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Abstract
Images taken with wide-angle cameras tend to have se-
vere distortions which pull points towards the optical
center. This paper proposes a new method for recovering
the distortion parameters without using any calibration
objects. The distortions cause straight lines in the scene
to appear as curves in the image. Our algorithm seeks to
find the distortion parameters that would map the image
curves to straight lines. The user selects a small set of
points along the image curves. Recovery of the param-
eters is formulated as the minimization of an objective
function which is designed to explicitly account for noise
in the selected image points. Experimental results are
provided for synthetic data with different noise levels as
well as for real images. The computed distortion param-
eters are used to undistort a video stream in real time,
using a look-up table.

1 Introduction

It is desirable in most surveillance applications to capture
the region of interest with as few cameras as possible.
Wide-angle cameras help in this regard, but at the cost
of severe image distortions. Wide-angle lenses that ad-
here to perspective projection would necessitate the use
of prohibitively large image detectors. These lenses are
therefore designed to severely bend rays of light around
the periphery of the field of view1, thus permitting the
use of a small image detector (say, a CCD). The effects
of the resulting image distortions are clearly visible in
Figure 1.

Images from surveillance cameras are used essentially
for monitoring by humans, or for further visual process-
ing. In either case, it is desirable that wide-angle distor-
tions be removed. If the optics of the wide-angle camera
system are known apriori (i.e. the distortion parameters),
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1The bending of light rays, typically leads to a non-singular en-
trance pupil. The resulting locus of pupils in three dimensions is called
a diacaustic [Born and Wolf, 1965]. This implies that, for a wide-angle
lens, complete removal of distortions cannot be achieved. For our pur-
poses, we will assume a small pupil locus that can be approximated by
a single point.

Figure 1: Images captured with wide-angle cameras have severe
distortions that can alter the appearances of objects in the scene.

then distortion correction can be easily applied using the
known parameters. Unfortunately, such information is
seldom revealed by manufacturers. Furthermore, in mass
production, optical characteristics are sure to vary from
one lens to the next. It is therefore desirable to have a
simple calibration method for extracting the distortion
parameters of each lens. This paper presents such a cali-
bration method.

Many calibration methods have been suggested for re-
covering lens distortion parameters. Tsai [1987] used
known points in 3D space to recover some of the dis-
tortion parameters. Goshtasby [1989] utilized Bezier
patches to model the distortions and used a uniform grid
placed in front of the camera as a calibration object.
Weng [1992] also used calibration objects to extract all
the distortion parameters. All these methods fall in the
category of “stellar” calibration [Brown, 1971].

In contrast, Brown [1971] proposed a “non-metric” ap-
proach that does not rely on known scene points. In-
stead, he relies on the fact that straight lines in the scene
must always perspectively project to straight lines in the
image. An iterative least-squares formulation is used to
estimate distortion parameters which map distorted im-
age curves to straight lines. Brown’s algorithm relies
on essentially noiseless image data, which is obtained
by imaging plumb-lines suspended against a black back-
ground. More recently, Kang [1997] used snakes to



represent the distorted curves instead of discrete points.
Becker [1995] used three mutually orthogonal sets of
parallel lines and a vanishing point constraint to recover
distortion parameters. In [Stein, 1997], point correspon-
dences in multiple images are used to estimate radial dis-
tortions.

Previous work suffers from one or more of the follow-
ing restrictions: calibration objects need to be used, not
all the distortion parameters are recovered, or the algo-
rithm is highly sensitive to noise. One exception is the
work of Becker [1995]. However, Becker’s constraint
(triplets of orthogonal lines) is less abundant in urban set-
tings than the randomly oriented straight lines we use. In
addition, while Becker uses the Normal distribution to
model noise, our algorithm makes no assumptions about
the exact nature of noise in the selected image points. We
formulate the estimation of distortion parameters as the
minimization of a noise insensitive objective function via
efficient search. Experimental results with synthetic and
real data are presented, which demonstrate the robustness
of the proposed method, in the presence of large amounts
of noise.

