
P1: TPR/SUD

International Journal of Computer Vision KL654-04-Wolff October 14, 1998 11:38

International Journal of Computer Vision 30(1), 55–71 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Improved Diffuse Reflection Models for Computer Vision

LAWRENCE B. WOLFF
Computer Vision Laboratory, Department of Computer Science, The Johns Hopkins University,

Baltimore, MD 21218

SHREE K. NAYAR
Center for Research in Intelligent Systems, Department of Computer Science, Columbia University,

New York, NY 10027

MICHAEL OREN∗

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

Received December 18, 1996; Revised October 29, 1997; Accepted March 10, 1998

Abstract. There are many computational vision techniques that fundamentally rely upon assumptions about
the nature of diffuse reflection from object surfaces consisting of commonly occurring nonmetallic materials.
Probably the most prevalent assumption made about diffuse reflection by computer vision researchers is that its
reflected radiance distribution is described by the Lambertian model, whether the surface is rough or smooth. While
computationally and mathematically a relatively simple model, in physical reality the Lambertian model is deficient
in accurately describing the reflected radiance distribution for both rough and smooth nonmetallic surfaces. Recently,
in computer vision diffuse reflectance models have been proposed separately for rough, and, smooth nonconducting
dielectric surfaces each of these models accurately predicting salient non-Lambertian phenomena that have important
bearing on computer vision methods relying upon assumptions about diffuse reflection. Together these reflectance
models are complementary in their respective applicability to rough and smooth surfaces. A unified treatment is
presented here detailing important deviations from Lambertian behavior for both rough and smooth surfaces. Some
speculation is given as to how these separate diffuse reflectance models may be combined.

Keywords: reflectance and appearance rendering, shape-from-reflectance, shape-from-shading, physics-based
vision

1. Introduction

In computer vision a widely used assumption about
diffuse reflection from nonmetallic materials, is
Lambert’s law (Lambert, 1760), namely the expres-
sion:

1

π
Liρ cosθi dω, (1)

∗Current address: D.E. Shaw & Co., 39th Floor, 120 W. 45 Street,
New York, NY 10036.

where radianceLi is incident at angleθi relative to
the surface normal through solid angledω, and where
ρ is termed thediffuse albedoin the range [0, 1.0].
This reflectance model is typically instantiated into the
implementation of a large number of algorithms such
as shape-from-shading, photometric stereo (Horn and
Brooks, 1989) and photometric-based binocular stereo
(Grimson, 1984; Smith, 1986). It is therefore impor-
tant for researchers in the computer vision community
who utilize assumptions about diffuse reflection to be
aware of the conditions under which there is significant
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deviation from Lambert’s law, and what other reflection
models should be used.

It should be emphasized that the non-Lambertian
diffuse reflection effects discussed here are separate
from specular surface-air interface reflection phenom-
ena such as discussed in (Torrance and Sparrow, 1967;
Beckmann and Spizzichino, 1963; Nayar et al., 1991).
Figure 1 illustrates this distinction more clearly. The
top of Fig. 1 shows the typical three-lobes occurring
for reflection of light from surfaces. Of the two sur-
face reflectance lobes the “specular-spike” lobe is more
dominant for smooth surfaces while the broader specu-
lar surface reflectance lobe becomes most dominant for
high surface roughness. Figure 1(a) shows how light
is specularly reflected from a smooth surface-air inter-
face, where the term “smooth” implies that the standard
deviation of height across the surface-air interface is
orders of magnitude smaller than the wavelength of in-
cident light. Specular reflection from dielectrics under
these conditions is dictated by Fresnel theory (Fresnel,
1866; Siegal and Howell, 1981) which attenuates light

Figure 1. (Top) Polar plots of the different reflectance components. The plots show the intensity of the reflected light as a function of the
viewer direction. Here, the body reflectance is assumed to be Lambertian. (a) Interface between two media with different refractive indices, (b)
effect of the interface roughness, and (c) subsurface scattering.

energy dependent upon the simple index of refraction
n for the dielectric and the angle of incidence rela-
tive to the surface normalθi . The attenuation factor,
0≤ F(θi , n) ≤ 1.0, is given by

F(θi , n) = 1

2

sin2(θi − θt )

sin2(θi + θt )

[
1+ cos2(θi + θt )

cos2(θi − θt )

]
, (2)

where the transmission angleθt of light into the dielec-
tric is given by Snell’s law:

sinθi

sinθt
= n→ θt = sin−1

(
sinθi

n

)
.

The Torrance-Sparrow specular reflection model
(Torrance and Sparrow, 1967) assumes that rough sur-
faces locally consist of an orientation distribution of
smooth microfacet surfaces for which Fresnel theory
individually applies to each microfacet. Specular re-
flection from a rough surface is the collective specu-
lar reflection from the variously oriented microfacets
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(Fig. 1(b)) producing a broader specular reflectance
lobe. Key to accurate empirical prediction of the
Torrance-Sparrow model is the V-groove geometric
analysis of how microfacets shadow and mutually mask
specular reflection. Although specular reflection from
a rough surface can be broad in many directions, this
is still a phenomenon that only involves the surface-air
interface and isnot considered to be diffuse reflection
as is sometimes confused in the computer vision com-
munity.

