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Abstract 
Images taken with wide-angle cameras tend to have severe 
distortions which pull points towards the optical center: 
This paper proposes a method for recovering the disror- 
tion parameters without the use of any calibration objects. 
The distortions cause straight lines in the scene to appear 
as curves in the image. Our algorithm seeks tojind the 
distortion parameters that would map the image curves to 
straight lines. The user selects a small set of points along 
the image curves. Recovery of the parameters is formu- 
lated as the minimization of an objective function which 
is designed to explicitly account for noise in the selected 
image points. Experimental results are presented for syn- 
thetic data with difSerent noise levels as well as for real im- 
ages. Once calibrated, the image streams from these cam- 
eras can be undistorted in real time using look up tables. 
We also present an application of this calibration method 
for  wide-angle camera clusters, which we call polycam- 
eras. We apply our distortion correction technique to a 
polycamera with four wide-angle cameras to create a high 
resolution 360 degree panorama in real-time. 

1 Introduction 
In many vision applications, such as surveillance, it is de- 
sirable to capture the entire region of interest with as few 
cameras as possible. Wide-angle cameras help in this re- 
gard, but at the cost of severe image distortions. Wide- 
angle lenses that adhere to perspective projection would 
necessitate the use of prohibitively large image detectors. 
To work around this problem, wide-angle lenses are de- 
signed to severely bend rays of light around the periphery 
of the field of view’, thus permitting the use of a small 
image detector (say, a CCD). The effects of the resulting 
image distortions are clearly visible in Figure 1. 

If the optics of the wide-angle camera system are known 

‘This work was supported in parts by the VSAM effort of DARPA’s 
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‘Severe bending of light rays typically leads to a non-singular entrance 
pupil. The resulting locus of pupils in three dimensions is called a dia- 
causdc [Born and Wolf, 19651. This implies that, for a wide-angle lens, 
complete removal of distortions cannot be achieved. For our purposes, 
we will assume a small pupil locus that can be approximated by a single 
point. 

Figure 1: Images captured with wide-angle cameras have severe 
distortions that alter the appearance of objects in the scene. 

apriori (i.e. the distortion parameters), then distortion cor- 
rection can be easily applied. Unfortunately, such infor- 
mation is seldom revealed by manufacturers. Furthermore, 
in mass production, optical characteristics are sure to vary 
from one lens to the next. It is therefore desirable to have a 
simple calibration method for extracting the distortion pa- 
rameters. This paper presents such a calibration method. 

Many calibration methods have been suggested for recov- 
ering lens distortion parameters. Tsai [19871 used known 
points in 3D space to recover some of the distortion param- 
eters. Goshtasby [1989] utilized Bezier patches to model 
the distortions and used a uniform grid placed in front of 
the camera as a calibration object. Weng [19921 also used 
calibration objects to extract all the distortion parameters. 
All these methods fall in the category of “stellar” calibra- 
tion, where objects with points of known relative coordi- 
nates are used. 

In contrast, Brown [19711 proposed a “non-metric” ap- 
proach that does not rely on known scene points. Instead, 
he relies on the fact that straight lines in the scene must 
always perspectively project to straight lines in the image. 
An iterative least-squares formulation is used to estimate 
distortion parameters which map distorted image curves 
to straight lines. Brown’s algorithm relies on essentially 
noiseless image data, which is obtained by imaging plumb- 
lines suspended against a black background onto a pho- 
tographic plate. More recently, Kang [19971 used snakes 
to represent the distorted curves instead of discrete points. 
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Becker [ 19951 used three mutually orthogonal sets of par- 
allel lines and a vanishing point constraint to recover dis- 
tortion parameters. Stein (see [19951 [19971) used , point 
correspondences in multiple images are used to estimate 
radial distortions. A novel approach to estimating and cor- 
recting for distortion parameters is that proposed by Sawh- 
ney in [19991. He uses more direct techniques without re- 
lying on point correspondences or features. 

