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Abstract
Volumetric light transport effects are significant for manymaterials like skin, smoke, clouds, snow or water. In
particular, one must consider the multiple scattering of light within the volume. While it is possible to simulate
such media using volumetric Monte Carlo or finite element techniques, those methods are very computationally
expensive. On the other hand, simple analytic models have sofar been limited to homogeneous and/or optically
dense media and cannot be easily extended to include strongly directional effects and visibility in spatially varying
volumes. We present a practical method for rendering volumetric effects that include multiple scattering. We
show an expression for the point spread function that captures blurring of radiance due to multiple scattering.
We develop a general framework for incorporating this pointspread function, while considering inhomogeneous
media—this framework could also be used with other analyticmultiple scattering models.

1. Introduction

Volumetric scattering effects are important for making real-
istic computer graphics images of many materials like skin,
fruits, milk, clouds, and smoke. In these cases, we cannot
make the common assumption that light propagates without
scattering in straight lines. Indeed, themultiple scatteringof
light in participating media is important for many qualitative
effects [Boh87a, Boh87b] like glows around light sources in
foggy weather, or subsurface scattering in human skin, or
the spreading of a beam in a scattering medium, as shown in
Figure1.

Light transport, including multiple scattering in arbi-
trary scattering media, can be accurately computed by solv-
ing the radiative transfer equation [Cha60, Ish78]. Volu-
metric Monte Carlo and finite element techniques (volu-
metric ray tracing and radiosity) have been used by many
researchers [RT87, LBC94, Max94, BSS93, PM93, JC98].
However, volumetric multiple scattering effects are notori-
ously difficult to simulate. Solution times with the fastest
Monte Carlo approach range anywhere from a few hours
to a few days. For this reason, these effects are not usually
present in computer graphics imagery. Thus, one must look
for simpler approximations and models.

This paper describes a practical approach for computing
lighting and volumetric effects in spatially varying inhomo-
geneous scattering media, taking directionally-varying light-

ing effects into account. While simulating multiple scatter-
ing directly is computationally very expensive, the observ-
able qualitative properties are simple—the incident radiance
distribution is blurred and attenuated. There is spatial and an-
gular spreading of incident illumination inside the material.
This spreading can be expressed as apoint-spread function
(PSF) that formally measures the spreading of incident radi-
ance in a given medium. Intuitively, the point spread func-
tion tells us how the spatial and angular characteristics of
light are changed due to scattering events inside the mate-
rial. This enables us to formalize the light transport in vol-
umes as a convolution of incident illumination and the PSF
of the medium. Our approach uses the mathematical path in-
tegration framework [PAS03, Tes87] to describe effects of
multiple scattering in terms of spatial and angular blurring,
thus avoiding costly direct numerical simulation.

The main observable consequences of multiple scattering
in volumetric media are spatial and angular spreading of the
incident light distribution. We characterize different types of
spreading and focus on spatial spreading. We give a simple
expression for the spatial spreading width of a collimated
beam and compare it with Monte Carlo simulations. Once
the PSF of the medium is known, we present a practical ren-
dering algorithm using the PSF to compute effects of multi-
ple scattering. We separate the practical rendering algorithm
and its underlying principles from the mathematical details.
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Figure 1: Effects of multiple scattering. Collimated light source
(laser beam) is shone into a container filled with water. Milkhas
been added to water to add scattering particles. The photographs
show effects of multiple scattering with increasing concentration of
scattering particles. The effects of multiple scattering are visible as
spatial and angular broadening of the laser beam.

The rendering algorithm can therefore be implemented with-
out relying on heavy mathematics.

1.1. Overview

A volumetric medium acts as a point spread function that
changes spatial, angular and temporal characteristics of the
incident radiance (light field). What an observer sees is
therefore a convolution between the incident illumination
and the point spread function of the medium. The goal is
to express the PSF of the medium in terms of basic optical
properties (scattering coefficients and phase function) and
then show how it can be efficiently used in a rendering al-
gorithm. While the underlying mathematics behind detailed
derivations may not be trivial, the final algorithm is quite
simple:

1. Given a medium and incident illumination, find how
much light is available for redistribution due to multiple
scattering. This consists of computing the reduced inten-
sity of light due to simple attenuation.

