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Abstract 
We present an approach that significantly enhances the 

capabilities of traditional image mosaicing. The key obser- 
vation is that as a camera moves, it senses each scene point 
multiple times. We rigidly attach to the camera an optical 
filter with spatially varying properties, so that multiple mea- 
surements are obtainedfor each scene point under difSerent 
optical settings. Fusing the data captured in the multiple 
images yields an image mosaic that includes additional in- 
formation about the scene. This information can come in the 
form of extended dynamic range, high spectral qualiQ, or 
enhancements to other dimensions of imaging. We refer to 
this approach as generalized mosaicing. The approach was 
tested using a filter with spatially varying transmittance and 
a standard 8-bit blacvwhite video camera, to achieve image 
mosaicing with dynamic range comparable to imaging with 
a 16-bit camera. In another experiment, we attached a spa- 
tially varying spectral f l ter  to the same camera to obtain 
mosaics that represent the spectral distribution (rather than 
the usual RGB measurements) of each scene point. We also 
discuss how generalized mosaicing can be used to explore 
other imaging dimensions. 

1 Multi-Dimensional Mosaics 
Image mosaicing is a very popular way to obtain a 

wide field of view (FOV) image of a scene. The basic 
idea is to capture images as a camera moves and stitch 
these images together to obtain a larger image. Image 
mosaicing has found applications in consumer photogra- 
phy [ 3 ,  13, 18, 24, 25, 281 as well as uses in various sci- 
entific disciplines [ I  1, 16, 32, 331. It addresses the funda- 
mental problem of increasing the FOV without sacrificing 
spatial resolution. 

We show that image mosaicing can be generalized to ex- 
tract much more information about the scene, given a sim- 
ilar amount of acquired data. We refer to this approach as 
generalized mosaicing. The basic observation is that a typi- 
cal video sequence acquired during mosaicing has great re- 
dundancy in terms of the data it contains; as the camera 
moves, each scene point is observed multiple times. We 
wish to exploit this fact to explore additional aspects of 
imaging. Consider the setup shown in Fig. 1. A fixed fil- 

0-7695-1143-0/01 $10.00 0 2001 IEEE 

spatially 
varying 

filter 

Figure 1. Scene point A is imaged on the detector at A' 
through a spatially varying filter attached to the camera. 
As the imaging system moves, each scene point is sensed 
through different portions of the filter, thus multiple mea- 
surements are obtained under different optical settings. 

ter with spatially varying properties is rigidly attached to 
the camera. Hence, as the camera moves (or simply ro- 
tates), each scene point is measured under different optical 
settings'. This simple optical filtering significantly reduces 
the redundancy in the captured video stream. In fact, the fil- 
tering embeds in the acquired data more information about 
each point in the mosaic FOV. Beside mounting the fixed fil- 
ter, the image acquisition in generalized mosaicing is iden- 
tical to traditional mosaicing. 

For example, if the filter has spatially varying transmit- 
tance, the scene is effectively measured with different ex- 
posures. These measurements can be combined to obtain 
a high dynamic range (HDR) mosaic. Alternatively, if the 
spectral band transmitted by the filter varies spatially, we 
obtain multispectral data for each scene point. If a different 
imaging dimension is of interest to the user, all tielshe needs 
to do is change the optical filter. Note that in  previous work, 
the enhancement of each imaging dimension (e.g., FOV, dy- 
namic range, spectral resolution, polarization sensing, etc.) 
was considered separately from the others. In contrast, gen- 
eralized mosaicing provides a single, unified framework to 
enhance all or some of these dimensions. 