Previous work suffers from one or more of the following 
restrictions: calibration objects need to be used, not all 
the distortion parameters are recovered, or the algorithm 
is highly sensitive to noise. One exception is the work of 
Becker [ 19951. However, Becker’s constraint (triplets of 
orthogonal lines) is less abundant in urban settings than 
the randomly oriented straight lines we use. In addition, 
while Becker uses the Normal distribution to model noise, 
our algorithm makes no assumptions about the exact nature 
of noise in the selected image points. We formulate the es- 
timation of distortion parameters as the minimization of a 
noise insensitive objective function via efficient search. 

Experimental results with synthetic and real data are pre- 
sented, which demonstrate the robustness of the proposed 
method in the presence of large amounts of noise. In ad- 
dition, we describe a useful application of our calibration 
technique. We present the notion of a polycamera, which 
uses a tight cluster of multiple cameras to capture a large 
fully connected field of view. Wide-angle cameras are use- 
ful in this context as they minimize the number of cameras 
needed to cover the desired field of view. We describe a 
panoramic polycamera constructed using four wide-angle 
cameras. First the distortion parameters of each camera 
are recovered. Then these parameters are used to map 
the outputs of the four cameras to a single high-resolution 
panorama, in real time. 

2 Distortion Model 
Let the perspective projection of a scene point be q’ (see 
Figure 2). Due to distortions in the lens, the point gets 
mapped to the point q. Let (z,y) be the Cartesian and 
(T ,  4)  be the polar coordinates of q. Similarly, let (z’, y’) 
be the Cartesian and (T’, 4’) be the polar coordinates of q’. 
Also, let the optical center C be located at ( zp ,  yp). Then, 
the Cartesian and polar coordinates are related as: 

where: 
r = d G  , tan(4) = y ,  

% = x - x p ,  g = y - y p .  (1) 

The distortion of q’ can be split into three components: (a) 
shift of the image center, (b) radial distortion, and (c) de- 
centering distortion. The first of these is given by (zp,  yp), 
while the remaining two we will now describe in greater 
detail. 

Yt 

X 

Figure 2: q’ is the perspective projection of a scene point onto the 
image plane. Due to radial and decentering distortions, q’ gets 
mapped to the point q. 

2.1 Radial Distortions 
Radial distortions in most wide-angle cameras pull points 
towards the optical center. This kind of distortion is also re- 
ferred to as barrel distortion [Born and Wolf, 19651. This 
effect is radially symmetric and depends solely on the dis- 
tance from the optical center. The radial distortion present 
in the point q can be written as: 

m 

A r ( s )  = ~ 2 ~ + 1 T ~ ~ + l ,  (2) 
n=l 

where, C2%+1 are the distortion parameters. Terms higher 
than the fifth-order one can be ignored as their contribution 
to the distortion is negligible in practice [Brown, 19661. 
Hence, we have: 

A r ( q )  z C 3 r 3 + C . 5 ~ 5 .  (3) 

2.2 Decentering Distortions 
Decentering distortions are caused by the non- 
orthogonality of the lens components with respect to 
the optical axis. It is highly unlikely for an imaging system 
to have no decentering distortions, which, unlike radial 
distortions, act tangentially. We use Conrady ’s model 
[Conrady, 19191 for decentering distortion: 

AT,(q) = [P1r2(1 + 2c0s2(4)) + 2Pzr2sin(+)cos(4)] 
00 

[l + Pi+zr2i] 
i= l  

AT,(q) = [Pzr2(1 + 2sin2(4)) + 2 q r 2  sin(+) cos(4)l 
m 

(4) 
a=1 

where, P, are the distortion parameters and AT,, AT, are 
the distortions along the z and y directions, respectively. 