Diffuse reflection is considered to arise from light
that has penetrated the surface-air interface and through
physical processes that include scattering and refrac-
tion re-emerge into air as depicted in Fig. 1(c). Since
light becomes exponentially attenuated in media with
significant electrical conductivity, very little to virtu-
ally no diffuse reflection occurs from metals which is
why diffuse reflection models are only applicable to di-
electrics. The polar plot of the diffuse body reflectance
lobe at the top of Fig. 1 depicting equal reflection in all
directions consistent with Lambert’s law is meant only
as an illustration to distinguish diffuse reflection from
surface-air interface reflectance phenomena.

Recently, two diffuse reflectance models have been
separately derived from first principles by computer
vision researchers each producing a considerable im-
provement over the Lambertian model for different
surface conditions. The model proposed by Oren and
Nayar (1995) shows that under very rough surface
conditions geometric effects are so dominant that dif-
fuse reflection from an individual smooth microfacet
as depicted in Fig. 1(c) can beapproximatedto be
Lambertian and yet collectively the combination of
such reflection from all microfacets produces accurate
diffuse reflection from the rough surface. This is not
to imply that diffuse reflection from smooth surfaces
by themselves are Lambertian. The model proposed
by Wolff (1994a) shows that physical modeling of sub-
surface optical scattering phenomena in combination
with surface optical boundary conditions is essential
for determining the diffuse reflection characteristics of
smooth and mildly rough dielectric surfaces. In gen-
eral, this must be taken into account when geometric
effects of the surface do not dominate.

A number of papers from the applied physics and
optics community have studied reflectance and trans-
mission of light from diffuse scattering within dielec-
tric media (Kubelka and Munk, 1931; Orchard, 1969;
Reichman, 1973; Bahar, 1987). Some of these pa-
pers have presented theories for both reflectance and

transmission for arbitrary optical thicknesses of scat-
terering media, using collimated or diffuse light
sources. In relation to the optics literature, the Wolff
model (Wolff, 1994a) studies the specific case of
diffuse reflectance from a semi-infinite, plane-parallel,
inhomogeneous dielectric, which is most relevant to
diffuse reflection observed in computer vision and com-
puter graphics. In computer vision Healey (1989) has
used the Kubelka-Munk model (Kubelka and Munk,
1931) to perform color insensitive segmentation. In
computer graphics Hanrahan and Krueger (1993) used
a subsurface scattering model to render the appearance
of flat opaque and translucent objects.

The topic of rough diffuse surfaces has been exten-
sively studied in the areas of applied physics and geo-
physics. In 1924, Opik designed an empirical model
to describe the non-Lambertian behavior of the moon
(Opik, 1924). In 1941, Minnaert modified Opik’s
model to obtain the following reflectance function
(Minnaert, 1941):

fr = k+ 1

2π
(cosθi cosθr )

(k−1) (0≤ k ≤ 1)

where,θi andθr are the polar angles of incidence and re-
flection, andk is a measure of surface roughness. This
function was designed to obey Helmholtz’s reciprocity
principle (see Beckmann and Spizzichino, 1963) but
is not based on any theoretical foundation. It assumes
that the radiance of non-Lambertian diffuse surfaces
is symmetrical with respect to the surface normal, an
assumption that proves to be incorrect. Hapke and van
Horn (1963) also obtained reflectance measurements
from rough diffuse surfaces by varying the source di-
rection for a fixed sensor direction. They found the
peak of the radiance function to be shifted from the
peak position expected for a Lambertian surface. This
was interpreted as a minor discrepancy and the Lamber-
tian model was assumed to be a reasonable approxima-
tion. Measurements by Oren and Nayar (1995) show
that non-Lambertian behavior is clearly noticeable and
significant when viewer direction is varied rather than
source direction. The studies for rough surfaces men-
tioned so far were attempts to design reflectance mod-
els based on measured reflectance data. In contrast,
several investigators developed theoretical models for
diffuse reflection from rough surfaces. These efforts
were motivated primarily by the reflectance character-
istics of the moon. Infrared emission and visible light
reflection from the moon (see Orlova, 1956; Siegal
and Howell, 1981) indicate that the moon’s surface
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radiates more energy back in the direction of the source
(the sun) than in the normal direction or in the for-
ward direction. This phenomenon is referred to as
backscattering.1 Smith (1967) modeled the roughness
of the moon as a random process and assumed each
point on the surface to be Lambertian in reflectance.
Smith’s analysis, however, was confined to the plane
of incidence and is not easily extensible to reflections
outside this plane. Further, Smith’s model does not
account for interreflection effects. Buhl et al. (1968)
modeled the surface as a collection of spherical cavi-
ties. They analyzed interreflections using this surface
geometry, but did not present a complete reflectance
model that accounts for masking and shadowing ef-
fects for arbitrary angles of reflection and incidence.
Subsequently, Hering and Smith (1970) derived a de-
tailed thermal emission model for surfaces modeled as
a collection of V-cavities. However, all the cavities are
assumed to be identical and aligned in the same direc-
tion, namely, perpendicular to the source-viewer plane.
This model is also limited to reflections in the plane
of incidence. Recently, in computer graphics, Poulin
and Fournier (1990) derived a diffuse reflectance func-
tion for anisotropic surfaces modeled as a collection
of parallel cylindrical sections. However, this result
cannot be applied to surfaces with isotropic rough-
ness. Other researchers in graphics have numerically
pre-computed fairly complex reflectance functions and
stored the results in the form of look-up tables or coeffi-
cients of spherical harmonic expansion (for examples,
see Cabral et al., 1987; Kajiya, 1991; Westin et al.,
1992; Gondek et al., 1994). This approach, though
practical in many instances, does not replace the need
for accurate analytical reflectance models.