2 Distortion Model
Let the true perspective projection of a scene point be
q′ (see Figure 2). Due to distortions in the lens, the
point gets transformed to a new point q. Let (x, y) be
the Cartesian and (r, φ) be the polar coordinates of q,
similarly let (x′, y′) be the Cartesian and (r′, φ′) be the
polar coordinates of q′. Also let the optical center C be
located at (xp, yp). Then, the Cartesian and polar coor-
dinates are related as:

r =
√
x̄2 + ȳ2 , tan(φ) =

ȳ

x̄

where
x̄ = x− xp , ȳ = y − yp . (1)

The distortion of q′ can be split into three components:
(1) shift of the image center, (2) radial distortion, and
(3) decentering distortion. The first of these is given by
(xp, yp), while the remaining two we will now describe
in greater detail.

2.1 Radial Distortions

Radial distortions in most wide-angle cameras pull
points towards the optical center. This kind of
distortion is also referred to as barrel distortion
[Born and Wolf, 1965]. This effect is radially symmet-
ric and depends solely on the distance from the optical
center. The radial distortion present in the point q is:

∆r(q) =

∞∑

i=1

C2i+1r
2i+1 , (2)

where,C2i+1 are the distortion parameters. Terms higher
than the fifth-order one can be ignored as their contri-
bution to the distortion is negligible in practice [Brown,
1966]. Hence, we have:
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Figure 2: q′ is the perspective projection of a scene point onto
the image plane. Due to radial and decentering distortions, q′

gets mapped to the point q.

∆r(q) ≈ C3r
3 + C5r

5 . (3)

2.2 Decentering Distortions

Decentering distortions are caused by the non-
orthogonality of the lens components with respect
to the optical axis. It is highly unlikely for an imaging
system to have no decentering distortions, which, unlike
radial distortions, act tangentially. We use Conrady’s
model[Conrady, 1919] for decentering distortion:

∆Tx(q) = [P1r
2(1 + 2 cos2(φ)) + 2P2r

2 sin(φ) cos(φ)]

[1 +

∞∑

i=1

Pi+2r
2i]

∆Ty(q) = [P2r
2(1 + 2 sin2(φ)) + 2P1r

2 sin(φ) cos(φ)]

[1 +

∞∑

i=1

Pi+2r
2i] , (4)

where, P1, P2, . . . are the distortion parameters and
∆Tx,∆Ty are the distortions along the x and y direc-
tions, respectively.

The higher-order terms in the above expression are rela-
tively insignificant. Hence, P1 and P2 are generally suf-
ficient for modeling decentering [Brown, 1966]:

∆Tx(q) ≈ [P1r
2(1 + 2 cos2(φ)) + 2P2r

2 sin(φ) cos(φ)]

∆Ty(q) ≈ [P2r
2(1 + 2 sin2(φ)) + 2P1r

2 sin(φ) cos(φ)] .(5)

2.3 Complete Distortion Model

The total distortion is obtained as a sum of the above
components:

∆x(q) ≈ cos(φ)[∆r(q)] + ∆Tx(q)

∆y(q) ≈ sin(φ)[∆r(q)] + ∆Ty(q) (6)

In order to correct distortions, we need to recover the
parameters (C3, C5, P1, P2, xp, yp).



3 Objective Function Formulation
The constraint used in this paper is that, under perspec-
tive projection, straight lines in the scene should project
to straight lines in the image. We assume that the user of
our calibration method knows which (distorted) image
curves correspond to straight lines in the scene. Based
on this knowledge, the user selects points along im-
age curves. In this setting, an objective function can
be defined, which when minimized, yields the parame-
ters that map the distorted points to lie on straight lines.
We present three objective functions, namely, sum of
squared distances (from straight lines), normalized sum
of squared distances and one that explicitly estimates
noise in the chosen image points. The first two are pre-
sented mainly to demonstrate that simple objective func-
tions (similar to ones proposed previously) are highly
noise sensitive. In contrast, the third function is designed
to explicitly account for noise in the image points chosen
by the user. All our objective functions are non-linear
and are minimized using efficient search algorithms. In
what follows our goal will be to recover only the radial
and decentering distortion parameters. The shift of op-
tical center (xp, yp) will be recovered separately in an
iterative fashion.

3.1 Sum of Squared Distances (ξ1)

This objective function is similar to the one used in
the iterative least-squares method developed by Brown
[1971]. In our approach, during search, a set of (hypoth-
esized) distortion parameters S = {C3, C5, P1, P2} are
applied to the selected image points q(x, y). Lines are
fitted to the resulting points q′(x′, y′) and the objective
function is computed as the sum of the squared distances
of the points from their corresponding “best-fit” lines.

