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Abstract 

It is widely accepted that textureless su$aces cannot be 
recovered using passive sensing techniques. The problem is 
approached by viewing image formation as a fully three- 
dimensional mapping. It is shown that the lens encodes 
structural information of the scene within a compact three- 
dimensional space behind it. After analyzing the informa- 
tion content of this space and by using its properties we de- 
rive necessary and suficient conditions for the recovery of 
textureless scenes. Based on these conditions, a simple pro- 
cedure for recovering textureless scenes is described. We 
experimentally demonstrate the recovery of three texture- 
less su$aces, namely, a line, a plane, and a paraboloid. 
Since textureless su$aces represent the worst case recov- 
ery scenario, all the results and the recovery procedure are 
naturally applicable to scenes with texture. 

1. Introduction 
It is now widely accepted that passive vision tech- 

niques do not permit the depth recovery of textureless 
scenes. Methods such as stereo [Barnard and Fischler 821 
and structure from motion [Ullman 791 rely on correspon- 
dence between points in different images. This process is 
known to be impossible in the absence of scene texture. 
Techniques based on depth from defocus [Pentland 871, 
[Subbarao and Surya 941, [Watanabe and Nayar 961 and 
depth from focus [Krotkov 871, [Nayar and Nagakawa 941 
use the relative defocus in two or more images taken 
with different optical settings to compute depth. Both 
techniques make important assumptions about the pres- 
ence of texture in the scene. Algorithms for shape from 
texture [Kender 781, [Stevens 791, as the name itself im- 
plies, rely explicitly on the presence of strong texture. 
The only approach that provides a partial solution to the 
problem of textureless surfaces is shape from shading 
[Horn and Brooks 891. However, it is well-known that 
shape from shading requires the use of strong assumptions 
to make the recovery problem tractable. 

So, is absolute depth recovery of a textureless scene 
truly impossible? To study this problem, we return to the 
first principles of image formation. All brightness images 
used in computational vision are measurements obtained 
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in a compact three-dimensional space behind the imaging 
lens. We refer to this space as the monocular visual space 
(MVS). An image is but a two-dimensional slice (frontal, 
non-frontal, or even curved) through this space. Rather than 
asking how much more than what is already known can 
be recovered from an image, we explore what information 
about the three-dimensional scene is captured within the 
monocular space. Similar studies have been conducted ear- 
lier in the context of optical microscopy [Streibl85]. How- 
ever, the object illumination, the imaging optics, and the 
sensing methods differ significantly from those of a con- 
ventional imaging system used in computational vision. 

If we image the world using a pinhole camera, the MVS 
is completely determined by any one slice (image) through 
it, since all images in the MVS are simply projective trans- 
formations of each other. It turns out that the lens used in 
all imaging systems to gather more light encodes the MVS 
with three-dimensional structural information of the scene. 
Based on this observation, we raise a series of questions: (a) 
Is all the information contained in the scene present in the 
MVS? Is there any information lost in the mapping process? 
(b) How must the MVS be sampled to ensure that the dis- 
crete images obtained preserve the information within the 
MVS? (c) Under what conditions are textureless scenes re- 
coverable from the MVS? 

Our investigations have resulted in quantitative answers 
to all of the above questions. In  addition, it has lead us 
to a simple procedure for recovering the absolute depths 
of textureless three-dimensional surfaces in the scene. As 
examples, we experimentally demonstrate the recovery of 
textureless lines, planes, and conics. These results give us a 
good indication as to how the proposed method will behave 
with respect to arbitrary scenes. It is important to note that, 
since textureless scenes represent a worst case scenario, our 
results and methods can always be used to determine ab- 
solute depth maps of scenes with texture. We conclude by 
summarizing the important properties of the monocular vi- 
sual space. 

2. The Monocular Visual Space 
Today, practically all vision and image processing algo- 

rithms are applied to brightness images. What additional 
information is present in the MVS, that is not captured by 
one or two brightness images? 
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To answer this question, we review the process of im- 
age formation, paying careful attention to the creation of 
the MVS rather than a single image. The resulting model 
of the MVS, will allow us to explore its information content 
and develop algorithms for scene recovery that go beyond 
existing ones. 

