free pixels from one color in conventional mosaics
to three colors in our GAP design (see Fig. 2). This change
results in significantly better reduction of aliasing artifacts
for the secondary filters compared to previous CFAs used for
multispectral imaging [6].

Due to the nature of the cost function used in our optimiza-
tion procedure, the primary filters end up with spectral responses
that closely resemble the red, green and blue filters commonly
used in color image sensors. As a result, the primary filters can
be used to compute RGB images which essentially cover the
entire visible wavelength spectrum. In other words, images cap-
tured by the secondary filters, irrespective of their spectral re-
sponses, are guaranteed to be highly correlated with the images
obtained using the primary filters. Consequently, the images ob-
tained using the primary filters can be used to reduce the aliasing
artifacts of the images produced by the secondary filters. Fur-
thermore, our cost function also results in the secondary fil-
ters having lower exposures than the primary ones. Hence, by
using all of the primary and secondary filters, we can obtain
high dynamic range information. Finally, since the primary and
secondary filters have different spectral responses, their recon-
structed images can be used to obtain smooth estimates of the
complete spectral reflectance distribution of each scene point,
i.e., a multispectral image.

IV. SPECTRAL RESPONSES OF GAP FILTERS

The GAP mosaic allows not only a conventional high quality
RGB image but also a variety of image characteristics to be
captured simultaneously. Therefore, the evaluation dimension
of conventional optimization method [10] that simultaneously
maximizing the spectral radii of luminance and chrominance
channels is not enough for GAP concept. Monochrome and
RGB images are reconstructed at high resolution from the
primary filters. For HDR images, the dynamic range can be
improved by using the secondary filters with a scarification of
spatial resolution. Multispectral images of lower resolution can
also be obtained from the secondary filters. In order to balance
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these goals, we find the optimal filters for the GAP camera and
design the cost function with several terms, including quality of
color reproduction, reconstruction of reflectance and dynamic
range.

A. Cost Function

The value measured at a pixel in the th channel
is given by

(2)

where is the spectral distribution of the illumination,
is the spectral reflectance distribution of the scene point,

and is the spectral response of the camera’s th color
channel. When the wavelength is sampled at equally-spaced

points, (2) becomes a discrete expression

(3)

If we rewrite (3) in matrix form, we obtain

(4)

where , , is a diagonal
matrix made up of the discrete illumination samples , and

. Our goal is to determine the seven spectral re-
sponse functions in . The cost function includes several terms,
as described in the following.

1) Cost 1: Color Reproduction of RGB Image: To obtain
HDR RGB images, a high exposure RGB image is reconstructed
from the primary filters, and a low exposure image is recon-
structed from the secondary filters. The spectral responses of
all the filters must ideally yield the highest color reproduction.
A variety of filter rating indices have been proposed to eval-
uate the color reproduction characteristics of a filter [13], [14].
These indices use a cost function that minimizes the differ-
ence between the measured color of a reference material and its
known color. To calculate this difference, we use the CIE 1931
XYZ color space, which is based upon direct measurements of
human visual perception. The CIE color space, which
is frequently used to measure color differences, is an alterna-
tive choice. However, we chose the XYZ color space because

includes nonlinear transformations that are not ideal for
evaluating HDR images. The calculation of sRGB tristimulus
values (which are employed in many digital cameras and color
monitors) from the CIE XYZ tristimulus values uses a linear
transformation. The CIE XYZ tristimulus values are defined as

, where represents the true tristimulus values,
and is a matrix of CIE XYZ color matching functions .
The estimated CIE tristimulus values corresponding to the pri-
mary filters can be expressed as an optimal linear transfor-
mation: , where . The transfor-
mation is determined so as to minimize the color difference:

. The estimated CIE tristimulus values corre-
sponding to the secondary filters are denoted as ,
where .

