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ABSTRACT

A new range sensing method based on depth from defocus is described� It uses illumination pattern projection
to give texture to the object surface� Then the image of the scene is split into two images with di�erent focus
settings and sensed simultaneously� The contrast map of the two images are computed and compared pixel by
pixel to produce a dense depth map� The illumination pattern and the focus operator to extract the contrast
map are designed to achieve �nest spatial resolution of the computed depth map and to maximize response of
the focus operator� As the algorithm uses only local operations such as convolution and lookup table� the depth
map can be computed rapidly on a data��ow image processing hardware� As this projects an illumination pattern
and detects the two images with di�erent focus setting from exactly the same direction� it does not share the
problem of shadowing and occlusion with triangulation based method and stereo� It�s speed and accuracy are
demonstrated using a prototype system� The prototype generates �	
��� range maps at � frame�sec with a
depth resolution of ��� relative to the object distance� The proposed sensor is composed of o��the�shelf compo�
nents and outperforms commercial range sensors through its ability to produce complete three�dimensional shape
information at video rate�
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� INTRODUCTION

For applications such as object recognition� automatic CAD model generation and remote visualization� a
range sensor which produces fast and dense depth maps is necessary� In the past� many techniques for range
sensing have been proposed��� which can be categorized into passive techniques which do not use an active
illumination or active techniques which use an active illumination�

Passive techniques such as stereo and shape from motion are based on correspondence matching between two
or more images� From the disparity or the motion vector extracted from this correspondence matching� one can
get the range data of the scene� The correspondence matching is computationally expensive� These techniques
also su�er from the occlusion problem� i�e� one cannot get depth data for areas in the scene which are visible
to only one of the camera� Another passive technique is depth from focus�defocus� Depth from focus uses a
sequence of images taken by incrementing the focus setting in small steps� For each pixel� the focus setting that
maximizes image contrast is determined� This in turn can be used to compute the depth of the corresponding scene
point���������������� In contrast� depth from defocus uses only two images with di�erent optical settings�������������

Though depth from focus�defocus does not have the problem of occlusion� it is also computationally expensive to
get a reliable depth map��� This is because the texture of the object has a variety of spectrum distribution� and
one must analyse carefully to get a reliable focus estimate� Another draw back that is common to the passive
techniques is that one cannot compute depth for scene areas without texture�



Popular active techniques are based on the principles of structured light and time of �ight� Popular structured
light methods include light striping method��� moir�e interferometry� and Fourier�transform pro�lometry��	 They
are based on triangulation and determines the depth from the deformation of the image of the projected pattern�
They provide reasonable accuracy� For light striping method� one must project many sets of light stripe pattern
to encode the stripes in order to discriminate the stripes� This makes sensing time long� which implies that the
scene must be static during the sensing� New hope for light stripe range �nding has been instilled by advances in
VLSI� Based on the notion of cell parallelism��� a computational sensor is developed where each sensor element
records a stripe detection time�stamp as a single laser stripe sweeps the scene at high speed� Depth maps are
produced in as little as 	 msec� though current VLSI density limits the total number of cells� and hence spatial
depth resolution� to 
���
�
 Future advances in VLSI are expected to yield high�resolution depth maps at high
speeds� For moir�e interferometry and Fourier�transform pro�lometry� one needs only one image but the scene
should not have a steep depth gap� as it must keep track of the fringe order� In addition� the depth it gives is just
a relative depth� not absolute depth� Another type of active method� time of �ight� uses a modulated laser beam
and measures the time for the light to come back from the object surface��� Although this method is suitable at
getting a rough depth map for relatively far scenes� it takes a long time to get a dense depth map as it scans the
scene point by point�

A sensor which uses focus error information and active illumination has been proposed by Rioux et al���

and Pentland et al��� They project a matrix of dots�� or light�stripe pattern��� Using the phenomenon that the
diameter or the width of the defocused dot or strip gets larger when it is defocused� this dimension is measured
from the image and is converted into a depth value� These sensors are able to detect the depth map of a dynamic
scene in real�time� However� as they use a coarse matrix of dots or coarse light�stripe pattern� resulting spatial
resolution and depth accuracy are insu�cient for most real�world applications�

Our approach uses co�axial projection of a �ne illumination pattern onto the scene and detects two images with
two CCD sensors that have di�erent focus settings� A focus operator� i�e� narrow�band�pass convolution �lter is
newly designed to provide estimates of the defocus of the projected illumination pattern� The operator is derived
by careful modeling of the illumination� blurring and image sensing and is tuned to respond to the fundamental
frequency of the projected illumination pattern� The focus operator is applied to the two images to obtain two
di�erent focus measures at each image point� The relative defocus of each image point maps to a unique depth
estimate� The computation of depth is a local operation� which enables us to realize a frame�rate range sensor�
Since the illumination pattern and the tuned contrast operator were designed to maximize depth accuracy and
resolution� the sensor produces depth maps of high quality� The co�axial illumination and imaging also results in
a shadowless image� all surface regions that are visible to the sensor are also illuminated� A prototype real�time
focus range sensor has been developed� Figure 	 shows two brightness images and the computed depth map of a
cup with milk �owing out of it� Structures of such dynamic scenes can only be recovered by a high�speed sensor�
In the previous paper��
 the authors have discussed this sensor mainly on the basic concept including illumination
pattern design and the usage of constant magni�cation optics� In this paper� we focus on the contrast operator
and real�time depth computation� The performance of the sensor is demonstrated through several experiments
conducted on complex scenes� Quantitative results on the accuracy� repeatability� and linearity of the sensor are
included�

� DEPTH FROM DEFOCUS

��� Basic concept

Fundamental to depth from defocus is the relationship between focused and defocused images�� Figure 
 shows
the basic image formation geometry� All light rays that are radiated by object point P and pass the aperture A
are refracted by the lens to converge at point Q on the image plane� For a thin lens� the relationship between the
object distance d� focal length of the lens f � and the image distance di is given by the lens law�
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Each point on the object plane is projected onto a single point on the image plane� causing a clear or focused
image If to be formed� If� however� the sensor plane does not coincide with the image plane and is displaced



from it� the energy received from P by the lens is distributed over a patch on the sensor plane� The result is a
blurred image of P � It is clear that a single image does not include su�cient information for depth estimation
as two scenes defocused to di�erent degrees can produce identical images� A solution to depth is achieved by
using two images I� and I� separated by a known physical distance ������� The problem is reduced to analyzing
the relative blurring of each scene point in the two images and computing the distance � of its focused image�
Then� using di � � ��� the lens law �	� yields depth d of the scene point� Simple as this procedure may appear�
several technical problems emerge when implementing an algorithm� These include �a� accurate estimation of
relative defocus in the two image� �b� recovery of textured and textureless surfaces� and �c� achieving constant
magni�cation that is invariant to the degree of defocus�

��� Telecentric optics

We begin with the last of the problems mentioned above� In the imaging system shown in Figure 
� the
e�ective image location of point P moves along the principal ray R as the sensor plane is displaced� This causes
a shift in image coordinates of the image of P � This variation in image magni�cation with defocus manifests
as correspondence like problem in depth from defocus as the right set of points in images I� and I� are needed
to estimate blurring� We approach the problem from an optical perspective rather than a computational one�
Consider the image formation model shown in Figure �� The only modi�cation made with respect to the model in
Figure 
 is the use of the external aperture A�� The aperture is placed at the front�focal plane� i�e� a focal length
in front of the principal point O of the lens� This simple addition solves the prevalent problem of magni�cation
variation with distance � of the sensor plane from the lens� Simple geometrical analysis reveals that a ray of light
R� from any scene point that passes through the center O� of aperture A� emerges parallel to the optical axis on
the image side of the lens �see book��	� As a result� despite blurring� the e�ective image coordinates of point P
in both images I� and I� are the same as the coordinate of its focused image Q on If � The detailed discussion of
this is found in the technical report���

��� Defocus function and depth estimation

The defocus function is described in detail in previous work���� As in Figure �� let � be the distance between
the focused image of a surface point and its defocused image formed on the sensor plane�� The light energy
radiated by the surface point and collected by the imaging optics is uniformly distributed over a circular patch
with a radius of �a��f on the sensor plane�y This patch� also called the pillbox� is the defocus function�
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where a� is the radius of the telecentric lens aperture� and ��r� is a rectangular function which takes a value 	
for jrj � �

�
�  otherwise� In Fourier domain� the above defocus function is given by�
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where J� is the �rst�order Bessel function� As is evident from the above expression� defocus serves as a low�pass
�lter� The bandwidth of the �lter increases as � decreases� i�e� as the sensor plane gets closer to the plane of
focus� Figure � visualizes the above discussion� �a� is the image i�x� y� at the focused plane� If � and its Fourier
spectrum I�u� v�� When the sensor plane is displaced to I�� the defocused image is the convolution of the focused
image i�x� y� with the pill�box h��x� y� as in �b�� In the Fourier domain� it is the product of Fourier spectrum of
the focused image I�u� v� and the Fourier transform of the pill�box H��u� v�� �c� is the equivalent set to �b� when
the sensor is placed at I�� i�e� at distance � � � from the focused plane If � As the image is defocused more� the
low�pass response of the transfer function H��u� v� is more notable�

�Since we have used the telecentric lens �Figure �� in our implementation� it�s parameters are used in the model� However� the

following expressions can be made valid for the conventional lens model �Figure �� by simply replacing the factor f

a�
by di

a
� In

addition� the nominal F�number of the lens equals f

�a�
�

yThis geometric model is valid as far as the lens is not exactly focused and the aberration is small compared to the radius �a��f ��



��� Active illumination

If one can get the amplitudes g� and g� of the spectrum of the two defocused images at a prede�ned frequency
as in Figure �� one can get the depth estimate from g� and g�� This is done by applying a convolution operator to
the images� But this is not trivial since the image texture includes all kinds of frequency� Uncertainty relation	

tells us that� when we try to conduct a frequency analysis for a small area� the frequency resolution reduces
proportionally to the inverse of the area size� To get a dense depth map� one must get the g� and g� for a
very small area around each pixel� But this means the operator output is actually an averaged spectrum over a
wide band of frequency� As the response of the defocus function H depends not only on defocus � but also on
the texture frequency� this band width of the operator causes error in depth value� If the texture has only one
frequency� the problem is solved� This is the reason why we have introduced active illumination� The projection
�lter pattern has been designed to achieve �nest spatial resolution of the computed depth map and to maximize
response of the focus operator �see papers��
���� The resulting pattern is a checkerboard pattern with a horizontal
period of tx and a vertical period of ty such that�

tx � �px� ty � �py� ���

where px and py are the CCD pixel pitch in horizontal and vertical direction� respectively� The horizontal and
vertical spacing between neighboring elements of the discrete Laplacian kernel �qx� qy� that corresponds to the
optimal pattern obeys�

qx � 
px� qy � 
py� ���

This means the ��� Laplacian operator kernel has zeros between each element� and it is actually a ��� kernel�z

Figure � shows the e�ect of pattern projection� �a� is a image of a scene under normal lighting and its spectrum�
�b� is the image of the same scene under the coaxial pattern projection and its spectrum� The spectrum in �b�
shows that projected pattern creates strong peaks in the spectrum at positions ��	�tx��	�ty��

��� Depth from two images

Now let us introduce following normalized ratio�
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Here� g�� g� and q are functions of image coordinate �x� y�� As shown in Figure �� q is a monotonic function of �
such that �p � q � p and p � 	� This monotonic response is obtained as far as � and a� are chosen so that the
analyzed frequency �	�tx� 	�ty� is within the main lobe of the defocus function H�s
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In practice� the above relation can be precomputed and stored as a look�up table that maps q computed at each
image point to a unique �� Since � represents the position of the focused image� the lens law �	� yields the depth
d of the corresponding scene point�

� TUNED FOCUS OPERATOR

��� Design of the kernel

For the purpose of illumination optimization� we used the Laplacian operator as is described in the previous
papers��
��� The resulting illumination pattern has only a single dominant absolute frequency� �	�tx� 	�ty�� Given

zIn the papers������ we have shown another checkerboard pattern that is not used for the implementation� where �tx� ty� 	 ��px� py�
and �qx� qy� 	 �px� py�� However� this pattern requires perfect registrationbetween illumination pattern and sensor pixel� It is because
the focus measure also depends on the phase between pattern and pixel� In this case� as the peak frequency is at the Nyquist frequency�
the phase error cannot be compensated using quadrature operation which will be described in section ����



this� we are in a position to further re�ne our focus operator so as to minimize the e�ects of all other frequencies
caused either by the physical texture of the scene or image noise� To this end� let us consider the properties
of the ��� discrete Laplacian �see Figure ��a� and �b��� We see that though the Laplacian does have peaks at
��	�tx��	�ty�� it has a fairly broad bandwidth allowing other spurious frequencies to contribute to the focus
measure� Here� we seek a narrow band operator with sharp peaks at the above four coordinates in frequency
space�

Given that the operator must eventually be discrete and of �nite support� there is a limit to the extent to
which it can be tuned� To constrain the problem� we impose the following conditions� �i� To maximize spatial
resolution in computed depth we force the operator kernel to be ��� or ����x This is also a requirement from the
convolution hardware of the pipeline processor we use� which can execute up to ��� convolution� �ii� Since the
fundamental frequency of the illumination pattern has a symmetric quadrapole arrangement� the focus operator
must be either re�ection�symmetric or anti�re�ection�symmetric about vertical and horizontal axis� �iii� The
operator must not respond to any DC component in image brightness� This last condition is satis�ed if the sum
of all elements of the operator equals zero� If we use ��� operator� condition �ii� forces the operator to have the
structure shown in Figure ��c�� and condition �iii� becomes�

a � �b � �c �  ���

It is also imperative that the response of the operator�

L�u� v� � a � 
 b � cos 
�qxu � cos 
�qyv � � � c cos 
�qxu cos 
�qyv� ���

is not zero at the fundamental frequency� i�e� L� �
tx
� �
ty
� �� � This reduces to�
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Expressions ��� and �	� imply that b �� � Without loss of generality� we set b � �	� Hence� ��� gives a � ��	�c��
Therefore� the tuned operator is determined by a single unknown parameter� c� as shown in Figure ��d�� The
problem then is to �nd c such that the operator�s Fourier transform has a sharp peak at �	�tx� 	�ty�� A rough
measure of sharpness is given by the second�order moment of the power jj L�u� v� jj� with respect to �	�tx� 	�ty��
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The above measure is minimized when �M
�c

� � i�e� when c � ���� as shown in Figure ��e�� The resulting
tuned focus operator has the response shown in Figure ��f�� It has substantially sharper peaks than the discrete
Laplacian� We have also solved an optimization problem for ��� kernel case� This time it becomes a two�
parameter minimization problem after considering the symmetric property� The resultant kernel and its spectrum
response is shown in Figure � �f� and �g�� respectively� The above derivation brings to light the fundamental
di�erence between designing tuned operators in continuous and discrete domains� In general� an operator that is
deemed optimal in continuous domain is most likely sub�optimal for discrete images�

��� Quadrature operation

As was discussed above� the focus operator passes the spectrum at the frequency ��	�tx��	�ty� and stops
DC spectrum component� Let�s denote the spectrum of the checkerboard illuminated image �Figure � �d�� as�
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If the operator gain at the illumination frequencies ��	�tx��	�ty� is c� operator output is the inverse Fourier
transform of cG��u� v��

c g��x� y� � � c g cos 
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xHere� ��� or 
�
 counts the pixels with non�zero kernel values� Actual kernel has zero kernel element in�between� resulting in a
kernel with a size of ��� or ����



Actual values that the discrete focus operator gives are the c g��x� y� values at discrete sampling positions
�
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where m and n are pixel indexing integer values and �
x� 
y� is the relative shift between illumination and CCD
pixel� Here the relationship of equation ��� was used� Equation �	�� shows that the operator output gd�m�n� is
sensitive to the registration� �
x� 
y�� To cope with this problem� we use the fact that gd�m�n� at the next pixel
has a ��
 phase di�erence� then It is easily shown that�
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p
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Here we get a focus measure g which is insensitive to the sub�pixel order mis�registration� This quadrature

operation loosens the requirement for the accuracy to register the CCD�s and the illumination pattern� making
pixel�order registration enough�

� REAL TIME RANGE SENSOR

Based on the above results� we have implemented the real�time focus range sensor shown in Figure �� The
scene is imaged using a standard 	
�� mmFujinon lens converted to telecentric with an additional aperture inside�
Aperture diameter is set so that F�number is ���� Light rays passing through the lens are split in two directions
using a beam�splitting prism� This produces two images that are simultaneously detected using two Sony XC�
��RR CCD cameras� The positions of the two cameras are precisely �xed such that one obtains a near�focus
image while the other a far�focus image� In this setup a physical displacement of �
�mm between the e�ective
focal lengths of the two CCD cameras corresponds to a sensor depth of �eld of 
�� mm �a detectable range of
�����
 mm�� This detectable range of the sensor can be varied by changing the sensor displacement and the
focus distance of the lens� F�number of the optics should be chosen to ful�ll equation ����

The checkerboard illumination pattern was etched on a glass plate using microlithography� The �lter was
then placed in the path of a � W Xenon arc lamp� The illumination pattern is projected using a telecentric
lens identical to the one used for image formation� A half�mirror is used to ensure that the illumination pattern
projects onto the scene via the same optical path used to acquire images� As a result� the pattern is registered
with respect to the pixels of the two CCD cameras� Furthermore� the above arrangement ensures that every
scene point that is visible to the sensor is also illuminated by it� avoiding shadows and thus undetectable regions�
If objects in the scene have a strong specular re�ection component� cross�polarized �lters can be attached to
the illumination and imaging lens to �lter out specularities and produce images that mainly include the di�use
re�ection component�

Images from the two CCD cameras are digitized and processed using MV
 Datacube image processing hard�
ware� The present con�guration includes two A�D converters� one 	
�bit convolver �maximum kernel size������
one arithmetic logic unit �ALU� and one 	��bit look up table� which can be aligned on a pipeline� Data in the
pipeline �ow at 
MHz� The pipeline also requires 	 � 
msec as an overhead� For example� for a �	
��� pixel
image� the pipeline is completed in about 	��� msec� This hardware enables simultaneous digitization of the two
images� convolution of both images with the tuned focus operator� and the computation of a 
���
� depth map�
all within a single frame time of �� msec with a lag of �� msec� Figure � shows the data �ow� The �rst and the
second pipeline input the near focused �i�� and far focused �i�� images� respectively� and execute convolution with
the tuned focus operator and quadrature operation to produce the focus measure image of �	
��� resolution�
Each pipeline takes 	��
 msec� The focus measure image is sub�sampled in the third pipeline to a resolution of

���
� and input to the 	��bit look up table� The look�up table is con�gured to take two ��bit inputs and
map each pair of focus measures �g� and g�� to a unique depth estimate d� Here� the normalized ratio of focus
measures q in equation ��� is not output� Instead� the depth value d or di is directly output� Then the depth
map goes through linear and non�linear smoothing and pixel�by�pixel linear calibration in a single pipeline as the
look up table� which takes ��� msec� The above three pipelines produce a depth map in �� msec in total� Image
grabbing of the near and far images for the next depth computation is accomplished parallelly with the above
three pipelines�



A pixel�by�pixel linear calibration is executed to compensate for the image curvature and vignetting� Image
curvature causes an o�set of the depth value� Vignetting changes the depth detection gain� A planer target is
placed perpendicularly to the optical axis of the sensor at a far position z� and a near position z� in the ranging
depth� Then the depth maps are detected and smoothed using a spline function� Let us denote the smoothed
depth map when the target is at z� by zd��x� y�� Similarly denote the smoothed depth map when the target is at
z� by zd��x� y�� Then the calibration gain map in Figure � is computed by�

z� � z�
zd��x� y� � zd��x� y�

� �	��

The calibration o�set map is computed by�

z� zd��x� y� � z� zd��x� y�

zd��x� y� � zd��x� y�
� �	��

The sub�sampling for the third pipeline is merely because of the time restriction� Instead� by giving up
simultaneous grabbing of the near and far images� a �	
��� depth map can be computed at the same rate if the
two images are taken in succession� Still� simultaneous image acquisition is clearly advantageous since it makes
the sensor less sensitive to variations in both illumination and scene structure between frames� With an addition
of one more MV
 to the present processing hardware� it is easy to obtain �	
��� depth maps at � Hz using
simultaneous image grabbing� Depth maps produced by the sensor are shipped via video cable and visualized as
wire�frame plots with ��� meshes at a speed of 	� frame�sec on a DEC Alpha workstation�

� EXPERIMENTS

Numerous experiments have been conducted to test the performance of the sensor� Here we brie�y summarize
these results� Figure 	�a� shows near and far focused images of a planar surface� half of the surface is textureless
while the other half has strong random texture� A computed depth map of the surface is shown in Figure 	�b��
As expected the textureless area is estimated almost free of errors while the textured area has small errors due
to texture frequencies that lie close to the illumination frequency� Several depth maps of the plane in Figure
	�a� were computed by varying its position in the 
� mm workspace of the sensor� Relative accuracy and
repeatability of the sensor were estimated for both simultaneous and successive image grabbing con�gurations
�see Table 	�c��� The conventional de�nition of relative accuracy and repeatability is used� where it is a value
relative to the object distance� Accuracy is measured by the �tting error to a plane� Repeatablity is measured
by the standard deviation of the depth values measured at the same position at di�erent times� Here we discuss
absolute accuracy �linearity�� Figure 		�a� is the plot of detected depth for the textured planer target vs� the
target depth� Detected depth is determined by a plane �tting to a ��� pixel area in the depth map� The �tting
errors are also shown as �� error bars� The deviation from the linearity is ��
mm ���� The slight curvature is
due to the error in the optical parameter� After a calibration of the look up table using a quadratic function�
the linearity is improved as is shown in Figure 		�b�� The linearity is 
�� mm� Figure 	
 is the same pair of
plots as Figure 		� except that the detected depth is determined by an average of 	� successive depth value at
a pixel� The linearity is 	� mm with calibration� These results clearly demonstrate the superior performance of
the sensor over previous implementations of depth from defocus�

Figure 	� shows a scene with polyhedral objects� The computed depth map in Figure 	��b� is fairly accurate
despite the complex textural properties of the objects� The only �ltering that is applied to the depth map is a
��� smoothing function to reduce high frequency noise in computed depth that results from the low signal�to�
noise ratio of the CCD cameras and spurious frequencies caused by surface texture� All surface discontinuities and
orientation discontinuities are well preserved� The recovered shapes are precise enough for a variety of visual tasks
including recognition and inspection� Similar results are shown in Figure 	� where shapes of curved objects are
recovered� In the case of dynamic scenes� structure can be estimated only by using a real�time sensor� Figure 	�
shows an object�s depth map computed as it rotates on a motorized turntable� Such depth map sequences are
valuable for automatic CAD model generation from sample objects� Computed CAD models are useful not only
for visual recognition tasks but also for graphics rendering� In both cases� object models are more often than not
manually designed and input to the system� a process that is not only tedious but also impractical for



(a)

(b)

Figure 	� �a� Two images of a scene taken using di�erent

focus settings� �b� A depth map of the scene computed in

�� msec by the focus range sensor�
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Figure �� Image blaring and focus measure�

�a� image under normal lighting and its power spectrum

�b� image under pattern projection and its power spectrum

Figure �� E�ect of active pattern projection�
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�����	 in resolution at �	 Hz�
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Figure 		� Accuracy and linearity

(a) without calibration (b) after calibration
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Figure 	
� Repeatability and linearity
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Figure 	�� �a� Near and far focused images of a set of

polyhedral objects� �b� Computed depth map�
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Figure 	�� �a� Near and far focused images of a set of

curved objects� �b� Computed depth map�
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Figure 	�� Depth maps generated by the sensor at �	 Hz
while an object rotates on a motorized turntable�

�a� left�eye image �b� right�eye image

Figure 	�� Stereo�pair of texture�mapped images are syn�
thesized from the detected image and depth map�

large numbers of complex objects� Figure 	� is an example of graphics rendering� Since this sensor gives both
depth map and image data� We can symthesize images viewed from directions that are di�erent from the sensing
direction� Furthermore� real�time depth computation clearly enhances the capability of any vision system as it
enables recovery of a deforming shape� precise tracking of moving objects� and robust navigation in dynamic
scenes�

� SUMMARY

In order to get a dense and accurate depth map at frame rate for both textured and textureless surface� we
have incorporated co�axial active pattern projection to depth from defocus method� The projection pattern and
focus operator to extract the contrast of the projected pattern has been designed through careful modeling of
the optics� sensing and processing� To solve the pixel order registration problem between the image sensors� we
have introduced a telecentric optics for constant magni�cation� To solve the sub�pixel�order registration problem
between the two image sensors and the illumination pattern� we have introduced quadrature operation which is
applied after the focus operator� All of these results were used to implement a real�time focus range sensor that
produces high resolution depth maps at frame rate� This sensor is unique in its ability to produce fast� dense� and
precise depth information at a very low cost� With time we expect the sensor to �nd applications ranging from
visual recognition and robot control to automatic CAD model generation for visualization and virtual reality�
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