Of importance to computer vision researchers, this
paper gives a unified treatment in comparing im-
proved diffuse reflectance models for rough surfaces
(Oren-Nayar), and, smooth and mildly rough surfaces
(Wolff) in a form that has direct bearing on computer

Figure 2. Definition of diffuse reflection parameters.

vision. The predicted radiance distributions for diffuse
reflection according to these models are complete with
respect to all possible illuminating source and viewer
geometries. It is seen that significant deviation from
Lambert’s Law is prevalent for a number of physical
conditions for both rough and smooth dielectric sur-
faces. Limitations of each of these diffuse reflectance
models are described. In particular, it is shown at ap-
proximately what level of roughness each of these re-
flectance models is applicable. Further improvements
towards a unified diffuse reflectance model for all cases
of surface roughness are suggested.

2. Diffuse Reflection Models

Figure 2 defines notation for parameters used in the dif-
fuse reflectance models described below. In this figure,
θi , φi denotes incidence angle and incident azimuth an-
gle respectively, and,θr , φr denotes reflected angle and
reflected azimuth angle respectively. The expressions
for diffuse reflection are in terms of reflected radiance
Lr relative to incident radianceLi . Formally,radiance
is defined in the National Bureau of Standards mono-
graph 160 (Nicodemus et al., 1977) as flux (Watts) per
unit projected area (cosθ ·meter2) per unit solid angle
(steradian); incident or reflected radiance expresses the
flux of light per unit solid angle in a specified direc-
tion, respectively incident on or reflected from a unit
foreshortened surface area.

2.1. Improved Diffuse Model for Rough Surfaces

The diffuse reflection model proposed by Oren and
Nayar models the local geometry of rough surfaces as
microfacets arranged in V-grooves, these microfacets
distributed over various orientations (Oren and Nayar,
1992, 1993a, 1993b, 1994, 1995; Nayar and Oren,
1995). For tractability of the analysis of geometrical
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effects, the diffuse reflectance of each micro-facet is ap-
proximated to be Lambertian. The true nature of diffuse
reflection from rough surfaces arises from combined re-
flection from these Lambertian microfacets subject to
masking, shadowing and even interreflection effects.
For a Gaussian Slope-Area distribution of microfacet
orientations, the reflected radiance expressions derived
for combined reflection from microfacets accounting
for masking and shadowing are:

L1
r (θr , θi , φr − φi ; σ)

= ρ

π
Li cosθi

[
C1(σ )

+ cos(φr − φi )C2(α;β;φr −φi ; σ) tanβ

+ (1− |cos(φr −φi )|)C3(α;β; σ) tan

(
α + β

2

)]
(3)

where

C1 = 1− 0.5
σ 2

σ 2+ 0.33

C2 =


0.45 σ 2

σ 2+ 0.09
sinα if cos(φr − φi ) ≥ 0

0.45 σ 2

σ 2+ 0.09

(
sinα −

(
2β
π

)3
)

otherwise

C3 = 0.125

(
σ 2

σ 2+ 0.09

)(
4αβ

π2

)2

σ is the standard deviation of the Gaussian distri-
bution as a measure of surface roughness,α =
Max[θr , θi ] β = Min[θr , θi ] and ρ is the diffuse
albedo as defined for Lambert’s Law.

The expression for reflected radiance from inter-
reflection is derived to be

L2
r (θr , θi , φr − φi ; σ)

= 0.17
ρ2

π
Li cosθi

σ 2

σ 2+ 0.13

×
[

1− cos(φr − φi )

(
2β

π

)2
]

(4)

and the total reflected radiance resulting from all effects
is:

Lr (θr , θi , φr − φi ; σ)
= L1

r (θr , θi , φr − φi ; σ)+ L2
r (θr , θi , φr − φi ; σ)

(5)

Oren and Nayar propose a simplified expression for
reflection from rough surfaces based upon the termC3

making a relatively small contribution and ignoring in-
terreflections:

L1
r (θr , θi , φr − φi ; σ)
= ρ

π
Li cosθi (A+ B Max[0, cos(φr − φi )]

× sinα tanβ) (6)

where

A = 1− 0.5
σ 2

σ 2+ 0.33

B = 0.45
σ 2

σ 2+ 0.09

This simplified expression has the advantage of being
easier to incorporate into computer vision methods and
is computationally efficient for graphics rendering.