2. Apply the point spread function to the light volume. This
is done by blurring the light volume with kernels of dif-
ferent sizes and storing the light volume at various levels
of detail.

3. During the rendering stage, at every point in the volume
we compute how much spreading (blurring) occurs due
to multiple scattering and we simply look up the result
from the blurred representation of the light volume.

2. Related Work

The radiative transfer equations and their approximations
have been extensively studied in many fields. We only men-
tion recent practical methods in computer graphics. The in-
terested reader is referred to a survey by Perezet al.[PPS97]
for detailed classification of global illumination algorithms
in participating media. Pharr and Hanrahan [PH00] also pro-
vide an extensive list of existing methods.

One simple approximation is to only consider single scat-
tering, as done by Ebert and Parent [EP90], Sakas [Sak90],

Max [Max86], Nakamaeet al. [NKON90], and Nishitaet
al. [NDN96]. However, they cannot easily reproduce impor-
tant qualitative effects due to multiple scattering like glows
around light sources, or subsurface scattering.

Another approach is to use the diffusion approximation,
first introduced in graphics by Stam [Sta95], following con-
ceptually similar work by Kajiya and von Herzen [KH84].
More recently, Jensenet al.[JMLH01] (also Koenderink and
van Doorn [KvD01]) applied it to subsurface scattering, de-
riving a simple analytic formula. This provides a practical
approach to a problem that had previously required an im-
mense amount of computation [HK93, DEJ∗99]. However,
the diffusion approximation is valid only for optically dense
homogeneous media, where one can assume the angular dis-
tribution of radiance is nearly uniform. It is also technically
valid only for infinite plane-parallel media. Further, the ap-
proach of Jensenet al. [JMLH01] is specialized to subsur-
face effects on objects, and cannot be easily extended to
volumes. Our method can be seen as analogous to the dif-
fusion point-spread function for general media, where we
handle spreading of light explicitly in arbitrary volumes.We
can therefore handle spatially varying general materials,and
highly directional effects.

In the context of subsurface scattering, fast integration
techniques, bearing some similarity to our approach have
been developed. For example, Jensen and Buhler [JB02] ex-
tended the diffusion approximation to be computationally
more efficient by precomputing and storing illumination in a
hierarchical grid. Lenschet al. [LGB∗02] implemented this
method in graphics hardware. The expensive illumination
sampling is alleviated by a simple lookup in the hierarchi-
cal grid. Our integration framework can be thought of as ex-
tending these ideas to general spatially varying media, with
strong directional effects.

Most recently, Narasimhan and Nayar [NN03] solved the
spherical radiative transfer equations to derive a generalfor-
mula for the PSF due to an isotropic point source in a spher-
ical medium. Their formula applies to general homogeneous
materials, and does not assume optically dense media, un-
like diffusion. Their application was to the inverse prob-
lem of estimating weather conditions from the glow around
light sources. While the direct solution of the radiative trans-
fer equations is impressive (something which our approach
does not explicitly do), the result is practically limited by
its restriction to homogeneous isotropic media. By contrast,
our rendering algorithm allows for spatially varying partic-
ipating media, and our framework accounts for anisotropic
sources and visibility effects in real scenes.

The idea of using point-spread functions has been ex-
plored in areas other than graphics, using statistical and other
complex mathematical machinery. Stotts [Sto78] described
the pulse stretching in ocean water. Given the starting point
and a plane some distance away from the pulse origin, Stotts
characterized stretching in terms of extra path lengths the
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photons travel due to scattering. McLeanet al. [MCH87]
used a Monte Carlo method to track individual rays. They
could compute the density of photons arriving at a fixed
plane some distance away from the origin from all direc-
tions and times. The results agreed well with computations
done by Stotts [Sto78]. Lutomirski et al. [LCH95] extended
the statistical analysis of Stotts. They provide exact statisti-
cal formulations for spatial, angular and temporal spread-
ing. Additional studies of beam spreading were done by
Ishimaru [Ish79] and McLean and Voss [MV91] who com-
pared theoretical results with experimental measurements.
Gordon [Gor94] rigorously derived equivalence of the point
and beam spread functions from the radiative transfer equa-
tion. McLeanet al. [MFW98] described an analytical model
for the beam spread function and validated their model with
Monte Carlo computations. They also give a comparison
with many other analytic models.