Let the best-fit line for a set of points q′ (originally, on
the same image curve) be:

x′ sin(θ) − y′ cos(θ) + ρ = 0 , (7)

where, θ is the angle the line makes with the horizon-
tal axis and ρ is the distance of the line from the image
center. Therefore, the error due to a single point is given
by:

e1 = (x′ sin(θ)− y′ cos(θ) + ρ)2 ,

where
x′ = x+ ∆x(q) , y′ = y + ∆y(q) . (8)

Let the number of curves selected by the user be L, and
let the number of points on each line l be Pl. Then, the
objective function is given by:

ξ1 =

L∑

l=1

[
Pl∑

p=1

(
x′p,l sin(θl)− y′p,l cos(θl) + ρl

)2
]
. (9)

where θl and ρl are the best-fit line parameters corre-
sponding to image curve l and (xp,l, yp,l) is the pth point
on line l.

3.2 Normalized Sum of Squares (ξ2)

Although simple, the above formulation is very sensitive
to noise. From the distortion model, it can be seen that
noise is magnified by the higher-order distortion terms
in S (in particular, the third- and fifth-order terms). As a
result, points that lie closer to the image center contribute
less to the error than points further away. This effect
is partially remedied by normalizing the error e1 by the
square of the distance ρl of the corresponding line l from
the image center. Then, the modified objective function
is:

ξ2 =

L∑

l=1

[
Pl∑

p=1

(
x′p,l sin(θl)− y′p,l cos(θl) + ρl

ρl

)2
]
.(10)

3.3 Explicit Noise Estimation (ξ3)
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Figure 3: q is a point selected by the user and q′ is its undis-
torted location on applying the (hypothesized) distortion pa-
rameters S . l is the “best-fit” line estimated for all q′, which
are believed to lie on the same scene line. q̂ is a point close to
q such that, its undistorted location q̂′ (obtained by applying S
on q̂) lies on l. d is the distance between q and q̂, which we
wish to minimize.

The previous objective functions, ξ1 and ξ2 are defined
in the space of the undistorted points (i.e. after applying
S). Since noise in the selection process is induced in the
distorted coordinates, it is more appropriate to formulate
an objective function that uses errors computed in the
space of distorted image points, so as to avoid non-linear
biases inherent to our distortion model.

As shown in Figure 3, let q be the distorted point under
consideration and q′ be the “undistorted” point obtained
by applying the set of distortion parameters S. Again, l is
the best-fit line for the points q′. We now determine (via
search) the point q̂ close to q, which when undistorted
using S would lie on l at q̂′. The new error function is
defined as:

e3 = ‖q− q̂‖2 . (11)

Since q̂′(x̂′, ŷ′) must lie on l, it must satisfy the con-
straint:

x̂′ sin(θ) − ŷ′ cos(θ) + ρ = 0 ,



where: x̂′ = x̂+ ∆x(q̂) , ŷ′ = ŷ + ∆y(q̂) . (12)

Using all the selected points, the objective function is
determined as:

ξ3 =

L∑

l=1

(
Pl∑

p=1

‖qp,l − q̂p,l‖2
)

. (13)

4 Minimization of ξ1, ξ2 and ξ3

We now describe the non-linear search algorithms used
to recover the distortion parameters S by minimizing the
objective functions ξ1 , ξ2 and ξ3. It should be noted
that our calibration method is in no way restricted to the
specific search algorithms we have used.

We used a modified simplex search algorithm out-
lined in [Nelder and Mead, 1965], implemented in
the IMSL library. This implementation requires up-
per and lower bounds on the parameters to be es-
timated. The bounds we have chosen can model
distortions more severe than those found in typical
wide-angle imaging systems. The following bounds
were used: C3 : (−10−5, 10−5) , C5 : (−10−9, 10−9),
P1 : (−10−5, 10−5) , P2 :(−10−5, 10−5).

At each step of the non-linear search, given the set of
(hypothesized) parameters S, we must compute the ob-
jective function. Computation of ξ1 and ξ2 is straightfor-
ward, using a linear least-squares method to fit the lines
l. However, computing ξ3 also requires the estimation of
the points q̂ (see (12)), for which there is no closed-form
solution.