The average magnitude of the color difference between the
true color and the estimate over a set of real-world ob-
jects may be used as a metric to quantify the camera’s color
reproduction performance. The color reproduction errors corre-
sponding to the primary and secondary filters can therefore be
written as

(5)

(6)

2) Cost 2: Reconstruction of Spectral Reflectance: In this
paper, we use the model-based spectral reconstruction method
described in [15]. Fortunately, the spectral reflectance distribu-
tion of most real-world surfaces can be well-approximated using
a low-parameter linear model. The linear model we use is the
set of orthogonal spectral basis functions proposed by
Parkkinen et al. [12]

(7)

where are scalar coefficients and is the number of basis
functions. By substituting (7) in (2) we get a set of equations:

(8)

These equations can be written as , where is a
matrix: , is number of color
filter channels (in our GAP mosaic, ), and . The
spectral reflectance distribution is reconstructed by minimizing

. Note that the spectral reflectance distribution of
most real-world materials is known to be smooth and must be
positive [15]. Thus, the reconstruction problem can be posed as
a constrained minimization as follows:

subject to (9)

where , is a smooth-
ness constraint, is a smoothness parameter, ,

, , and . This regularized
minimization can be solved using quadratic programming. The
multispectral image’s mean squared reconstruction error
is given by

(10)

where represents the actual coefficients of the th object and
are the reconstructed coefficients. In our implementation, the
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TABLE I
OPTIMIZATION ACCURACY

Fig. 4. Histogram ���� of image irradiance and the dynamic range of the GAP
camera. The extended dynamic range �� can be shifted using � and the
total dynamic range �� can be shifted using �.

number of basis functions is 8 and the smoothness parameter
is set to 64.0 [15].
3) Cost 3: Dynamic Range and SNR: The third criterion

of GAP filters is that they should maximize the dynamic
range while keeping SNR as large as possible. To achieve
HDR imaging, our secondary filters have lower transmittances
than the primary filters, as mentioned earlier. This may cause
deterioration of the signal-to-noise ratio (SNR) for the sec-
ondary filters. This tradeoff can be controlled based upon the
ratio of the exposures of the primary and secondary filters:

, where is the average exposure of
the primary filters and is the average exposure of the
secondary filters. Therefore, is determined by in (4). Our
goal here is to determine the value of that best balances
extension of dynamic range versus reduction of SNR. We wish
to choose a value for which minimizes the number of the
over-exposured and under-exposured pixels and maximizes the
SNR of well-exposured pixels. This is identical to maximizing
the integral of the SNR of the well-exposured pixels over the
histogram of image irradiance (see Fig. 4). The amount of
light incident on the detector is controlled by camera exposure
, which is determined by the shutter speed and pupil size.

When the detector is linear, the signal is proportional to the
incident light: . The signal of secondary filter can be
denoted as . We assume the noise arisen from the
light incident is shot noise, therefore, the SNR is [16].
Thus, the problem can be posed as the following maximization:

(11)
where, and are the optimal values of and .

To solve the previous optimization, we approximate the SNR
of under-exposed and over-exposed pixels with zero

(12)

where is th image’s output histogram, represents
the full-well capacity of the detector, is the minimum
output of the detector. The error in the computed high dynamic
range image is defined as

(13)

4) Total Cost Function: We confirmed that the each of the
previously mentioned cost functions is convergent and max-
imize an each image quality (see Table I). Thus, to achieve
the balanced quality image our final cost function becomes a
weighted sum of the individual costs

(14)

The weights are determined according to the
image quality requirements of the application for which the
GAP camera is manufactured. Since all camera filters must
have positive spectral responses ( must be positive), the
optimization of can be written as

subject to (15)

5) Initial Guesses for Filter Spectral Responses: Note that
in the absence of additional constraints, our goal of finding the
seven spectral response functions in is an intractable opti-
mization problem. Therefore, we assign initial guesses to the
filter responses. These filter guesses are driven by two factors:
1) they are selected from a set of 177 commercially available
optical band pass filters [17] and on-chip filters [1]; and 2) the
commercial filters are assigned to the seven channels based upon
only one of our cost functions, namely, color reproduction. That
is, we find the primary filters and secondary filters such
that

(16)

(17)
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Fig. 5. Spectral responses of the seven optimized filters.The secondary filters
(“�,” “�,” “� ,” “�”) have lower exposures than the primary ones (“�,” “�,” “�”).
Hence, using the primary and secondary filters, we can obtain high dynamic
range information. Since each filter has different spectral response, their recon-
structed images can also be used to obtain smooth estimates of the complete
spectral reflectance distribution.

where is the set of 177 commercial filters. Once the seven as-
signments are made in this way, they are used as initial guesses
in the final stage of the optimization. This final stage is a con-
strained nonlinear minimization of (15) which requires the use
of an iterative algorithm. In our implementation, we used the
fmincon routine of Matlab. For the weights, we have used

. As mentioned earlier, these weights
can be chosen differently to meet the needs of the application.