The only requirements for implementing generalized 
mosaicing are a simple optical filter and algorithms for im- 

'The filter is not placed right next to the lens, as this would only alter 
the aperture properties [8] without producing spatially varying effects in 
the image. 
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Figure 2. Two generalized mosaicing systems. [Left] A 
system composed of a Sony blacldwhite video camera and 
an  extended arm which holds the filter. [Right] A system 
that includes a Canon Optura digital camera and a cylindri- 
cal attachment that holds the filter. In both cases, the camera 
moves.with the attached filter as a rigid system. 

age registration and fusion that are compatible with the fil- 
ter’s spatially varying characteristics. The filter may be 
mounted inside the camera, though it is much simpler. and 
more flexible to mount it externally. Fig. 2 shows two pro- 
totype systems we developed’for our experiments. In one 
experiment, a standard 8-bit black-and-white video camera 
and a spatially varying neutral density filter were combined 
to form a mosaicing system2 with dynamic range compa- 
rable to a 16-bit camera. In another experiment, we used 
a blacWwhite video camera and a spatially varying spectral 
filter to obtain multispectral mosaics. 

2 Dynamic Range from Motion 
We can use generalized mosaicing to significantly extend 

the brightness dynamic range of imaging systems. Captur- 
ing both dim and bright objects with good quality is very 
important, and indeed there have been several approaches 
for extending the dynamic range. One approach to HDR 
imaging is to fuse differently exposed images [2, 6, 19, 211 
acquired sequentially with a static camera. Other ap- 
proaches are based on specialized hardware such as a mo- 
saic of neutral density filters placed on the detector [23], or 
using detectors with logarithmic response [ 5 ] .  

In the realm of mosaicing, simultaneous extension of the 
FOV and dynamic range by exploiting the automatic gain 
control (AGC) feature of a camera was proposed in [ 181. 
However, AGC has a global (or, at best regional) effect and 
does not guarantee the required measurements at all scene 
points. For instance, a bright scene point may remain sat- 
urated all through the image sequence if it happens to be 
surrounded by a large dark area. Similarly, a dim point may 
remain dark through the sequence when it is surrounded by 
a bright area. 

In our approach of generalized mosaicing, we mount a 
filter on the camera whose intensity transmittance varies 
across the filter’s extent. This causes an intended vignetting. 
Including vignetting effects originating from the lens, the 

*To eliminate reflections from the filters we mounted a dark hood be- 
tween the filter and the camera. 
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overall effect is equivalent to spatially attenuating the im- 
age by a mask iM(x), where x is the axis along which the 
mask is changing’. The moving system attenuates the light 
from any scene point differently in each frame. Effectively, 
the camera captures each point with different exposures dur- 
ing the sequence. Thus, the system acquires both dark areas 
and bright ones with high quality while extending the FOV. 

The method can be applied to almost any imaginable 
variable filter, such as a stepped filter [7]. We used an off- 
the-shelf linear variable neutral densityfilter [7], in which 
the transmittance changes exponentially across its extent. 
The mask M ( x )  in this case is approximately exponential 
as well. The order of magnitude by which the transmittance 
of this mask varies over the camera FOV is linear. 

2.1 Self Calibration of the Effective Mask 
It is possible to calibrate the mask “on the fly” from the 

sequence itself. Let I be the intensity of light that falls on 
the detector when the transmittance is maximum ( M  = 1). 
The intensity readout4 at pixel (2, y)  in frame k is 

. gk(2, Y) = qz, y)M(z) . (1) 
We approximate the mask by the average horizontal profile 

frames 

k = l  y 

In the limit of an infinite number of independent frames the 
estimate converges to the true mask. This simple estima- 
tion does not require prior registration of the images, and 
actually improves the registration, as discussed in Sec. 6. 

Once the images are registered, the estimation is refined 
in the following way. Let a scene point be seen in frame k 
at image point xk, with unsaturated intensity readout 

yk = I M ( x ~ )  . (3:) 
Then, this same scene point is measured without saturation 
in frame p at image pixel xp, with intensity readout 

Assuming the ‘scene radiance is constant between frames, 
these points should satisfy 

Tracking some of the scene points in several images pro- 
vides many such linear equations which the mask should 
satisfy at each image pixel x. This set of equations can 
be written as FM = 0. We also impose smoothness b y  
penalizing IV2MI2, the Laplacian of hrl. The result is an 
overconstrained system of equations and its least squares 
solution is 

$1 = a r g m i i i ( M t A t A i l l )  . (6) 
M 

sion. The results can be applied to 2D filter variations [7] as well. 

ized by the irradiance equivalent to detector noise level. 