The higher-order terms in the above expression are rela- 
tively insignificant. Hence, PI and Pz are generally suffi- 
cient for modeling decentering [Brown, 19661: 
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2.3 Complete Distortion Model 
The total distortion is the sum of the above components: 

A z ( q )  z cos(4)[Ar(q)I + ATz(q)  
A Y ( 4  = sin(4)[Ar(s) l  + A T d q )  ’ (6) 

In order to correct distortions, we need to recover the pa- 
rameters (C3, C5, p ~ ,  p ~ ,  x p ,  y P ) .  

3 Objective Function Formulation 
The constraint used in this paper is that, under perspec- 
tive projection, straight lines in the scene should project 
to straight lines in the image. We assume that the user 
of our calibration method knows which (distorted) image 
curves correspond to straight lines in the scene. Based on 
this knowledge, the user selects points along these curves. 
In this setting, an objective function can be defined which, 
when minimized, yields the parameters that undistort the 
curve points to lie on straight lines. 

We present three objective functions, namely, sum of 
squared distances (from straight lines), normalized sum 
of squared distances and one that explicitly estimates 
noise in the chosen image points. The first two are pre- 
sented mainly to demonstrate that simple objective func- 
tions (similar to ones proposed previously) are highly noise 
sensitive. In contrast, the third function is designed to ex- 
plicitly account for noise in the image points chosen by 
the user. All our objective functions are non-linear and are 
minimized using efficient search algorithms. In what fol- 
lows, our goal will be to recover only the radial and decen- 
tering distortion parameters. The shift of the optical center 
(zp,  yp) will be recovered separately in an iterative fashion. 

3.1 Sum of Squared Distances ((1) 

This objective function is similar to the one used in the it- 
erative least-squares method developed by Brown 119711. 
In our approach, during search, a set of (hypothesized) dis- 
tortion parameters S = (C3, C5, P I ,  P2) are applied to the 
selected image points q(z, y). Lines are fitted to the result- 
ing points q’(z’, y’) and the objective function is computed 
as the sum of the squared distances of the points from their 
corresponding “best-fit’’ lines. 

Let the best-fit line for a set of points q’ (originally, on the 
same image curve) be parameterized by (e, p ) ,  where 6 is 
the angle the line makes with the horizontal axis and p is 
the distance of the line from the image center. Therefore, 
the error due to a single undistorted point q is given by: 

where: 
e = (z’ sin(@) - y’ cos(@) + p)’ , 

I’ = I + A r ( q )  , y’ = y + Ay(q)  . (7) 

Let the number of curves selected by the user be L, and the 
number of points on each line 1 be 9. Then, the objective 
function is given by: 

L PI 

1=1 p = l  

where 81 and pl are the best-fit line parameters correspond- 
ing to image curve 1 and (zp,l, yp,l) is the pth point on line 
1. 

3.2 Normalized Sum of Squares (&) 

Although simple, the above formulation is very sensitive 
to noise. From the distortion model, it can be seen that 
noise is magnified by the higher-order distortion terms in 
S (in particular, the third-order and fifth-order terms). As a 
result, points that lie closer to the image center contribute 
less to the error than points farther away. This effect is 
partially remedied by normalizing the error e in (7) by the 
square of the distance pl of the corresponding line 1 from 
the image center. Then, the modified objective function is: 

3.3 Explicit Noise Estimation (G) 
The objective functions (1 and (2 are defined in the space 
of the undistorted points (i.e. after applying S). Since 
noise in the selection process is induced in the distorted co- 
ordinates, it is more appropriate to formulate an objective 
function that uses errors computed in the space of distorted 
image points, so as to avoid non-linear biases inherent to 
our distortion model. 