An important consequence of the work of Oren and
Nayar is that for very rough surfaces, the dominant
factors that determine radiance are the geometrical ef-
fects caused by surface roughness and not the precise
local diffuse reflectance characteristics. The approxi-
mation that was used for local diffuse reflectance, the
Lambertian model, was sufficient to obtain a model that
fits experimental data well. However, when the surface
is relatively smooth, the geometrical effects are negli-
gible and the exact model of local diffuse reflectance
plays a critical role. This problem, of accurate model-
ing of local diffuse reflectance from smooth surfaces
was studied by Wolff.

2.2. Improved Diffuse Model for Smooth Surfaces

The diffuse reflection model proposed by Wolff (1991,
1992a, 1992b, 1993a, 1993b, 1994a) models reflection
from smooth dielectric materials as a combination of a
subsurface light scattering distribution produced from
internal inhomogeneities coupled with the refraction
of externally incident and internally scattered light at
the air-surface dielectric boundary. The following ex-
pression is derived for the radiance of diffuse surface
reflection under the fundamental assumption that indi-
vidual subsurface inhomogeneities isotropically scatter
light:

%Li × (1− F(θi , n))× cosθi

×
(

1− F

(
sin−1

(
sinθr

n

)
, 1/n

))
dω (7)
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The termsF(·, ·) refer to the Fresnel reflection func-
tion (Siegal and Howell, 1981) shown in Eq. (2), and
n is the index of refraction of the dielectric medium.
Expression (7) deviates from the Lambertian term
cosθi when the Fresnel reflection terms become sig-
nificant.

The Fresnel functionF(x, n) is a complicated alge-
braic expression in terms ofx andn. Because almost all
common dielectric materials have index of refraction,
n in the range from 1.5 to 2.0, the Fresnel reflection
function is weakly dependent upon this physical pa-
rameter over a wide range of dielectrics. The values of
the Fresnel function can be stored in a small look-up
table as a function of variablex, or, alternatively can
be well approximated by the polynomial

F(x, n) =
(

2
π

x
)5+ ε

1+ ε
where x is expressed in radians, and the value as-
signed toε is dependent upon the index of refraction
n. The value forε is typically 0.07 for most dielectric
materials. This simplification also makes it easier to
incorporate into computer vision methods and is com-
putationally efficient for graphics rendering.

A key feature of the diffuse reflection model pro-
posed by Wolff is not only that it predicts the reflected
radiance distribution in terms ofθi andθr , but that it also
precisely predicts the scaling factor% for this distribu-
tion directly in terms of physical parameters intrinsic
to the dielectric surface such as the index of refraction
n and thesingle scattering albedodescribing the pro-
portion of energy 0≤ ρ ≤ 1 reradiated upon each
subsurface single scattering. This scaling factor has
the same role as the surface albedo for Lambert’s Law
except that it is completely physically motivated. The
importance of the precise computation of% to com-
puter vision researchers lies in predicting the relative
strength of specular and diffuse reflection as explained
in detail in (Wolff, 1994b). While the expression for%
is complex, it can be treated independent ofθi andθr

in expression (7).
The expression for% can be expressed as follows:

% = %1

1− K
(8)

where

%1 = ρ

4πn2

Hρ(µ̄inc)Hρ(µ̄ref)

µ̄inc+ µ̄ref
,

µ̄inc =
√

1− sin2 θi

n2
, µ̄ref =

√
1− sin2 θr

n2

K =
∫ π/2

0
F(φ′, 1/n)Cρ

(
cosφ′,

√
1− sin2 θr

n2

)
× 2π sinφ′ dφ′,

and the functionCρ(x, y) of incident and reflected an-
gle variables,x andy, respectively defined by

Cρ(x, y) = ρ

4π
L

x

x + y
Hρ(x)Hρ(y),

An Nth order approximation to the Chandrasekhar
H-function (Chandrasekhar, 1960) can be expressed;

Hρ(µ) = 1

µ1, . . . , µn

∏N
i=1(µ+ µi )∏
α(1+ καµ)

,

defined in terms of the positive zerosµi of the even
Legendre polynomial of order 2N, and the positive
rootsκα of the associatedcharacteristic equation;

1 =
N∑

j=1

ajρ

1− κ2µ2
j

.

3. Comparison of Diffuse Reflection Models
for Rough and Smooth Surfaces

3.1. Comparison of the Behavior
of Reflected Radiance

A key characteristic of Lambert’s Law (Eq. (1)) is that
diffuse reflection is only dependent upon the angle of
incidence of illuminationθi and therefore is indepen-
dent of reflectance angleθr , as well as azimuthal pa-
rametersφi andφr . From immediate observation of the
reflected radiance distributions for Eqs. (3), (5), and (7),
it is noted that diffuse reflection is in fact very much
dependent upon reflectance angle forboth rough and
smooth surfaces. Figure 3 shows an example of depen-
dence upon reflectance angle for a rough surface, in this
case painted sandpaper, for various angles of incidence
θi . Figure 4 shows the dependence upon reflectance an-
gle for a smooth surface of white Magnesium Oxide for
normal incidence (i.e.,θi = 0).