3For simplicity we assumed filter variations along one spatial dimeri- 

4The readout g and the intensity I are unit-less since they are normal- 
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Figure 4. The self-calibrated log transmittance of the effec- 
tive mask. The order of magnitude of the mask changes ap- 
proximately linearly over most of the camera FOV. It extends 
the dynamic range of the camera by about 8 bits (factors of 
2). The mask function drops on the left due to vignetting by 
system components other than the filter. 

Figure 3. Images taken with the linear variable density filter. 
Scene features become brighter as they move leftwards in the 
frame. Bright scene points gradually reach saturation. Dim 
scene points, which are not visible in the right hand side of 
the frames, become visible when they appear on the left. 

Here, A = [Ft PLtIt, L is the matrix form of an approx- 
imation to the Laplacian and /3 is a parameter that weights 
the penalty for unsmooth solutions relative to the penalty 
for disagreement with the data. Singular value decomposi- 
tion yields the nontrivial solution up to a scale factor. The 
scale is set by letting max(M) = 1. These equations also 
enable the estimation of the covariance matrix of M ,  from 
which mask uncertainty estimates AM(z) are derived [4]. 

The images shown in Fig. 3 are samples of a sequence 
taken through a commercial filter, rigidly attached to an 8- 
bit video camera (shown in Fig. 2). As the camera was ro- 
tated about its center of projection, almost all scene points 
were measured 14 times across the camera's FOV. 

We registered the sequence of frames using the method 
described in Sec. 6. Then, we obtained about 50,000 equa- 
tions as Eq. (5) based on randomly picked pairs of corre- 
sponding image points, to determine the mask. For stabil- 
ity, each image point used for this estimation was unsatu- 
rated and also non-dark. The log of the self-calibrated mask 
is shown in Fig. 4. This mask enables the extension of dy- 
namic range by about 8 bits beyond the intrinsic dynamic 
range of the detector. Therefore, using an ordinary 8 bit 
camera we can obtain image mosaics with dynamic range 
close to that produced by a 16 bit camera. 

2.2 Fusing the Measurements 
We now describe the method we used to estimate the in- 

tensity at each mosaic point, given its multiple correspond- 
ing measurements. This is done after the images have been 
registered. Let a measured intensity readout at a point be gk 

We assumed the readout uncertainty to be A g k  = 0.5, since 
the intensity readout values are integers. Any image pixel 
considered to be saturated (gk close to 255 for an 8 bit de- 
tector) is treated as having high uncertainty, thus its corre- 
sponding Agk is set to be a very large number5. 

If the measurements Ik are Gaussian and independent, 
the log-likelihood for a value I behaves like - E 2 ,  where 

The maximum likelihood (ML) solution for the intensity I 
of this scene point is the one that minimizes E2:  

(9) 

where 

At the boundaries of the frames that compose the mosaic 
there is a transition between points that have been estimated 
using somewhat different sources of data, causing seams to 
appear in the mosaic. We used feathering [28] to remove 
these seams, i.e., weighting each pixel according to its dis- 
tance from the frame boundary. This weighting fits easily 
into our ML estimation; the uncertainty AIk is multiplied 
by a factor that smoothly increases to IX towards the image 
boundaries. More details are given in [26]. 