B. Results of GAP Filter Optimization

Using the previously shown optimization, we obtain the
optimal filter spectra shown in Fig. 5. We use the spectral re-
flectance distribution of the color patches in the Macbeth color
chart and the Munsell color book as the known references ,
the illuminance spectrum of D65 for , and a high dynamic
range image database [18], [19] for computing the histograms

. Three observations are worth making. First, as a result of
the color reproduction term in the cost function, the primary
filters are close in their responses to red, green and blue filters.
Second, due to the spectral reconstruction term, the computed
filters nicely sample the visible spectrum, which enables the
GAP camera to produce reliable multispectral images. Third,
due to the HDR and SNR term, the primary filters have higher
transmittances than the secondary filters. Dynamic range is
often defined as , where
represents the full-well capacity of the detector, and is the
minimum output of the detector. In the case of a GAP camera,

is fixed, but the maximum detectable level becomes
[2]. Hence, the dynamic range of a GAP camera is

(18)

The SNR can be written as: , where
is the signal and is the noise. In this paper, the noise of the
detector is defined as , where

is the shot noise, is the signal, and is the dark
noise [16]. The signal corresponding to a secondary filter can
be expressed using the exposure ratio as , where

is a signal due to a primary filter. When the signal due to the
primary filter is not saturated, the signal due to the secondary
filter can be determined from the primary signal. The SNR for
a secondary filter when the primary signal is saturated is the
worst-case SNR of the GAP mosaic

(19)

where , and . In
our calculation, we have used and

(see [7]).
Table I shows the errors in the color reproduction and spec-

tral reconstruction components of our cost function , the esti-
mated dynamic range, and the SNR of the initial and final (op-
timized) set of seven filters. Note that all the evaluated value
except SNR are reduced as a result of the optimization. The de-
terioration of SNR is kept low at around 2.3 dB while the dy-
namic range is improved by about 4.6 dB. If we use a large value
for the weight corresponding to one of the image types (RGB,
multispectral or HDR), the reconstruction quality for that image
type improves while the quality of the other image types dete-
riorates. This can be seen from the results in Table I. When all
the weights are chosen to be equal, we achieve a more balanced
performance—all the image types are reconstructed with rea-
sonable quality.

V. POST-CAPTURE CONTROL OF IMAGE TYPES

At each pixel of the GAP mosaic in Fig. 3, there is only one
color measurement, which means that the other colors must be
estimated from neighboring pixels in order to produce interpo-
lated output images (irrespective of their type). This process is
commonly referred to as “demosaicing.”

Denoting as the set of pixel locations for filter
, a mask function for each filter can be defined

as

otherwise
(20)

In the GAP mosaic, there are seven types of color channels: ,
, , , , , and . Therefore, the observed data is

(21)

where is th channel’s full resolution image, given by (2).
Fig. 6 shows the complete framework of our proposed multi-
modal image reconstruction. The interpolated image after de-
mosaicing is denoted as . Different types of images are recon-
structed from all interpolated images by simply changing the
image reconstruction matrix

(22)

where is the reconstructed image (which can be mono-
chrome, HDR monochrome, RGB, HDR RGB, or mul-
tispectral), is an image reconstruction matrix, and

is an interpolated image set denoted as a vector:
, where is

the interpolated low-exposure monochrome image. The user
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Fig. 6. Overview of the proposed multimodal image reconstruction.

can control the tradeoff of spatial resolution to generate a
variety of images by changing the image reconstruction matrix

from a single captured image . We now describe the
different processing operations of Fig. 6.