We solve for each q̂p,l by searching the neighborhood of
qp,l for the point which, when undistorted using S, lies
on l. This requires a 2D search and is computationally
intensive as it needs to be done for every point selected
by the user. To speed-up the search for q̂ we formulate
the search in a single dimension, since there always ex-
ists a point in the radial direction of the selected point,
which lies on the true distorted curve. This approxi-
mation enables us to estimate the distortion parameters
(C3, C5, P1, P2), in under 1 minute on a 300MHz PC.

4.1 Recovering the Optical Center

Note that we did not include the optical centerC(xp, yp),
in the non-linear search for the distortion parameters
S. Initial experiments revealed that including C(xp, yp)
produced unstable results in the presence of noise.
Therefore, we recommend nesting the estimation of
(C3, C5, P1, P2) within a coarse-to-fine search for the
optical center.

5 Synthetic Experiments
To evaluate the robustness of our calibration techniques,
it is imperative to test them in the presence of noise.
Noise enters the system from three main sources: human

error in selecting points in the image, CCD quantization
and the fact that lines in the scene need not be perfectly
straight. It is difficult to quantify the robustness of any
calibration method using only real images, due to lack of
ground truth. Hence, we synthesize image points needed
by the methods discussed earlier.

Points were randomly sampled from synthetically gen-
erated lines with random orientations and positions (see
Figure 4(a)). Using known distortion parameters, the
sampled points were distorted (see Figure 4(b)). To sim-
ulate erroneous point selection, we added uniform noise
in the interval (−w,+w) (see figure 4(c)). We then used
our algorithm to estimate the distortion parameters from
the noisy data and used these parameters to undistort the
noiseless image points (see Figure 4(d)).

5.1 Measurement of accuracy

Although precise recovery of the distortion parameters S
ensures an exact match between the sampled points (Fig-
ure 4 (a)) and the undistorted points (Figure 4 (d)), it is
not necessary for accurate distortion correction. A good
measure of accuracy and robustness is the distance be-
tween the initial position (see Figure 4(a)) and the recov-
ered position (see Figure 4(d)) for each point. We tested
each objective function using linesL of different orienta-
tions and positions , various distortion parameters S and
several noise levels in the interval w = (0, 5) pixels.

Tables 1(a), 1(b) and 1(c) show the errors present in the
recovered undistorted points using the sum of squares ξ1,
normalized sum of squares ξ2 and the noise estimation
method ξ3 respectively. Errors are defined as the av-
erage of the distances between each of the undistorted
points and the original sampled points. Notice the sharp
degradation of robustness for large amounts of noise in
the simple sum of squares approach (ξ1) (see Table 1(a)).
Although ξ2 seems better than ξ1 for certain noise levels,
its does not maintain that degree of robustness for high
levels of noise. In contrast ξ3, is much more robust as
can be seen from Table 1(c), even at high noise levels.

Table 2 contains more exhaustive results of objective
function ξ3 for different line orientations and distortions
parameters. All these experiments clearly demonstrate
the robustness of ξ3 over the others. In most of the cases
ξ3 seems to have sub-pixel accuracy in undistorting the
image points even with high levels of noise.

As mentioned earlier, recovery of the shift parameters is
implemented as a coarse-to-fine search near the image
center. The search for the optical center was done using
a 5x5 grid and grid resolutions of 10, 5 and 2 pixels. As
Table 3 indicates, fine searches in the presence of noise
can result in inaccurate solutions, while coarse searches
appear to give better results. The time taken to recover all
six distortion parameters (C3, C5, P1, P2, xp, yp) is lin-
ear in the number of grid points being searched. Our
experiment with a 5x5 grid took about 20 minutes.
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Figure 4: (a) Points randomly sampled from synthetically gen-
erated lines. (b) Known distortions are applied to the points in
(a). (c) Uniformly distributed random noise in the interval (-5,
5) is added to the distorted points in (b). (d) The distortion pa-
rameters are recovered using the algorithm based on objective
function ξ3 and these noisy image points as data. These param-
eters are used to undo the distortions present in (b). Despite the
large amount of noise, recovery of undistorted image points is
robust.