"his estimate for A Ik  assumes that the estimated mask is independent 
of the signal. Even if the mask is estimated using many points from the 
sequence, its dependence on a single intensity measurement is small. 

with uncertainty Ask, and the estimated mask be A? with 
uncertainty An;/. Compensating the readout for the mask, 
the scene point intensity is I k  = g k / M  with uncertainty 
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Figure 5. An image mosaic of 510 horizontal FOV, created with a generalized mosaicing system having dynamic range of 16 bits. It 
is based on a single rotation about the center of projection of an 8 bit video camera. Contrast stretching in the selected squares reveals 
the details that reside within the computed mosaic. The numbers beside the squares are the actual (unstretched) brightness ranges 
within the squares. Note the shape of the filament of the lamp in its reflection from the computer monitor. 

The images from the sequence, of which samples are 
shown in Fig. 3, were fused into a mosaic using this method. 
The histogram equalized version of log i is shown in Fig. 5. 
Contrast stretching of i in selected regions shows that the 
mosaic is not saturated anywhere, and details are seen wher- 
ever I 2 1. The HDR of this mosaic far exceeds that of the 
8-bit camera we used, due to the dynamic range of the gen- 
eralized mosaicing system. 

3 Spectrum from Motion 

Multispectral imaging has proven extremely useful in 
numerous imaging applications [9, 12, 17, 20, 29, 30, 341 
including, object and material recognition, color analysis 
and constancy, remote sensing and medical imaging. How- 
ever, the wide variety of methods used to capture multi- 
spectral images require the use of specialized and expen- 
sive hardware. In contrast, multispectral imaging nicely fits 
into the generalized mosaicing paradigm. We may use the 
same method that was used for HDR mosaicing. However, 
now the filter transmits a spectral band that varies across it. 
For example, if the left, central and right parts of the fil- 
ter were red, green and blue, respectively, then RGB values 
could be obtained for each image pixel. This is in contrast 
to interpolated values based on subsampled measurements 
obtained using CCDs coated with RGB filters. Such a con- 
figuration yields three broad band samples of the spectrum. 
With generalized mosaicing it is possible to obtain much 
finer spectral information than RGB. 

For enhanced spectral resolution, we mounted a com- 
mercial linear variable interference (spectra1)filter [7] on a 
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Figure 6. Images taken with the linear variable interference 
filter. The left of the FOV senses the energy density at 0.7~1, 
while the right senses i t  at 0 . 4 ~ .  Besides the spatial fea- 
tures of the scene, its illuminant may be characterized eas- 
ily by using a few frames. Here thejuorescent illumination 
is revealed by the typical spectral peaks [3 I] ,  seen as bright 
columns appearing in the same places in all the images. The 
peaks appear also in the horizontal profile averaged over 5 
frames in the sequence. 

blacklwhite video camera. The filter passes a narrow band 
around a central wavelength which changes linearly across 
the filter (horizontally). Its spectral range spans the visi- 
ble light wavelengths6. Therefore, mosaicing images taken 
with such a filter enables multispectral measurements of 
each scene point. Fig. 6 shows black-and white images ac- 
quired through the filter. 

&In other filters the spectral range may include the infra-red or UV 
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Figure 7. [Top] A color image mosaic rendered using the spectral data acquired at each point in its FOV, based on a single pass 
(rotation about the center of projection) of an ordinary blacwwhite camera with a single fixed filter. The scene was illuminated by 
incandescent lamps. [Middle] The spectrum is plotted for selected points. [Bottom] Using known spectra, the scene was rendered as 
fits left part is illuminated by a setting sun [22 ] ,  while its right part is illuminated by ‘cool-white’ fluorescent lamps [31]. In addition, 
a simulated red HeNe laser beam spot (A = 633nm) is “shone”at the top edge of the wooden brick. High resolution color images 
can be found at www.cs.columbia.edu/CAVE/ . 