As shown in Figure 3, let q be the distorted point under 
consideration and q’ be the “undistorted” point obtained 
by applying the set of distortion parameters S. Again, 1 is 
the best-fit line for all the points q’, which are believed to 
lie on the same scene line. We now determine (via search) 
the point $ close to q, which when undistorted using S 
would lie on 1 (at $’ in Figure 3). The new error function 
is defined as: 

(10) 

Since $’(i’, y’) must lie on 1, it must satisfy the constraint: 

where: 

e = 119 - 911’ ’ 

j.’ sin(@) - y’ cos(@) + p = o , 

i’ = f + A x ( 6 )  , 5’ = 6 + Ay(9)  . (11) 

Using all the selected points, the objective function is de- 
termined as: 

L 9 

1=1 p = l  
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Figure 3: q is a point selected by the user and q’ is its undistorted 
location on applying the (hypothesized) distortion parameters S. 
1 is the “best-fit” line estimated for all q’, which are believed to 
lie on the same scene line. 9 is a point close to q such that, its 
undistorted location 4’ (obtained by applying S on 9) lies on 1 .  
We wish to minimize the distance between q and Ci. 

4 Minimization of t2 and J3 

We now describe the non-linear search algorithms used to 
recover the distortion parameters S by minimizing the ob- 
jective functions 61 , 52 and 53. It should be noted that our 
calibration method is in no way restricted to the specific 
search algorithms we have used. 

We used a modified simplex search algorithm out- 
lined in [Nelder and Mead, 19651, implemented in 
the IMSL library. This implementation requires the 
user to provide upper and lower bounds on the pa- 
rameters to be estimated. The following bounds 
were used: C3 : (-lop5, lop5) , C5 : (-lo-’, lop9),  
PI : (-lop5, , P2 :(-low5, These bounds 
are highly conservative as they include distortions that are 
significantly more severe than those found in typical wide- 
angle imaging systems. 

At each step of the non-linear search, given the set of (hy- 
pothesized) parameters S, we must compute the objective 
function. Computation of E1 and is straightforward, us- 
ing a linear least-squares method to fit the lines 1. However, 
computing & also requires the estimation of the points 4 
(see (12)), for which there is no closed-form solution. 

To this end, we solve for each $,,l by searching the neigh- 
borhood of qp,l for the point which, when undistorted us- 
ing S, lies on 1. This requires a 2 0  search (see Figure 
3), which is computationally intensive. For efficiency, we 
use a 1D search, since there always exists a point in the 
radial direction of the selected point q, which lies on the 
true distorted curve. This approximation enables us to es- 
timate the distortion parameters (C3, C5, P I ,  P2), in under 
30 seconds on a 300MHz PC. 

Note that we did not include the optical center C(z,, yp), 

in the non-linear search for the distortion parameters S. 
Initial experiments revealed that including C(z,, yP) can 
produce unstable results in the presence of noise, due to 
the higher dimensionality of the search space. Therefore, 
we have nested the estimation of (C3, C5, PI,  P2) within a 
coarse-to-fine search for the optical center (xp, y,). 

5 Experimental Results : Synthetic and R.eal 
Images 

To evaluate the robustness of our calibration technique, it 
is imperative to test it in the presence of noise. Noise en- 
ters the system from three main sources: human error in 
selecting points in the image, finite image resolution, and 
the fact that lines in the scene may not be perfectly straight. 
It is difficult to quantify the robustness of any non-metric 
calibration method using only real images, due to lack of 
ground truth. Hence, we synthetically generate the noisy 
image points that are used as inputs to our algorithm. 

Points were randomly sampled from synthetically gener- 
ated lines with random orientations and positions (see Fig- 
ure 4(a)). Using known distortion parameters, the sampled 
points were distorted (see Figure 4(b)). To simulate erro- 
neous point selection, we added uniform noise in the inter- 
val ( -w, +w) to the coordinates of the points (see figure 
4(c)). We then used our algorithm to estimate the distortion 
parameters from the noisy data and used these parameters 
to undistort the noiseless image points (see Figure 4(d:)). 