For a given fixed angle of incidence, smooth surfaces
have maximum reflected radiance atθr = 0 which is
monotonic decreasing for increasing magnitude ofθr
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Figure 3. Diffuse reflection from a rough painted sandpaper surface (σ = 40◦) as a Function of emittance angleθr for various incidence
anglesθi . Solid lines are predictions by the Oren-Nayar model.

Figure 4. Diffuse reflection from a smooth white magnesium oxide surface, as a Function of emittance angleθr for normal incidence (θi = 0).
Solid line is prediction by the Wolff model.

as shown in Fig. 3. The reflected radiance is symmetric
aboutθr = 0 for smooth surfaces and is azimuth inde-
pendent. For a given fixed angle of incidence the be-
havior of the dependence of diffuse reflected radiance
from rough surfaces on reflected angleθr is much more
complicated. Furthermore, for rough surfaces Eqs. (3)
and (5) show that diffuse reflection has additional de-
pendence upon azimuthal geometry,φi andφr . As seen
in the example of Fig. 3, reflected radiance can both
increase or decrease as a function of increasing mag-
nitude of θr . As Oren and Nayar have pointed out,

the reflected radiance for rough surfaces is asymmetric
aboutθr = 0 both in the plane of incidence2 and outside
the plane of incidence. Particularly for reflection di-
rections contained in the plane of incidence, reflected
radiance actuallyincreasesfor increasing magnitude
of θr on the same side of the surface normal as an inci-
dent point light source, whiledecreasingfor increasing
magnitude ofθr on the opposite side of the surface nor-
mal from the light source.

Figure 5 shows the prediction by the Wolff model
under the same illumination-viewing conditions as in
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Figure 5. Prediction made by the Wolff model under the same illumination-viewing conditions as Fig. 2.

Fig. 3. Since the Wolff model does not take into account
surface roughness properties the reflected diffuse radi-
ance is symmetric with respect to angle of emittance
and again is monotonically decreasing for increasing
θr . It is difficult to compare the Oren-Nayar model
and the Wolff model under the same surface conditions
since each has been clearly stated to be applicable un-
der one of two exclusively different surface conditions,
very rough and smooth respectively. So for instance, it
is entirely simplistic to state that under the conditions
for Fig. 3, the Oren-Nayar model predicts Lambertian
diffuse reflectance depicted by the horizontal dashed
line. Again, the Oren-Nayar makes the assumption
of Lambertian microfacets as an approximation that is
only useful under very rough surface conditions where
geometry effects dominate.

There are salient qualitative differences between the
behavior of diffuse reflection across rough and smooth
object surfaces having significantly different normal di-
rections across the surface (e.g., cylinder sphere, cube).
Consider first the case when light is incident nearly
parallel to viewing. For rough surfaces the reflected
radiance of diffuse reflection will typically bebrighter
across the surface than predicted by Lambert’s law.
This gives rough diffuse surfaces a “flatter” appear-
ance (e.g., the moon). On the other hand, the reflected
radiance of diffuse reflection from smooth surfaces
will typically be darker than predicted by Lambert’s
Law, becoming significantly less for large angles of

reflectionθr and/or large angles of incidenceθi . This
gives smooth diffuse surfaces a slightly “rounder” ap-
pearance. An example of the reflected radiance distri-
bution across an image of a cylindrical object, one with
a rough surface (Fig. 6), and one with a smooth surface
(Fig. 7) illustrates this significant effect.

Figures 8 and 9 show the radiance distribution across
a smooth cylindrical cup for oblique incidence of a light
source. Lambert’s Law predicts a monotonic decreas-
ing radiance distribution which is maximum at the oc-
cluding contour and decreasing toward the visual center
of the cup. Significantly contrary to this, the smooth
diffuse reflection model by Wolff, supported with em-
pirical data, shows that reflected radiance is minimal at
the occluding contour, rising to a maximum at approx-
imately relative orientation 65◦ and then decreasing to-
ward the visual center of the cup. According to Eq. (7),
diffuse reflection from a smooth surface in the close
vicinity of an occluding contour has small reflected ra-
diance regardless of illumination geometry becauseθr

is close to 90◦. Figure 10 shows an example of the
intensity profile for diffuse reflection across a rough
cylinder for a point light source incident 20 degrees rel-
ative to the viewer. It is interesting to note that for rough
surfaces as the oblique incidence of light increases to
90 degrees that the intensity profile across the cylin-
der essentially becomes identical to that predicted by
Lambertian reflectance, up to a scale factor (i.e., under
very rough surface conditions the Oren-Nayar model
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Figure 6. Image brightness across the image of a rough cylinder forθi = 0◦ (excluding specular component). Solid line is prediction by
Oren-Nayar model.

Figure 7. Image brightness across the image of a smooth cylinder forθi = 0◦ (excluding specular component). Solid line is prediction by
Wolff model.

essentially predicts the dashed curves in Figs. 7 and
8, which is accurate). For Fig. 10, under smooth sur-
face conditions, the Wolff model predicts much more
agreement with the Lambert model, this Lambertian
behavior significantly breaking down when the angle
of incidenceθi exceeds 50◦.