2.1. The Optical System 

Figure 1. In a conventional imaging system, 
each scene point produces a tight-cone. The 
orientation as well as the half-angle of the 
light-cone varies with the location of the 
scene point. 

Traditionally, one views the lens system as transforming 
each point in the scene to a single focussed point behind 
the lens. As is well known, a simple relation exists for thin 
lenses, in the form of the lens law: 

1 1 1  - - + - = -  
do di f' 

where, di is the distance of the scene point from the prin- 
cipal plane, do is the distance of the focussed point to the 
principal plane and f is the focal length of the lens. The 
scene therefore produces a focussed surface behind the lens, 
in accordance with equation 1. 

A more insightful approach is to consider the following: 
Each point in the scene, which is not occluded, produces 
a double cone of light behind the lens. This double cone, 
which we call a light-cone, has its apex at the focussed im- 
age point. Now, consider the entire volume of light behind 
the lens. This volume is a linear superposition of light-cones 
due to the points in the scene. 

In a conventional optical system like the one shown in 
Figure 1, the orientation as well as the half-angle of the 
light-cone varies with the location of the object point in 
front of the lens. Clearly, this is a space-variant system with 
a three-dimensional point spread function (the light-cone). 

A simple modification to the imaging process ren- 
ders the resultant optical system to be linear and shift- 
invariant. This system, which is shown in Figure 2 is 
telecentric on the image side of the lens [Kingslake 831, 
[Watanabe and Nayar 961. 

The only difference with respect to Figure 1 is that an 
aperture has now been placed in the front focal plane, i.e at 
a distancef from the optical center of the lens. In contrast 
to the conventional system, the axis of each light-cone is 
parallel to the optical axis. Also, the half angle B of the 
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Figure 2. A telecentric system is obtained by 
placing a small aperture at the front focal 
plane. In this case, the axis of the light-cone 
is parallel to the optical axis for any scene 
point. The half-angle 8 of the cone, is a sys- 
tem constant determined by the f-number of 
the system, fo = :. 

I 
I 

cone is a constant and is independent of the location of the 
scene point. The half angle is an intrinsic property of the 
system, dependent only on fo = f ,  the f-number of the 
system: 

(2) tan(8) = -. 
?f 

The telecentric system is linear and shift-invariant and is 
therefore, completely characterized by its impulse response, 
h(z ,  y, z ) .  Hence, the volume of light w(z, y, z )  behind 
the lens, can be expressed as a simple convolution between 
the focussed surface o(z, y, z )  and the system impulse re- 
sponse: 

a 

4 2 ,  Y, .) = h(2, Y,.) * 4 2 ,  Y, .). (3) 

As is well known, in a linear shift-invariant system, 
the Fourier transform of a convolution in the spatial do- 
main is just the product of the corresponding Fourier 
transforms. Hence, equation 3 can easily be solved for 
o(z, y, z )  by inversion in the Fourier domain. Telecentric- 
ity is not a limiting assumption on our analysis, because, 
there exists an elegant relationship between telecentric sys- 
tems and conventional lens systems [Sitter and Rhodes 901, 
[Sundaram and Nayar 961. Hence all our results with tele- 
centric systems are relevant to conventional systems as well. 

3. The Light Cone 
The telecentric system, being linear shift-invariant, is 

completely characterized by its impulse response, the light 
cone. The optical transfer function (OTF) of the impulse re- 
sponse imposes fundamental restrictions on the system res- 
olution as well the accuracy of the recovered scene. Hence, 
an accurate model of the light cone is essential. 

3.1. Diffraction Limited Optics 
The geometric optics model' for the light cone is a first- 

order approximation to the effects of diffraction. The nature 

'Details on the geometrical optics model of the light cone can be found 
in [Sundaram and Nayar 961. 
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of the OTF in the case of diffraction limited systems has 
been studied earlier [Born and Wolf 701, [Streibl84a]. 

Consider a telecentric system, like the one in Figure 
2, with a finite, circularly symmetric aperture a and fo- 
cal length f .  We assume the incoming light to be quasi- 
monochromatic and partially coherent. Taking diffraction 
into account, we get a telecentric system with a diffraction 
limited aperture A(p), which is bandlimited: 

1 p s y ,  
A(p)  = { 0 elsewhere, (4) 

where, y 
If we make an additional assumption that the incoming 

rays are paraxial, then the OTF for such a system is given 
by: 

5, p =: &z + w i .  

where< ($ + e). 
The OTF contains a 6 function at the origin. The OTF 

(see Figure 3 )  is also bandlimited along p as well as w, with 
w,-,,, 0: E ,  pmax c( 2. We define the surface < = 1 to 
be the bounding surface of the OTF, since H ( p ,  w,) is zero 
whenever < 2 1. 