Although precise recovery of the distortion parameters S 
ensures an exact match between the sampled points (Fig- 
ure 4 (a)) and the undistorted points (Figure 4 (d)), i t  is not 
necessary for accurate distortion correction. A good mea- 
sure of accuracy and robustness is the distance between the 
initial position (see Figure 4(a)) and the recovered position 
(see Figure 4(d)) for each point. We tested each objective 
function using lines C of different orientations and posi- 
tions , various distortion parameters S and several noise 
levels in the interval 20 = [0,5] pixels. 

Tables 1 (a)-(d) show the errors present in the recovered 
undistorted points using the sum of squares ((I), normal- 
ized sum of squares (J2) and the noise estimation method 
(&), respectively. Errors are defined as the average of the 
absolute distances between each of the undistorted points 
and the original sampled points. Notice the sharp degrada- 
tion in accuracy with increasing noise in the simple sum of 
squares approach (61) (see Table l(a)). Although per- 
forms better than for certain noise levels, it breaks down 
for high levels of noise. In contrast &, is much more robust 
and yields sub-pixel accuracy even for high noise levels, as 
can be seen from Table 1 (c). More results obtained by us- 
ing 53 are shown in Table 1 (d). 

As mentioned earlier, recovery of the optical center is im- 
plemented as a coarse-to-fine exhaustive search around the 
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Table l(a): Experimental results for <I. 
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Figure 4: (a) Points randomly sampled from synthetically gener- 
ated lines. (b) Known distortions are applied to the points in (a). 
(c) Uniformly distributed random noise in the interval (-5 pix- 
els, 5 pixels) is added to the distorted points in (b). (d) The dis- 
tortion parameters are recovered from these noisy image points 
using the algorithm based on objective function [3. These param- 
eters are used to undo the distortions present in (b). Despite the 
large amount of noise, the recovery of undistorted image points 
is found to be accurate and robust. 

Table l(b): Experimental results for &. 

Table l(c): Experimental results for (3. 

Table l(d): Detailed experimental results for &. 

I lo-.] 10-lol 1 10.068 10.192 10.339 1 1.701 
I lo-" I IO-" I 0.000 1 0.501 I 0.574 1 0.590 #3 I 10-s 1 

Table 2: Results on estimation of optical center (zv, yv). . . . .  

[ Distortion Coefficients I Average Ermr (pixels) 

L I C3 I C5 I Pi I P, IGr id  I w = O  I w = l  I w = 2  
# I  I in-5 I in-9 I I n - a  I i o ->  I 2 I 0.002 I 4.232 I 9.014 

image center. The search for the optical center was done 
using a 5x5 grid and grid resolutions of 10,5 and 2 pixels. 
As Table 2 indicates, fine searches in the presence of noise 
can result in inaccurate solutions, while coarse searches ap- 
pear to give better results. The time taken to recover all six 
distortion parameters ((73, C,, PI ,  P2, zp ,  yp) is linear in 
the number of grid points used. Calibration on a 5x5 grid 
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Figure 5:  (a) Image produced by a Computar 2.5mm lens and a 
Computar 1/3” CCD board camera. (b) Distortion parameters 
recovered via the minimization of (3 are used to map the output 
of the camera to perspective video. 

took about 20 minutes on a 300MHz Pentium I1 PC. 

We also used E3 to calibrate a 1/2” Sony XC-75 CCD cam- 
era with a Computar 3.6mm lens, and a 1/3” Computar 
EMH200-L25 CCD board camera with a 2.5mm lens. 

The calibration of the images was done using a set of about 
10 lines and a total of about 250 points. The estimated dis- 
tortion parameters obtained using c3 were used to undistort 
the images (see Figure 5 for an example). As can be seen 
from Figure 5(b), straight lines in the scene map to straight 
lines in the distortion corrected image. 

For imaging systems having a large field of view, a per- 
spective projection model may not be appropriate for vi- 
sualization purposes [Fleck, 19951. However, the recovery 
of the distortion parameters facilitates the mapping of the 
image using any other projection model. For instance, for 
a wide-angle system, a panoramic projection model or a 
stereoscopic model may be more suitable. 