In an experiment, the same blacWwhite camera that was 
used to yield the HDR mosaic was used with this spatially 
variable spectral filter7. The grabbed images were compen- 
sate for vignetting effects in the camera which were com- 
puted before hand. We registered the images using the 
method discussed in Sec. 6. The registration yielded a wide 
FOV multispectral image mosaic, that represents the spec- 
trum at each point. The multispectral mosaic was then con- 
verted to the RGB mosaic shown at the top of Fig. 7, via 
calculation of the CIE tristimulus values [lo]. The yellow- 
ish appearance of the scene should not come as a surprise, 
because the illumination was by incandescent lamps (whose 
light is rather yellow). Using a simple interactive tool we 
created, one can get the spectrum at any point simply by 
clicking on the point with the computer’s mouse’. 

As mentioned above, the availability of multispectral im- 

7The characteristics of the interference filter somewhat depend on the 
angle at which light is incident on it. However, in  the experiment the FOV 
angle of the camera was narrow enough to neglect this effect. 

“he compensation of vignetting enabled measurements of intensities 
higher than 255 with the %bit camera, as seen in Fig. 7. 

ages already plays a very important role in  many imaging 
applications. As a demonstration in the area of image ren- 
dering, we may render the scene under any illumination 
spectra. For example, given models of the spectra of flu- 
orescent lamps [31], sunset [22] and a HeNe laser, we ren- 
dered the image shown on the bottom of Fig. 7. To do this, 
we first estimated the illumination spectrum of the acquired 
images, by measuring the spectrum of a patch in the scene 
(the monitor’s label) that appeared to be white. 

In another experiment, we created a multispectral mosaic 
of the Macbeth ColorChecker, for which the reflectances 
R(&) in  narrow bands are known for each of the chart’s 
24 patches [ 101. For this verification experiment we mea- 
sured hundreds of wavelength samples per patch. We es- 
timated the expected spectrum of each patch, based on the 
known reflectances and the chart’s average spectrum. The 
plots of the expected spectrum and the measured one were 
in strong agreement for all the patches. The results for 
two patches are shown in Fig. 8. The correlation betwecn 
the known reflectances and the measured intensitics is very 
high: the correlation coefficient is M 0.98 on average. We 
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Figure 8. [Solid] Expected spectra (normalized) for two 
patches of the Macbeth ColorChecker, based on the chart’s 
average spectra and known reflectances. Each patch spec- 
trum is the multiplication of its reflectance by the estimated 
illumination spectra. [Dashed] The measured spectra. 

note that it was significantly larger than the average cor- 
relation coefficient, 0.65, between randomly picked bands’. 
According to this test, our measurements are consistent with 
the known reflectances. 

4 Illumination at a Glance 
One of the aspects of generalized mosaicing is the ease 

of obtaining spectral information. This information exists in 
each raw frame along with the spatial features which appear 
in ordinary images. Consider the images shown in Fig. 6. 
The spatial details of the scene are clearly seen (e.g, the 
computer monitor). This is due to the fact that the system is 
an imaging device which captures an area of the scene. At 
the same time, the frames are dominated by vertical bands 
which appear at the same places in all the images. 

To understand this, note that the illumination spectrum is 
similar in all the frames. Since the measured band changes 
horizontally across the frame, wavelengths at which the il- 
lumination energy is low manifest as dim vertical lines. 
Wavelengths at which the illumination is strong typically 
manifest as bright vertical lines (unless an object greatly 
absorbs these wavelengths). The bright bands in Fig. 6 are 
thus due to the characteristic spectral peaks of the fluores- 
cent lamp which illuminated the scene. 

Therefore, just a few frames may suffice to obtain cues 
about the illumination type and spectral distribution, while 
each frame supplies information about the 2D FOV. This is 
in contrast to many traditional methods of spectral imaging. 
Some of these methods capture, in each frame, the spectrum 
for a single ID line of the 2D FOV [17, 30, 341. These 
methods are based on prisms and gratings. There are other 
methods, such as those based on dichroic mirrors [34] and 

’This is the correlation between R(Xb) and the measured intensity 
I(&) for randomly picked bands b ,  q .  

tunable filters, that capture the 2D FOV, but each frame is 
measured with a single band. 