A. Demosaicing for “ ,” “ ,” and “ ” Images

As described in Section III, images captured by the primary
filters do not suffer from aliasing. Therefore, we can estimate
the missing data using a simple interpolation. The “ ,” “ ,” and
“ ” channels’ images , , and are reconstructed using
just the data measured by the primary filters, to maintain high
resolution. For interpolation we use a Finite Impulse Response
(FIR) filter

(23)

where , , or , denotes convolution, and
. To minimize the loss of high frequencies due to

interpolation, we used Matlab’s fir2 function to find a FIR
filter of size 30 30 that passes all frequencies. This FIR filter
is a product of two orthogonal 1-D sinc functions with a cutoff
at 0.25 .

B. Demosaicing for “ ,” “ ,” “ ,” and “ ” Images

Interpolated secondary filter images— , , , and
—can be computed using only the “ ,” “ ,” “ ,” or “ ”

pixels. However, this results in severe aliasing [see Fig. 7(a)].
In conventional demosaicing methods for RGB mosaics [20],
an assumption of strong positive interchannel correlation
(the color ratios within an image segment are assumed to be
constant) is commonly used so as to suppress aliasing of the
sparsely sampled channels (R, B) by estimating the amount
of aliasing from the high frequency information of a densely
sampled channel (G). (This method can be also discussed with
the luminance component and the chrominance component
at the frequency domain [8], [9]). However, this assumption
often results in artifacts because the differences in the spectral
responses of RGB filters cause the interchannel correlation of
RGB to be not always strongly positive. On the other hand, our
aliasing reduction method can exploit the inherent interchannel
correlations within GAP mosaic. As shown in Fig. 5, one
primary filter color can be chosen for each secondary filter
color in terms of similarity of the spectral response, with high
expectation of strong positive interchannel correlation due to
strong overlap between the spectral responses of the chosen
primary and secondary channels. For example, channel “ ” is
chosen as a strongly correlated channel with channel “ .” So we

Fig. 7. Aliasing reduction algorithm (simulated with � � �����,
� � ��� �m). (a) Low exposure RGB image computed from the sec-
ondary filters without aliasing reduction (false color artifacts caused by aliasing
are observed). (b) Downsampled image � � �� ��	 
�	� ��	 
�� computed
using the pixels with primary filter “�.” (c) Aliasing 
 ���
� estimated using
(b) and the full resolution image for channel “�” (brightness enhanced for
visualization). (d) Low exposure RGB image obtained after aliasing reduction
using the estimated aliasing in (c).

first sample the interpolated full resolution “ ” filter image
at all “ ” locations to estimate the aliasing of “ ” filter image.
These samples are then used to compute a full resolution image
for the “ ” filter: , where represents
an low-pass filter. We used a bilinear interpolation filter for .
Aliasing can be inferred by subtracting the original image
from this interpolated one. To get the final estimate of aliasing
in the “ ” channel, , we used assumption that the color ratios
within an object in an image is constant. The color ratio
within an object in “ ” and “ ” channel image is used for the
interpolation of the “ ” channel. The estimated aliasing in
the “ ” channel is given by

(24)
where is

(25)

The image with reduced aliasing is obtained as

(26)

Since the same sampling and low-pass filter are used,
the aliasing component in and estimated
aliasing are identical. Our aliasing estimation technique
also assumes positive interchannel correlation. It is not effective
in the case of negative interchannel correlation, as is the case
with previous techniques. Therefore, we select our channel pairs
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for aliasing reduction such that they have the highest positive
correlation between them. Since the output signal of the sensor
is a product of the incident spectral distribution and the sensor’s
spectral response, the channels with larger overlap in spectral
response tend to have higher positive correlation. The other sec-
ondary filter images— —can be similarly computed.
We select the color filter pairs of with , with and
with , because that interchannel correlation becomes stronger
positive due to maximizing the spectral overlap. Fig. 7 shows
an example that illustrates the efficacy of this aliasing reduction
technique.