1 

Figure 3. Plot of the bounding surface < = 1 
in the diffraction limited case; the OTF is non 
zero only within the torus. The bandwidth 
is limited by the f-number: CC - I,' 
pmax o( $. The unit length is 2007r kHz along 
U,, wY, and wz. 

1 

4. Restrictions on Resolution 
The light cone, being bandlimited, also bandlimits the 

monocular visual space. As a result, there are fundamen- 
tal restrictions on the number of independent measurements 
within the MVS due to the Nyquist criterion for bandlimited 
signals. Nyquist's criterion establishes the minimum sam- 
pling frequency for a bandlimited signal in order for it to be 

reconstructed exactly. It is this critical frequency (which is 
twice the bandwidth), that defines the resolution (distance 
between independent measurements) within the M V S .  

It can be easily shown using equation 5 that the light cone 
is bandlimited along p with pmax = 9. This establishes 
the lateral Nyquist sampling frequency, ps = 2p,,,. Then, 
the lateral resolution of the system is given by: 

Similarly, one can show that the system is bandlim- 
ited along w, with wt-,,, = %$. Hence, the Nyquist 
sampling rate in the longitudinal direction is given by 
w,-~  = 2w,-,,, and the longitudinal resolution of the sys- 
tem is given by: 

As noted earlier, the f-number limits the bandwidth of 
the light cone. It affects the system resolution as: 6x = 
6y c( f o  and Sz 0: f o 2 .  An increase in the f-number will 
decrease the resolution. 

5. The Road to Recovery 
Now we are in a position to determine conditions 

wherein textureless scenes become recoverable. As was the 
case with resolution, the OTF of the light-cone plays a cru- 
cial role in determining conditions on the recoverability of 
textureless scenes. What is interesting is that the recover- 
ability of a textureless surface turns out to be critically de- 
pendent upon the shape of the OTF. 

5.1. Conjugate Spectra 
Before we determine conditions on recoverability, we 

need a few definitions. Due to telecentricity and linear shift- 
invariance: 

where, V ,  H and 0 are, respectively, the Fourier transforms 
of the MVS, the light-cone and the focussed surface. 

A spectrum 0 is defined to be a conjugate-spectrum con- 
jugate to H if it satisfies the following equation: 

V = H * O ,  (8) 

H(wx,  wy , U t )  O(wx , wy , U,) = W J X ,  wy, wz),  (9) 

where IC is an arbitrary constant. The support of 0 is said to 
occupy the conjugate-space. Equation 9 essentially states 
that the supports of the Fourier transforms of H and 0 only 
intersect at the origin'. 

5.2. Scene Recovery 
A way of dealing with the problem of recovery of tex- 

tureless scenes is to first define a class of textureless scenes 
which are irrecoverable. Textureless scenes which do not 

*The focussed surface being an intensity (positive) distribution, must 
have a d.c component in its spectrum. The 6 function in equation 9 is due 
to the 6 function in the Fourier transform H .  
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belong to this class are therefore recoverable. Intuitively, a 
surface is irrecoverable (in the sense of least squares) if the 
MVS contains no information about it. This can be readily 
formalized by using the idea of conjugate-spectra. 

Consider an arbitrary focussed surface o(x, y, z ) .  A nec- 
essary and sufficient condition for it to be irrecoverable is 
that its spectrum 0 must be conjugate3 to that of the OTF 
H .  

Let us consider an arbitrary focussed surface z = f(x, y) 
with the condition that there be no discontinuities4. This 
implies that the scene must have no occlusions or depth 
discontinuities. If either of them are present in the scene, 
they will produce discontinuities in the focussed surface 

The Fourier transform of the surface is given by the 
o(x,y,z). 