5 More Imaging Dimensions 
It is possible to measure other imaging dimensions with 

the same system that was’used to obtain HDR mosaics and 
multispectral mosaics. We are currently exploring estima- 
tion of the polarization of light, depth from defocus and a 
focused image of the entire scene (as in [ 151) using different 
spatially varying filters. 

Further, it may be possible to measure multiple scene 
properties simultaneously, using a “mega-filter’’ which can 
be formed by stacking individual filters, each of which mod- 
ulates a single dimension (brightness, spectrum, polariza-. 
tion, etc.). Each dimension may be modulated spatially in 
different octaves. Alternatively, different portions of the 
camera FOV may correspond to different types of filtering. 

6 Image Registration 
A scene point has different coordinates in each imagt: 

of the sequence. The measurements corresponding to this 
point should be identified before they can be fused. Image 
registration is based on the redundancy that exists between 
frames. However, the essence of generalized mosaicing is 
the removal of this redundancy in the raw images. There- 
fore, image registration becomes more challenging the more 
information we try to encode via filtering. For example, in 
multispectral mosaicing the scene may look quite different 
in the “red” wavelengths than in the “blue” wavelengths. 

If the motion is small enough, as in most video streams, 
the readout changes between consecutive frames will be 
small and traditional registration methods are adequate. 
However, when images are taken with large displacements, 
the spatially varying but temporally static effects of the filter 
become significant. Consider the images shown in Fig. 3 .  
Although features appear to be moving through the cam- 
era’s FOV, the static mask clearly dominates the images. 
This would bias traditional algorithms towards estimating a 
motion slower than the true one. The mask varies gradually 
across the image, thus highpass filtering the raw images as 
in [ 14,271 reduces the biasing effect. Nevertheless, it is not 
removed completely, from our experience. Also the images 
shown in Fig. 6 appear as iftaken through a static intensi1:y 
mask. Indeed, the bias occurred also in sequences of images 
captured with a spectral filter. 

Measurements of scene points that become darker due ‘to 
strong attenuation are relatively noisy. The same applies to 
scene points in the spectrally filtered images that are dim 
due to low illumination intensity in some spectral bands. 
Therefore, instead of matching the original image readouts, 
we use a transformed version of them that takes into ac- 
count the attenuation-dependent uncertainties. We adapted 
some aspects of traditional techniques to enable the regis- 
tration to cope with the spatially varying filtering effects. 
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Appendix A. 1 describes the principles underlying our algo- 
rithm (details are given in [26]). The algorithm maximizes 
the likelihood of the matched data, and is robust to the bias- 
ing problem. We note that registering ordinary (not filtered) 
images by minimizing their sum of squared difference is 
obtained as a special case of this algorithm. 

7 Conclusions 
We have proposed generalized mosaicing as a framework 

for capturing information along multiple imaging dimen- 
sions (or dimensions of the plenoptic function [I]) .  This 
is achieved by acquiring a similar amount of data as in the 
case of traditional mosaicing. Thus far, we have used this 
framework to compute high dynamic range and multispec- 
tral mosaics. However, generalized mosaicing is not limited 
to these dimensions; it is a general concept that can be ap- 
plied to other valuable dimensions (e.g., polarization, focus, 
depth). In addition, it permits the simultaneous enhance- 
ment of multiple dimensions. Generalized mosaicing can 
be applied in the presence of general motion, and other sce- 
narios encountered in traditional mosaicing (e.g., lens dis- 
tortions). More involved algorithms may be needed in such 
cases. However, as long as the spatially varying filtering re- 
moves part of the inter-frame redundancy, additional infor- 
mation can be extracted. In summary, generalized mosaic- 
ing has implications for several aspects of computer vision 
as well as other scientific disciplines such as astronomy and 
remote sensing. The simplicity of the technique suggests 
that i t  can also add significant value to digital photography. 
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A Appendix 
A.l Registration Algorithm 