Table 1(a): Experimental results for ξ1.
Distortion Coefficients Average Error (pixels)

L C3 C4 P1 P2 w = 0 w = 1 w = 2 n = 5
#1 10−5 10−9 10−5 10−5 0.000 3.360 13.973 42.521

10−5 10−9 0.000 0.000 0.000 3.264 13.917 42.574
#2 10−5 10−9 10−5 10−5 0.000 12.095 39.567 66.817

10−5 10−9 0.000 0.000 0.000 12.184 39.616 66.849

Table 1(b): Experimental results for ξ2.
Distortion Coefficients Average Error (pixels)

L C3 C5 P1 P2 w = 0 w = 1 w = 2 n = 5
#1 10−5 10−9 10−5 10−5 0.000 0.356 2.473 12.383

10−5 10−9 0.000 0.000 0.000 0.396 2.272 12.373
#2 10−5 10−9 10−5 10−5 0.000 1.618 5.448 28.639

10−5 10−9 0.000 0.000 0.000 1.592 5.550 28.711

Table 1(c): Experimental results for ξ3.
Distortion Coefficients Average Error (pixels)

L C3 C5 P1 P2 w = 0 w = 1 w = 2 n = 5
#1 10−5 10−9 10−5 10−5 0.002 0.363 0.390 0.398

10−5 10−9 0.000 0.00 0.003 0.328 0.273 0.318
#2 10−5 10−9 10−5 10−5 0.008 0.663 0.773 0.502

10−5 10−9 0.000 0.000 0.006 0.529 0.734 0.330

Table 2: Detailed experimental results for ξ3.
Distortion Coefficients Average Error (pixels)

L C3 C5 P1 P2 w = 0 w = 1 w = 2 n = 5
#1 10−5 10−9 10−5 10−5 0.002 0.428 0.522 0.391

10−5 10−9 0.000 0.000 0.004 0.344 0.382 0.246
10−5 10−10 0.000 0.000 0.281 0.348 0.579 2.818
10−5 10−10 10−6 10−6 0.007 0.278 0.623 2.782

#2 10−5 10−9 10−5 10−5 0.000 0.151 0.015 0.068
10−5 10−9 0.000 0.000 0.003 0.305 0.339 0.221
10−5 10−10 0.000 0.000 0.029 0.152 0.345 1.591
10−5 10−10 10−6 10−6 0.068 0.192 0.339 1.701

#3 10−5 10−9 10−5 10−5 0.000 0.501 0.574 0.590
10−5 10−9 0.000 0.000 0.007 0.329 0.330 0.337
10−5 10−10 0.000 0.000 0.043 0.444 0.488 2.356
10−5 10−10 10−6 10−6 0.009 0.415 0.645 2.368

Table 3: Results on estimation of Optical center (xp, yp)
Distortion Coefficients Average Error (pixels)

L C3 C5 P1 P2 Grid w = 0 w = 1 w = 2
#1 10−5 10−9 10−5 10−5 2 0.002 4.232 9.014

10−5 10−9 10−5 10−5 5 0.002 0.363 10.220
10−5 10−9 10−5 10−5 10 0.002 0.363 0.390

#2 10−5 10−9 10−5 10−5 2 0.008 4.271 3.792
10−5 10−9 10−5 10−5 5 0.008 0.663 12.017
10−5 10−9 10−5 10−5 10 0.008 0.663 0.773

6 Results with Real Images

We used ξ3 to undistort images captured by both, a 1/2′′

CCD Sony camera with a Computar 3.6mm lens and a
1/3′′ CCD Computar EMH200-L25 Hi-Res board cam-
era with a 2.5mm lens.

The calibration of the images was done using a set of
about 10 lines and a total of about 250 points. The esti-
mated distortion parameters obtained using ξ3 were used
to undistort the images (see Figure 5 and Figure 6).

For imaging systems having a large field of view, a per-
spective projection model may not be appropriate for vi-
sualization purposes [Fleck, 1985]. However, the recov-
ery of the distortion parameters facilitates the mapping
of the image using any other projection model. For in-
stance, for a wide-angle system, a panoramic projection
model or a stereoscopic model may be more suitable.

Using the computed distortion parameters and a projec-
tion model, a look-up table can be created that maps im-



(5 a)

(5 b)

Figure 5: (a) Image captured with a Computar 3.6mm lens and
a Sony 1/2′′ CCD camera (b) Distortion parameters recovered
via the minimization of ξ3 are used to map (a) into a perspective
image.

(6 a)

(6 b)

Figure 6: (a) Image captured with a Computar 2.5mm lens and a
1/3′′ CCD board camera. (b) Distortion parameters recovered
via the minimization of ξ3 are used to map (a) into a perspective
image.

age points to their new locations. We used such look-up
tables to map distorted video streams from wide-angle
imaging systems to perspective images in real-time.
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