6. Polycameras 
We now describe a natural application for the results we 
have presented in the paper. A polycamera is a tight clus- 
ter of cameras that together capture a large field of view. 

Figure 6: A panoramic polycamera configured using four 1/3” 
CCD Computar EMH200-L25 board cameras with 2.5mm lenses. 
Each camera has a horizontal field of view of about 115 degrees, 
ensuring a complete field of view of 360 degree. 

Unlike multiple cameras used in stereo for instance, Ihe 
cameras that comprise a polycamera are configured to have 
minimally overlapping fields of view. In spirit, this idea 
is similar to that of Nalwa’s [Nalwa, 19961 where four 
cameras and four planar mirrors are configured to obtain a 
panoramic field of view as seen from a single viewpoint. In 
our case, we relax the single viewpoint constraint, but en- 
sure that the individual viewpoints of the cameras are close 
enough that the images they produce can be merged to- 
gether seamlessly for objects beyond a minimum distance 
from the polycamera. We call this distance the minimum 
working distance. A more detailed treatment of polycam- 
eras and their working distances is provided in [Swarni- 
nathan and Nayar, 19991. 

Given any desirable field of view, we would like to use the 
minimum number of cameras to capture it. Clearly, us- 
ing perspective imaging systems with relatively long focal 
lengths will necessitate the use of a larger number of cam- 
eras. This will require us to acquire and process a large 
number of video signals as well as increase the working 
distance of the cluster. In this context, wide-angle imaging 
systems prove ideal. For instance, the Computar EMH200- 
L-25 board camera, for which results are presented in Fig- 
ure 5,  has a horizontal field of view of about 115 degrees. 
Hence, four such cameras can be oriented 90 degrees apart 
to capture a 360 degree panoramic field of view. In ad- 
dition, neighboring cameras will have overlapping fields 
of view, which are necessary to make the complete view 
seamless. Figure 6 shows the polycamera we have devel- 
oped based on this design. The complete sensor is enclosed 
in a cylinder that is 7 cm tall and 7.5 cm in diameter. 

We generate the panorama by projecting the individual 
views of the cameras onto a cylinder. The assumptiori is 
that the individual cameras adhere to the perspective pro- 
jection model. Hence, we first apply our non-metric cal- 
ibration algorithm to determine the distortion parameters 
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Figure 7: Panoramic video stream generated using the polycamera shown in Figure 6. The 360 degree panorama is computed using a 
look-up table, which is constructed taking into account the relative orientations of the four wide-angle cameras as well as their distortion 
parameters. Notice at extreme right, the extended hand gets warped to the left of the panoramic image. 

of each of the four camera to produce four perspective 
views. Next, corresponding points (produced by distant 
scene points) in the overlapping fields of view of two adja- 
cent cameras are used to determine the relative orientation 
(assumed to be purely rotational) between the two cameras. 
This procedure is applied to all pairs of adjacent cameras. 

To account for the differences in the gains of the four cam- 
eras, a simple blending algorithm is used in the overlap re- 
gions. This algorithm computes the intensity at each pixel 
within an overlap region as the weighted sum of the inten- 
sities in the two view. The weights are proportional to the 
distances of the pixel from the boundaries of their respec- 
tive images [Szeliski, 19961. The mapping from individ- 
ual views to the panorama as well as the blending weights 
in the overlap regions are stored as look-up tables for effi- 
ciency. This is possible since the relative orientations of the 
cameras and their distortion parameters do not vary with 
time. 
The four video streams are captured simultaneously using 
four Matrox boards that reside in a 400 MHz Pentium-I1 
PC. The panorama computed using the above technique 
is 1000x480 pixels in size and is displayed using Direct- 
Draw technology at approximately 15 frames a second. 
Figure 7 shows a snap-shot of the panoramic video pro- 
duced by this polycamera system. 
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