The following is a brief description of the aspects of our 
registration algorithm, that handle the spatially varying ef- 
fects of the filter. Traditional registration by minimizing the 
sum of squared difference between frames is obtained as a 
special case. 
0 Each frame g(x, y) is roughly flat fielded using l /M(x) ,  
to yield an estimate of I ( x ,  y). This is based on an estimate 
of the mask ]VI by Eq. (1). The intensity uncertainty AI is 
estimated using Eq. (7), given the readout uncertainty Ag 
and an estimated mask uncertainty A M  (which may be ini- 
tially set to zero). In case a spatially varying filter is not 
present, M 3 1, thus A I  is constant. 

0 Let I1 and 12 be the intensity measurements at candidate 
corresponding pixels in two images, with respective uncer- 
tainties AI, and AI2. As in Eq. (8), the squared distance 
between this pair of pixel measurements is 

Epixel - 2  pair = [(i - Jl)/A11J2 + [(i - I2)/AJ2l2 . ( 1 1 )  

where i is given by Eqs. (9,lO). The distance measure for 
the entire images is 

- 2  - 2  
Etotal = Eeach corresponding pair . (12) 

all pixels 

The best registration between two frames (or between a new 
frame and an existing mosaic) according to this objective 
function is the one that minimizes k:ota,. If the measure- 
ments are Gaussian and independent, this is the most likely 
match. When the spatially varying filter is not present, 
A l l  = Alz, hence Eq. (12) is proportional to the sum of 
square difference between the images. 

0 The registration is done hierarchically, from coarse to 
fine resolution similar to [14, 25, 271. We create a Maxi- 
mum Likelihood pyramid, where not only the image value 
is stored at each scale, but also its uncertainty. The weights 
used in the construction of the pyramid structure depend 
also on the uncertainties of the pixels in each neighborhood, 
so that more reliable pixels contribute more to their coarse 
representation. If all the uncertainties are the same, the re- 
sult is the same as in a traditional image pyramid. Details 
on this structure are given in [26]. The representation of 
I 1 , 1 2 ,  Al l ,  AI2 at each scale enables efficient image regis- 
tration by maximizing the likelihood of the match. 

0 To reduce the accumulation of matching errors, each new 
sequence frame is registered to the current mosaic [13, 251, 
and then fused into it (see Sec. 2.2). 

0 In HDR data, we prefer to penalize for relative 
errors rather than absolute ones. We thus calculated 
s ( 2 ,  y) = logI(z ,y)  and As = ( d s / d I (  AI.  Then, we ap- 
plied the above algorithm to the s(z, y) images rather than 
the intensity images I ( z ,  y). 

A.2 Sampling Criteria for Still Images 
If a set of still images are acquired rather than a video 

stream, we cannot assume that frame displacements are 
small. The question then is what should the frame dis- 
placements be, or, how many times should each scene point 
be seen? In HDR mosaicing we required a transmittance 
change (due to motion) by at most a factor of 2 between 
consecutive frames, for each scene point. Each scene point 
is imaged at least 1 - log,(min M )  times, if max(M) = 1. 
This increment yields, for each scene point, one measure- 
ment relatively close to saturation. This bright measurement 
has the highest quality since its representation contains a 
maximal number of significant bits. 

In multispectral mosaicing, i t  is possible to minimize 
aliasing in the derived spectrum while using a relatively 
small number of images. This is due to the finite width 
of the transmitted wavelength bands. We have developed a 
criterion analogous to Nyquist sampling for the frame dis- 
placement. For rotations the angular change in the viewing 
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direction between image acquisitions is w D / 2 A  radians, 
where A is the distance of the filter from the lens and D is 
the lens aperture diameter. Detailed proofs of these results 
as well as other sampling criteria are given in [26]. 
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