C. Demosaicing for Low Exposure Monochrome Images

In order to compute an HDR monochrome image, we need to
first compute a low exposure monochrome image. We can con-
struct this low exposure image using only the four secondary fil-
ters which have lower exposure and also collectively cover the
entire visible spectrum (Fig. 5). In Fig. 3, we see that four dif-
ferent secondary pixels are arranged diagonally about each “ ”
pixel. Therefore, the monochrome value at each “ ” pixel can be
computed as the average of the measurements at the four neigh-
boring secondary pixels: ,
where

(27)

Note that by adding four pixels in a diagonal neighborhood,
aliasing caused by half-pixel phase shifts gets canceled out.2 The
values at the “ ” pixels are then interpolated for all other pixels
to yield the low exposure monochrome image

(28)

where
otherwise

, and

.

D. Multimodal Image Reconstruction

As shown in Fig. 3, the primary filters capture images at a
higher sampling frequency than the secondary filters. Thus, the
spatial resolution of , , and is higher than that of ,

, , and . Although the aliasing of images reconstructed
from secondary filters is reduced due to our aliasing reduction
process, the usage of and , , , slightly degrades
the spatial resolution of the reconstructed image. We now de-
scribe how each of the different output images can be recon-
structed with the least loss in spatial resolution.

1) Reconstruction of Monochrome Image: Monochrome
image is reconstructed using just the data measured by the
primary filters to maintain high resolution

(29)

2Note that this aliasing reduction method can only be used for a monochrome
image computed from the low exposure secondary filters and not for a color
image computed from the same.

where where , and are the co-
efficients of the transformation from the outputs of the primary
filters to monochrome image. We used , be-
cause the weights , and that define monochrome should
be selected to optimize spatial acuity and not to match as closely
as possible the human luminosity function.

2) Reconstruction of RGB Image: To construct the RGB
image , we use the color reproduction matrix
(Section IV-A-1) and (linear transformation from CIE
XYZ to sRGB) to combine the information in the , , and

images computed using only the primary pixels [(23)]

(30)

where .

3) Reconstruction of HDR Monochrome and HDR RGB
Image: We combine the monochrome image and the low
exposure monochrome image (to which aliasing reduc-
tion has been applied) to produce the HDR monochrome image

(31)

where , and

is the processing that combining the HDR image from different
exposure images, and is based upon the method described in [2].

Similarly, we obtain the HDR RGB image from
the RGB image and the low exposure RGB image that is
obtained by multiplying the secondary filter images by a color
reproduction matrix and color space conversion

(32)

where .

4) Reconstruction of Multispectral Image: For multispec-
tral imaging, and the images (to which
aliasing reduction has been applied) are used to reconstruct the
spectral reflectance distribution of an object using the method
given by (9)

(33)

where , and is 7 by 7 identity matrix.

VI. COMPARISON WITH OTHER MOSAICS

The performance of demosaicing methods depends upon the
spatial layout and spectral responses of the color filters used,
both of which vary from detector to detector. Moreover, pre-
vious CFA mosaics [3], [6] were not designed for controlling
the tradeoff of spatial resolution to generate a variety of images.
Therefore, a direct comparison of image qualities is difficult to
perform. Instead, Table II shows a qualitative comparison be-
tween the performances of our GAP mosaic, a previously pro-
posed assorted pixel CFA [3] and a previously proposed mul-
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Fig. 8. Comparison of RGB images. (a), (f) Ground truth (simulated with � � �����, � � ��� �m). (b), (g) Assorted Pixels [3]. (c), (h) Multispectral CFA [6].
Aliasing artifacts are observed over the stripe pattern in (c) and (h). (d), (i) GAP Camera. (e), (j) BAYER CFA demosaiced with AHD [21].

TABLE II
COMPARISON OF THE GAP CAMERA WITH PREVIOUS ASSORTED PIXELS [3] AND MULTISPECTRAL CFA [6].