Fourier transform of 6(z  - f(z, y)). Hence, 

n n n  

e - j ( w x f  (z>Y)) e-j(wa~+wv~)dZ dy, (1 1) 
= ss 

where, w' = (wx, wy, w,), Z = (x, y, z )  and dv = dxdydx. 
We now examine families of surfaces for various shapes and 
determine conditions on their recoverability. 

5.2.1. Lines and Planes 

Consider an arbitrary plane through the origin 
ax + by + cz = 0. It can be easily shown using equation 
10, that the Fourier transform of the plane is: 

The 6 function is only defined on the straight line 

(13) 
wz -- W 

- 1, - wx - - Y- - 
cos(a) cos(@) cos($) 

where, cos(a), cos(@) and cos($) are the direction cosines5 
of the plane. This is illustrated in the Figure 4. 

Similarly, if we take the line & = 1 = -c- - 
cos(P) cos($) - 

1, then its Fourier transform is a plane 6 function given by: 

+ wz). (14) 
cos(cY) 

a w , , w y , w z )  = 6(wx- cos($) + w y & q  

3We are not guaranteed an irrecoverable surface by taking the Fourier 
inverse of an arbitrary spectrum X conjugate to H ,  since both two- 
dimensional surfaces as well as three-dimensional densities have three- 
dimensional Fourier transforms. However, we can easily determine if a 
surface is irrecoverable, by computing its Fourier transform and then using 
equation 9. 

4This is an assumption on the surface z = f(z, y) made to simplify 
analysis. It has no bearing on the validity of equation 9, which is valid for 
arbitrary scenes. 

'The direction cosines are components of the unit normal vector defin- 
ing the plane. They are defined to be cos(a) = a 

C O S ( P )  = da2+b2+c2  ' 

\ / (a' -* 
Figuk 4. (a) An arbitrary plane with the nor- 
mal vector ii ( C O S ( C Y ) ,  cos@),  cos(4)) .  (b) The 
Fourier transform of the plane is a line 6 func- 
tion with the same direction cosines as the 
normal to the plane. 

This is simply the equation of a plane w, cos(a) + 
wy cos(@) + w, cos($) = 0. Hence the plane and the line 
are Fourier transform pairs. 

Now, for a plane to be irrecoverable its Fourier transform 
must be conjugate to the OTF. A sufficient condition for this 
is 

(15) 
where, tan(0) = This can be easily seen to be true 
by comparing figures 3 and 4. In fact, equation 15 shows 
that the line 6 function must lie within the surface6 Iw, I = 
p tan(0). Now, when equation 15 is not satisfied, i.e when 
4 > ~ / 2  - 8, the line delta function will intersect the OTF 
and hence the plane will be recoverable in the least squares 
sense. 

Like the plane, the Fourier transform of the line must be 
conjugate to the OTF for it to be irrecoverable. A sufficient 
condition is: 

(16) 
Now, when this condition is not satisfied, i.e $ < 7r/2 - 0 
the Fourier transform of the line will intersect the OTF, 
making it recoverable. 

It is a widely accepted conjecture in computer vision that 
textureless planes parallel to the camera produce no infor- 
mation. Equation 15 is the quantitative explanation why this 
conjecture is indeed correct. Furthermore it shows the ex- 
istence of a family of textureless planes which are irrecov- 
erable. What is more intriguing is the fact that textureless 
planes become recoverable when the conjugacy-condition 
(equation 9) is not satisfied, a surprising result! 
5.2.2. Cones and Quadratics 

Let us look at more complex objects such as cones and 
higher degree polynomials. The equation of an infinite cone 
is z = r cot(a), where a is the half angle of the cone. The 
Fourier transform of the cone is given by: 

4 I T I 2  - e, 
2f 

4 2 .ir/2 - e. 

hThis is the bounding surface in the geometrical optics case 
[Sundaram and Nayar 961. The conjugate space for the diffraction limited 
case, being bigger than the corresponding space for geometric optics, will 
contain this surface. 
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Figure 5 shows the cone and its Fourier transform. From 

Figure 5. (a) An infinite cone with half angle 
a. (b) OTF of the cone with tan(a) = 1/2. 
Note that the energy is concentrated around 
the double cone lozl = ptan(a). wz and p 
are in Hz. 

Figure 5 it is seen that the energy in the Fourier transform is 
concentrated along a double cone lwzl = ptan(a) oriented 
along thew, axis with half-angle $ - a. 