Interestingly, even though reflected radiance from
rough surfaces has a complicated behavior with respect
to illumination-viewing geometry, for near-normal
light incidence (i.e., smallθi ) on a planar surface patch
rough surfaces are more nearly “Lambertian” in terms
of independence of reflected radiance with respect to
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Figure 8. Diffuse reflected radiance horizontally across a smooth cylinder as a function of local surface orientation (oblique illumination
θi = 90◦). Solid line is prediction by Wolff model.

Figure 9. Same radiance across a smooth cylinder as in Fig. 7, but as a function of image pixel value. Solid line is prediction by Wolff model.

viewing direction than are smooth surfaces. Above
θi = 10◦, rough surfaces have significant viewer de-
pendence.

For machine vision applications deciding which
diffuse reflectance model is most accurate for a given
surface material can use preliminary reflectance mea-
surements respective for differentθi andθr . As seen
in Figs. 3, 4, and 5 a high degree of symmetry for re-
flected radiance with respect to varyingθr while hold-
ing θi fixed at some nonzero value (i.e., direction of
incidence away from the surface normal) is indicative

of a smooth surface, while asymmetry is indicative of
a rough surface. The physical parameters for diffuse
reflection from smooth surfaces are the index of re-
fractionn of the surface medium and the proportional
amount of conservative internal scatteringρ. Varying
these parameters essentially only has the effect of scal-
ing the amount of diffuse reflection. The roughness pa-
rameterσ is very important for diffuse reflection from
rough surfaces, but another physical parameter can also
incorporate relative scaling ofL1

r and L2
r in Eq. (5).

These two parameters can be used to empirically fit
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Figure 10. Image brightness across the image of a rough cylinder forθi = 20◦ (excluding specular component). Solid line is prediction by
Oren-Nayar model.

the shape of measured reflectance data from rough sur-
faces.

3.2. Comparison of Visual Behavior

Figure 11(a) shows a real image of a white billiard
ball illuminated by two point light sources orthogonal
to viewing, one from the left side and one from the

Figure 11. Intensity images of a real and rendered billiard ball. New Model means prediction by the Wolff model.

right side. Figure 11(b) shows a computer graphics
rendering of a sphere illuminated by the same config-
uration of two point light sources assuming Lambert’s
diffuse reflectance law, while Fig. 11(c) shows the
same computer graphics rendering of a sphere using
the smooth diffuse reflectance model (Eq. (7)). While
both shadow boundaries with respect to the left and
right light sources coincide along the vertically oriented
great circle at the front of the sphere, there appears to be
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a “shadow band” of darker (i.e., smaller) intensity val-
ues about this shadow boundary due to the high fall off
of diffuse reflectance at high angles of incidence near
90◦. Observe that realistically this “shadow band” is
in fact significantly wider in Fig. 11(a) than predicted
by the Lambert Law in Fig. 11(b), but more accurately
predicted by the proposed diffuse reflectance law in
Fig. 11(c).

Figures 12(a), (b), and (c) show grey level represen-
tations of isophote curves (i.e., image curves with equal
intensity) corresponding respectively to Figs. 11(a),
(b), (c). Lambert’s Law predicts for this configuration
of light sources illuminating a sphere that equal re-
flected radiance occurs for points forming concentric
circles on the sphere about the left-most and right-most
occluding contour points. These concentric circles of
equal reflected radiance orthographically project onto
straight isophote lines as depicted in Fig. 12(b), with
maximum diffuse reflectance occurring at the left-
most and right-most occluding contour points where
the angle of incidence is zero. Any diffuse reflectance
expression involving only the angle of incidence
will predict the same straight geometry of isophotes.
Figure 12(a) which is an actual depiction of the
isophotes of Fig. 11(a) shows that, in fact, lines of
equal image intensity severely curve near the occlud-
ing contour of the sphere. Maximum diffuse reflection

Figure 12. Isophote images of a real and rendered billiard ball. New Model means prediction by the Wolff model.

occurs at the center of the closed elliptical isophotes
near the left-most and right-most occluding contours
while diffuse reflection at the occluding contours is
nearly zero, illustrating a two-dimensional version of
the effect depicted in Figs. 8 and 9. Figure 12(c) shows
the isophotes rendered using the smooth diffuse re-
flectance model (Eq. (7)) which are remarkably simi-
lar to the actual isophotes in Fig. 12(a) (except for the
isophotes perturbed by the specularities). Comparing
Figs. 12(a), (b), and (c) show very clearly the diffuse
reflectance model for smooth surfaces accurately pre-
dicts reflectance features that are significantly deviant
from Lambertian behavior.