THE SHADED CFA OFFERS THE BEST QUALITY IMAGE FOR EACH IMAGE TYPE

tispectral CFA [6]. Note that when the difference of exposures
for HDR imaging is disregarded in the case of assorted pixels, it
is identical to the Bayer mosaic [20]. For monochrome images,
although there is fundamentally no spatial resolution difference
between the three mosaics, the monochrome image of the GAP
mosaic is reconstructed from the “ ,” “ ,” and “ ” channels,
which together cover all visible wavelengths (see Fig. 5). There-
fore, the GAP mosaic can reproduce monochrome images more
accurately than other CFAs. In Fig. 8, we compare the RGB
images which are computed using three CFAs (assorted pixels,
multispectral CFA and GAP). We use natural images captured
using Kodak PhotoCD (used in [22]). The same demosaicing al-

gorithm (described in Section V-A) was used for all three CFAs.
We also compare these RGB images with a Bayer mosaic with
the up-to-dated demosaicing algorithm [21] in Fig. 8. We can
see aliasing artifacts in the images produced by the multispec-
tral CFA. This is because that the R and B filters of that CFA are
not dense enough (see Table II). We evaluate the degradation
by aliasing artifacts using peak signal-to-noise ratio (PSNR) in
Fig. 8. The PSNR of multispectral CFA is deteriorated about 10
dB due to aliasing artifacts. The difference of PSNR between
images provided from GAP and Bayer mosaics is about 1 dB,
so that the GAP mosaic can reproduce RGB image nearly as
same quality as Bayer mosaic. Note that the GAP mosaic can
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Fig. 9. Comparison of aliasing reductions. These RGB images were simulated with seven spectral filters (Fig. 5) and multispectral images (Section VII-B).
(a) Ground truth (simulated with � � �����, � � ��� �m and the CIE 1931 RGB Color matching functions). (b) Reconstructed from the primary filters (“�,”
“�,” and “	”) of GAP Camera. (c) Reconstructed from the secondary filters (“
,” “�,” “� ” and “�”) of GAP Camera (brightness enhanced for visualization). The
aliasing artifacts are reduced by using (b) that aliasing-free image. (d) Reconstructed from the multispectral CFA. The green spectrum (“�” in Fig. 5) is used as the
most dense filter arrangement (“1” in Fig. 2). False color artifacts are observed in (d). (e) The vertical components of the logarithmic Fourier power spectrum of
RGB images. The high frequency component of image (b) close to ground truth (a), although degradation of resolution can be observed in (c) and (d).

Fig. 10. Result of multimodal demosaicing for a CZP chart. (a) Ground truth (simulated with � � �����, � � ��� �m). (b) Demosaiced monochrome image.
(c) Demosaiced RGB. (d) Demosaiced (with aliasing reduction) low-exposure monochrome image. (e) Demosaiced (with aliasing reduction) low exposure RGB
image. (f) MTFs of ground truth and demosaiced CZP images.

provide not only the high quality RGB images (on par with the
Bayer mosaic and assorted pixels) but also HDR RGB and mul-
tispectral images. The GAP mosaic can also create HDR RGB
images of the same resolution as the assorted pixel array. How-
ever, because the assorted pixel array has four different expo-
sures, it is more effective at extending dynamic range than the
GAP camera. The aliasing artifacts are caused by under-sam-
pling, and are reduced by using aliasing-free (densely-sampled)
channels of the CFA. Since our aliasing estimation technique
assumes positive interchannel correlation (as in previous tech-
niques [20]), negative interchannel correlation gives rise to false
color artifacts [see Fig. 9(d)]. Our GAP mosaic is less likely
to produce such artifacts compared to previous CFAs (the rea-
sons are given in Section V-B). Fig. 9 compares aliasing reduc-
tion results of GAP with the multispectral CFA. In the case of
the multispectral CFA, the aliasing artifacts of under-sampled
pixels can be reduced using only one aliasing-free channel [“1”
in Fig. 2(b)]. Thus, the color difference Eab of multispectral
CFA is increased. The image reconstructed using GAP does not
include false color artifacts, although color reproduction perfor-
mance is not perfect. In Fig. 9(e), the high frequency compo-
nent of GAP image reconstructed from primary filters close to
ground truth. This is one of GAP’s advantages—since all three
primary channels have sufficient density, the computed RGB

images are artifact free. In summary, when high spatial reso-
lution is necessary, the GAP camera offers images with quality
that is similar to, or better than, other CFA mosaics.