Here, the conjugacy condition is simply: 

a 2 8. 

For the cone, unlike the line or the plane, there is no 
condition under which the Fourier transform becomes con- 
jugate to the OTF. Hence, equation 18 is a weak conju- 
gacy condition. The cone is partially recoverable under 
all circumstances. The recovery becomes significantly bet- 
ter when a < 8, since most of the energy lies on the cone 
lwzl = ptan(a). 

We now consider paraboloids z = ar2 where a is an ar- 
bitrary constant. It can be shown that the Fourier transform 
of the paraboloid is given by: 

This is illustrated in Figure 6. Notice how the magnitude of 
the Fourier transform is independent of the radial frequency 
P. 

As was with the cone, the paraboloid is partially recov- 
erable in all cases. There is no case in which the Fourier 
transform is conjugate to the OTF. However, in the case 
of the parabola, the recovery improves significantly when 

The Fourier transforms of higher powers of r i.e z = urn 
can be derived using equation 10 but they are increasingly 
complex functions. In the case of most other surfaces, no 
analytical results exist for the Fourier transforms. 

Textureless scenes are therefore completely recoverable, 
under the condition that their Fourier transforms lie within 
the support of the OTF. When the Fourier transform over- 
laps both the conjugate space as well as the support of the 
OTF, the scene is then only recoverable in the least squares 
sense. 

4 < 8. 

Figure 6. (a) A paraboloid. (b) The magnitude 
of the Fourier transform, which is seen to be 
independent of p. oz. and p are in Hz. 

5.3. Necessary Conditions on Shape 
Since the M V S  is bandlimited, the textureless scenes 

recovered from it cannot be arbitrary because the recon- 
structed focussed surface O ( Q ,  yi, zi) must be bandlimited 
as well. In this section we shall see how the finite bandwidth 
of the MVS affects the gradient of the scene. 

Now, the OTF H bandlimits the recovered focussed sur- 
face to (-wx,,wz,), (-wyo,wyo~ and (-w,,, wzo> along wx,  wy 
and w, respectively. Then, 

where do = ch,chydwz. The scene s(x,, yo, z,) and the 
focussed surface .(xi, yi, zi )  are related via a non-linear 
transformation. The transformation equations are x, = 
_zozi , yo = z, = 3. Due to the finite bandwidth 
of the system, the gradient of the recovered focussed sur- 
face  xi, yi, zi)  will be bounded uniformly in the MVS by 
a constant. However, since the scene s(x,, yo, z,) is related 
via a non-linear transformation to o(xi, yi, zi ) ,  its gradient 
will be bounded by a function that varies with depth. Now, 
it is easily shown from equation 20 and the transformation 
equations that: 

zi zi 

where C is a fixed positive constant, t' = X & o - f ) ~  + 

+ wi. Vs is the gradient of the scene and . 
denotes the usual vector dot product. Combining equations 
22 and 21 we get, 

zof 

This is a necessary condition on the gradient of the scene. 
Using the familiar Cauchy-Schwartz inequality, we can get 
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a sufficient condition on Vs, the scene gradient, so that 
equation 23 holds: 

Since the pixel locations within the CCD array are fixed, 
the sampling frequency along the z and y directions too are 
fixed. This turns out to be much less than pS/2.rr, but this 
does not cause aliasing artifacts to appear because the input 
spectrum is extremely low pass' (being textureless). We are 
free to determine the sampling rate along the z direction 
as we have a precise, movable sensor. We thus sample the 
MVS along z obtaining 64 samples in all at a frequency 
slightly above w,-,/2n. 

Figure 7. An arbitrary surface being imaged. 
The upper bound on lVsl becomes loose as the surface 

approaches the front focal plane. This is easily understood 
as points near the front focal plane z = f, on the object 
side of the lens, will get transformed to distant points on the 
image side of the lens (i.e the shape will get stretched upon 
transformation). Therefore, large values in the surface gra- 
dient are permissible. But as z ,  becomes large, the surface 
becomes compressed near f behind the lens. Hence, the 
gradient can only take small values in order to be faithfully 
captured by the system. Although equation 23 has been de- 
rived under the assumption that the scene is textureless, it 
holds true for any bandlimited surface with texture7. 