One of the main features of the rough diffuse re-
flectance model is that it establishes a continuum from
Lambert’s Law all the way to the linear reflectance
model presented in (Horn, 1977) for lunar reflectance.
Reflectance maps are widely used in vision for obtain-
ing shape information from brightness images (Horn
and Brooks, 1989). For a given reflectance model and
source direction, the reflectance map establishes the
relationship between surface orientation, given by the
gradient space parameters(p,q), and image bright-
ness. Figure 13(a) shows the reflectance map of a
Lambertian surface for illumination from the direction
(θi = 10◦, φi = 45◦). The same map is obtained using
the proposed model with roughnessσ = 0. Figure 13(b)
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Figure 13. Reflectance maps for (Left) Lambertian surface (ρ = 0.9), and (Right) rough diffuse surface (σ = 60◦, ρ = 0.9) as predicted by
the Oren-Nayar model. For both maps the angles of incidence areθi = 10◦ andφi = 45◦. Note the similarity between the second map and the
well-known linear reflectance map previously suggested for lunar reflectance (see Horn and Brooks, 1989).

shows the reflectance map of a rough diffuse surface
with σ = 60◦. Interestingly, the rough surface produces
a map that appears very similar to the linear reflectance
map (Horn and Brooks, 1989) hypothesized for the
lunar surface. The proposed reflectance model there-
fore establishes a continuum from pure Lambertian to
lunar-like reflectance. Further, the model predicts that
the linearity in the reflectance map occurs only when
the viewer is close to the source.

The Oren-Nayar model predicts that for very high
macroscopic roughness, when the observer and the il-
luminant are close to one another, all surface normals
will generate approximately the same brightness. This
implies that, when viewing and illumination directions
are similar, a three-dimensional object, irrespective of
its shape, will produce nothing more than a silhou-
ette with constant intensity within. In the case of poly-
hedra, edges between adjacent faces will no longer
be discernible (Figs. 14(c) and (d)), and smoothly
curved objects will be devoid of shading (Figs. 14(a)
and (b)). This visual ambiguity may be viewed as a
perceptual singularity in which interpretation of the
three-dimensional shape of an object from its image is
impossible for both humans and machines. This phe-
nomenon offers a plausible explanation for the flat-disc
appearance of the full moon (Fig. 14(e)). As discussed
in Section 1, there have been some models developed
earlier also predicting a flat appearance of the full moon
(Minnaert, 1941; Hapke and van Horne, 1963).

Figure 15 shows a direct comparison of the vi-
sual appearance of a cylinder and a sphere, synthet-
ically rendered respectively (left to right) with the
Lambertian model, the Wolff model, and, the Oren-
Nayar model. In support of the quantitative evidence
presented in Figs. 5 and 6 in Section 3.1, compared
with object surfaces obeying the Lambertian model,
smooth dielectric surfaces which obey the Wolff model
visually appear “rounder” while rough dielectric sur-
faces obeying the Oren-Nayar model visually appear
“flatter”. Also note the edge of the cylinder produced
from discontinuity in surface orientation; compared
with the Lambertian model, this edge appears stronger
for smooth surfaces obeying the Wolff model while
this edge appears weaker for rough surfaces obeying
the Oren-Nayar model.

4. Discussion

The two diffuse reflectance models that have been com-
pared are complementary in their respective applica-
bility to surfaces with different roughness conditions.
The diffuse reflection model for rough surfaces has the
limitation that as roughnessσ→ 0, diffuse reflectance
is predicted to become Lambertian, a phenomenon
that is not supported by the diffuse reflection model
for smooth surfaces and corresponding empirical evi-
dence. On the other hand, the diffuse reflection model
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Figure 14. (Adopted from (Nayar and Oren, 1995)) (a) Top-Left: Camera image of two cylinders made from exactly the same material
(porcelain) and illuminated from approximately 10◦ above the camera. The right vase is much rougher than the left one resulting in flatter
appearance. (b) Top-Right: Synthetic image of cylinders with similar dimensions, rendered using the theoretical model (left:σ = 5◦, right:
σ = 35◦). (c) Middle-Left: Camera image of two cubes made from stoneware, illuminated from approximately 18◦ to the left of the camera.
(d) Middle-Right: Synthetic image of cubes (left:σ = 7◦, right: σ = 40◦). In both real and synthetic images, low macroscopic roughness of
the left cube results in nearly Lambertian appearance, whereas very high roughness of the right cube causes all three faces to produce almost the
same brightness with clear edges no longer visible. The model and experiments suggest that for very high macroscopic roughness, when source
and sensor directions are close to one another, all surface normals generate the same image brightness. Alternately, any object, irrespective of
its three-dimensional shape, produces just a silhouette making it impossible to perceive shape. (e) Bottom: Spheres illuminated and viewed
from the same direction. As roughness increases (left to right:σ = 0◦; σ = 15◦; σ = 40◦) shading becomes flatter. For extreme roughness
(right), the sphere appears like a flat disc, as observed in the case of the full moon.

for smooth surfaces is limited to smooth surfaces only
up to a certain level of surface roughness. Two impor-
tant questions to ask are:

• Below what level of roughnessσ does the smooth
diffuse reflectance model become accurate?
• Above what level of roughnessσ does the rough

diffuse reflectance model begin to become accurate?