VII. EXPERIMENTAL RESULTS

A. Results for the CZP Chart

Fig. 10(a) shows a synthesized circular zone plate (CZP)
image computed using a diffraction-limited model of a lens with
an f-number of 5.6 and 0.8 m pixel size (without considering
noise). This serves as the ground truth. Fig. 10(b)–(e) show
demosaiced images computed from a GAP mosaic image—(b)
monochrome, (c) RGB, (d) low exposure monochrome, and
(e) low exposure RGB. Fig. 10(f) shows MTFs of these demo-
saiced images. The monochrome and RGB images computed
using the primary filters are very close to the ground truth. The
low exposure monochrome image has an MTF of 0.1 at 0.1754

, while the low exposure RGB image’s MTF is 0.1 at 0.1647
. For standard monochrome and RGB images this occurs

at 0.2125 . This demonstrates that our GAP mosaic with
multimodal demosaicing allows a user to control the tradeoff
between spatial resolution and radiometric details of the output
image.
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Fig. 11. Results for real scenes. (a), (h) Ground truths (simulated with � � �����, � � ��� �m). (b), (i) GAP mosaic (raw) images. (c), (j) demosaiced mono-
chrome images. (d), (k) HDR monochrome images. (e), (l) RGB images. (f), (m) HDR RGB images. (g), (n) multispectral images and examples of reconstructed
spectral reflectance distributions.

B. Experiments With Multispectral Images

We also captured 31-band multispectral images (400–700 nm,
at 10 nm intervals) of several static scenes using a tunable filter

(VariSpec Liquid Crystal Tunable Filter) and a cooled CCD
camera (Apogee Alta U260, 512 512 pixels). We havecaptured
multispectral images for a wide variety of objects and materials,
including, textiles, skin, hair, real and fake fruits and vegetables,
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Fig. 12. Results for real scenes. (a) Ground truth (simulated with � � �����, � � ��� �m). (b) GAP mosaic (raw) image. (c) demosaiced monochrome image.
(d) HDR monochrome image. (e) RGB image. (f) HDR RGB image. (g) Multispectral image and reconstructed spectral reflectance distributions. (h) Result of skin
detection for RGB Image by using simple correlation-based method. (i) Result of skin detection applied to a multispectral image computed from the GAP image.

candy, drinks, paints, etc. We believe this database could be
valuable to researchers working in areas related to multispectral
imaging. The database has been made publicly available at:
http://www1.cs.columbia.edu/CAVE/projects/gap_camera/.

The multispectral images were used to simulate images cap-
tured with a GAP mosaic. Fig. 11 and 12 shows these as well
as our multimodal demosaicing results for two different scenes.
For both scenes, the textures and colors of saturated regions in
the monochrome and RGB images become visible in the corre-
sponding HDR images. As expected, one can see more details
in the HDR monochrome images than in the HDR RGB im-
ages. We also experimented within skin detection using RGB
image and multispectral data. Fig. 12(h) shows the result of
skin detection using an RGB image by using a simple corre-
lation-based method. Fig. 12(i) shows the result of skin detec-
tion applied to multispectral images computed from GAP im-
ages [see Fig. 12(g)]. Note that the scene shown in Fig. 12 in-
cludes a real face (skin) on the right and a photo of the same
face (printed paper) on the left. As seen in Fig. 12(h), these two
faces (real and fake) are difficult to distinguish using the RGB
image—skin detection based upon color analysis finds both the
faces although only one of them is real. In contrast, skin de-
tection applied to the multispectral image computed from the
GAP image results in the desired result—only the real face is
found as pixels within it have the spectrum of real skin [see
Fig. 12(i)].

VIII. CONCLUSION

In this paper, the concept of a generalized assorted pixel
camera has been presented. We have developed a general
framework for designing GAP cameras that can simultaneously
capture extended dynamic range and higher spectral resolution.
We have also proposed a demosaicing algorithm that reduces
aliasing artifacts. Our simulation results are based upon real
multispectral images. They show that the combination of the
GAP mosaic with submicrometer pixels and our simple demo-
saicing algorithm works well.

Our demosaicing algorithm, however, has the limitation that
aliasing reduction cannot be applied when either a primary or a
secondary channel is saturated. We plan to investigate this issue
in our future work. We are also exploring the fabrication of a
GAP sensor. An interesting challenge is to find the pigments
needed to realize a CFA with the optimal spectral responses we
have estimated.
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