6. Recovered Scenes: Experiments 
We now present results for three textureless surfaces: a 

plane, a line and a paraboloid (see Figures 8-10). In each 
case, the captured data was deconvolved in the Fourier do- 
main using the diffraction-limited filter (see equation 5 ) ,  
and the final shape extracted after post processing of the 
deconvolved output. If we use a standard three-dimensional 
interpolating function (i.e the sinc function) to interpolate in 
the MVS, one obtains a continuous surface. Since the cam- 
era has been calibrated, we can map each computed point in 
the MVS to the the external world using the lens law. 

We used an 8-bit Sony XC-77 CCD camera with 25" 
lens in conjunction with a J300 frame grabber and a DEC 
Alpha workstation to grab the images. Each image was of 
size 640x480 pixels. A 3mm aperture was placed at the 
front focal plane of the lens, converting it into a telecentric 
system. The CCD sensor inside the camera was attached to 
a calibrated micrometer stage having a 10 micron accuracy. 
The nominal value of X was set to be 500nm. 

We need to establish the sampling rates along the 2, y 
and z directions to ensure that we have captured the MVS 
accurately. The sampling rates are easily obtained from 
equations 6 and 7. Then, the Nyquist rates ps/2.rr and 
w,-* /2n are 480kHz and 7.20kHz respectively. 

'If the bandwidth of the surface containing texture is less than that of 
the MVS, one simply changes the integration limits in equation 20. 

Figure 8. (a) A finite white plane is used 
as the input. (b) One of the samples (im- 
age) of the MVS exhibiting defocus. (c) 
The recovered plane in the MVS, after de- 
convolution and post-processing. Using a 
standard interpolating function on this data 
(e.g sinc) will yield a continuous plane. 
Grid spacing: Az = 26pm,  Ax = l l p m  and 
Ay = 104pm. 

7. Summary 
Traditional passive depth recovery methods such as 

stereo, structure from motion, depth from focus and defo- 
cus make strong assumptions about the presence of texture 
in the scene. Hence all these methods fail when attempt- 
ing to recover textureless scenes. Shape from shading al- 
gorithms provide a partial solution but are limited by other 
assumptions. 

We have studied the problem of textureless scene re- 
covery by formulating image formation as a fully three- 
dimensional mapping characterized by the monocular vi- 
sual space. We have shown how an imaging lens encodes 
structural information about the scene within the MVS. We 
also derived conditions needed to completely represent the 
MVS as a set of discrete images. 

the general case, when the scene contains texture, we must have a 
high sampling rate in the sensor in order to avoid aliasing problems. 
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Figure 9. (a) One of the samples of the MVS 
in the case of the line. We generated a finite 
line by using a thread stretched in front of the 
camera. (b) The recovered line in the MVS, af- 
ter deconvolution and post-processing. The 
spikes represent the least squares fitted data, 
while the bold dots represent the actual raw 
data. The bold line represents the least 
squares fit. Grid spacing: Az = 130pm, 
Ax = I l p m  and Ay = 13pm.  

Figure 10. (a) A profile of the paraboloid 
used in the experiment. (b) One of the 
sample images of the MVS. (c) The recov- 
ered parabola after deconvolution and post- 
processing. Note that the tip of parabola 
is missing. This is because the tip is ac- 
tually is a small planar patch parallel to the 
camera. This is irrecoverable (see subsec- 
tion 5.2.1). As with the line and the plane, 
a standard interpolating function (e.g sinc) 
will give back a continuous paraboloid. Grid 
spacing: Az = 130pm, Ax = 208pm and 
Ay = 208pm. 

We showed how the shape of the OW of the MVS plays 
a critical role in the recovery of textureless scenes through 
a conjugacy condition. As specific examples, conditions for 
recovery of textureless planes, lines, cones and paraboloids 
were described. In addition, we derived a necessary condi- 
tion on the gradient of the recovered scene that arises due to 
the finite bandwidth of the MVS. 

Finally, we demonstrated the implications of our theory 
via experiments on a few textureless surfaces: a plane, a line 
and a paraboloid. It is worth reiterating that, since texture 
always aids in recovering depth, all the conditions that need 
to be satisfied by textureless surfaces are only significantly 
relaxed in the presence of texture. 
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