One way to begin answering these questions is
to combine the methodologies used in each of the

respective diffuse reflectance models. Accurate predic-
tion of diffuse reflection from rough surfaces funda-
mentally relies upon description of local surface geo-
metry (i.e., V-groove microfacets) together with an
assumption of reflectance for each microfacet (e.g.,
Lambertian reflectance). Accurate prediction of diffuse
reflection from smooth surfaces fundamentally relies
upon description of subsurface optical scattering and
air-dielectric boundary conditions. Asσ→ 0 the diff-
use reflectance model for rough surfaces becomes
Lambertian because of the assumption that microfacets
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Figure 15. Synthetically rendered cylinder and sphere which from left to right respectively uses the Lambertian Model, the Wolff model, and,
the Oren-Nayar Model (σ = 70◦ for the rough cylinder, and,σ = 40◦ for the rough sphere).

themselves are inherently Lambertian. Consider then
simultaneously combining the two methodologies by
making the assumption that each microfacet reflects
according to the smooth diffuse reflectance model
Eq. (7). Incorporating the methodology of Wolff into
the methodology of Oren and Nayar formally requires
the evaluation of some complicated integrals, but a
simple approximation of a diffuse reflectance model
that accounts for the observed empirical data presented
above for both rough and smooth dielectrics can be ob-
tained by setting in Eq. (3):

C1 =
(

1− 0.5
σ 2

σ 2+ 0.33

)
× (1− F(θi , n))

×
(

1− F

(
sin−1

(
sinθr

n

)
, 1/n

))
(9)

for the appropriate range ofσ . Neglecting inter-
reflections, for the rough diffuse reflectance model de-
scribed by Eq. (3) as currently written, the Lambertian
term dominates when

(
1− 0.5

σ 2

σ 2+ 0.33

)
À 0.45

σ 2

σ 2+ 0.09

The tan functions in Eq. (3) that are multiplied byC2

andC3 only become significant in value when bothθi

andθr are simultaneously above 80◦. The termC1 is at
least a factor of 10 greater than bothC2 andC3 for sur-
face roughness,σ <9◦, at least a factor of 20 forσ <6◦,
and at least a factor of 100 forσ <2.5◦. Hence, an ap-
proximate answer to the first question above is that the
smooth diffuse reflectance model becomes applicable
for a Gaussian Slope Roughness standard deviationσ

in this range for which the termC1 in expression (9)
should be used in Eq. (3).

There is an intermediate range of surface roughness
valuesσ where both local surface geometry effects of
masking, shadowing, and possibly interreflection con-
tribute as much as accounting for reflectance from each
microfacet from subsurface scattering and air-dielectric
boundary modeling. It is in this intermediate roughness
“transition range” that a reflectance model combining
the rough diffuse reflectance model with an assumption
of microfacet reflectance based upon the smooth diffuse
reflection model, may be more accurate. A simplified
qualitative answer to the second question above can be
obtained by asking what values of surface roughnessσ

is the value of 0.45 σ 2

σ 2+0.09 comparable in size toC1?
The graph in Fig. 16 shows the values of these terms for
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Figure 16. Graphed values ofC1 (Eq. (9)) and upper bound forC2, C3 coefficients (from the original Eq. (3)) for diffuse reflectance model
against surface roughnessσ .

differentσ . The value of 0.45 σ 2

σ 2+0.09 is at least 1/2, 1/3,
and 1/4 ofC1 for roughness valuesσ greater than 36◦,
22◦, and 17◦, respectively. The upper boundσ for the
intermediate transition range probably lies somewhere
between these values.

Even though it is clear that in general the Lambertian
Model is not always accurate in describing diffuse
reflection from both rough and smooth surfaces, be-
cause of the simplicity of such a model it is still of
great importance for computer vision researchers to
know under what physical conditions Lambert’s Law
can be applied to good approximation. This may el-
egantly simplify some vision algorithms under some
important circumstances. For instance for smooth sur-
faces, the Lambertian model is accurate within a mar-
gin of about 5% whenθr andθi are simultaneously less
than 50◦.

5. Summary and Conclusion

Two recently developed diffuse reflectance models
have been presented and compared for rough and
smooth dielectric surfaces. Together these models
accurately predict both quantitative and visual dif-
fuse reflection effects for smooth dielectric surfaces
and very rough dielectric surfaces. These diffuse
reflectance models fill a significant gap that has ex-
isted in the computer vision literature for methodolo-
gies that are dependent upon diffuse reflected photo-
metric values. Lambert’s Law is commonly used in
such methodologies as shape from shading, and the

presented diffuse reflectance models can be used to
explain the conditions under which Lambert’s Law is
most accurate. Limitations of both these diffuse re-
flectance models were explained. Diffuse reflection
from surfaces with ‘intermediate’ roughness exhibit
a combination of effects produced both from internal
scattering and external roughness conditions that is not
yet accurately explained. A methodology for how these
two models can be combined was presented suggesting
one possible direction for explaining diffuse reflection
over a broader physical range of roughness conditions.

Notes

1. A different backscattering mechanism, called retroreflection or
opposition effect, produces a sharp peak close to the source di-
rection (see Hapke and van Horne, 1963; Kuga and Ishimaru,
1984; Tsang and Ishimaru, 1984; Oetking, 1966). A recent arti-
cle by Hapke et al. (1993) throws new light on this mechanism.
It is seldom encountered in machine vision since it is observed
only when the sensor and source are within a few degrees from
each other; a situation difficult to emulate in practice without the
source or the sensor occluding the other.

2. Theplane of incidenceis defined by the incident and surface nor-
mal directions.
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