Our expression for the point spread function and the blur-
ring width stems from the formulation of light transport as a
sum over all paths [Tes87]. However, the derivation itself is
quite different and it does not rely on heavy mathematics of
path integration [APRN04].

3. Point Spread Function

A point spread function (PSF) measures the spreading of
incident radiance in a given medium. Intuitively, the point
spread function tells us how the spatial and angular charac-
teristics of light are changed due to scattering events inside
the material. For example, on a foggy day, a street light has
a distinct glow around it. The diameter of the glow is deter-
mined by the point spread function of the medium which in
turn is a function of the optical properties of the medium.
There are different types of spreading that occur as a con-
sequence of the multiple scattering. We discuss these differ-
ent types of spreading with focus on spatial spreading that
is particularly relevant for computer graphics applications.
We give a simple expression for the blurring width in the
medium and compare it with a Monte Carlo experiment.

3.1. Effects of Multiple Scattering

If we shine a laser beam pulse into a scattering medium,
the pulse undergoes a series of absorption and scattering
events. The effects of multiple scattering result in significant
changes to the pulse:

1. Spatial spreading. The pulse cross-section broadens as it
propagates through media, as shown in Figure1. We in-
corporate this effect into our algorithm.

2. Angular spreading. The angular divergence of a narrow
pulse gets larger as it travels through the medium. We do
not currently incorporate such effects into the algorithm
but provide necessary mathematical results for doing so
with a procedure similar to that used for spatial blurring.

3. Temporal spreading. Scattered photons of the pulse stay
behind the original unscattered photons since they have

Figure 2: Beam spreading in scattering media due to multiple scat-
tering.

to take longer paths. The direct consequence is that pulse
becomes longer as it travels through the medium. While
this effect is very important in many fields such as re-
mote sensing [WM99], it is of little interest for computer
graphics which deals with stationary solutions of light
transport. We will, however, see that explicit treatment
of time (or distance) dependence is very useful as an in-
termediate step.

Figure2 illustrates spatial, angular and temporal spreading
due to multiple scattering. Many of the subtle appearance
effects of scattering materials are a direct consequence of
beam spreading due to multiple scattering. As we see, it is
straightforward to qualitatively understand beam spreading
and stretching in the scattering media, but direct simulation
of multiple scattering and therefore of spreading (blurring)
is computationally expensive. The quantitative analysis of
spatial and angular spreading we present could provide more
insight into the appearance of scattering materials and could
lead to more efficient and simpler rendering algorithms.

3.2. Spreading Width

The width of the beam spread in a medium depends on the
amount of scattering in the medium. As shown in Figure1,
the width of the beam is directly proportional to the number
of scattering events in the medium. Assuming that scattering
paths comprising the beam have Gaussian distribution, we
derived the width of the beam spread of a collimated light
beam at distanceSas a function of optical properties of the
medium (absorption coefficienta, scattering coefficientb,
and mean square scattering angle〈θ2〉). We state the final
result for the beam width:

w2(S) =
1
2

(

2a
3S

+
16α
bS3

)−1

=
〈θ2〉bS3

16(1+S2/12l2)
, (1)

with l being adiffusive path length l2 = 1/(ab〈θ2〉) and
α = 1/(2〈θ2〉). A detailed derivation of the expression for
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width using the path integration framework is available in a
companion document [APRN04].

In a similar fashion to equation1, one can express the
angular spreading of light. In extreme cases, like the diffu-
sion approximation for optically dense media, the angular
distribution of light becomes nearly uniform. We currently
do not explicitly consider angular blur in our approach, but
an analogous expression for angular spreading is presented
in [APRN04].

It is clear from equation1 that the spread width is mono-
tonically increasing with the distanceS in the medium. The
beam width also increases with the number of scattering
eventsb. The more scattering events occur in the medium,
the more the beam is spread. This can be seen in Figure1
where the width of the laser beam is much wider with in-
creased concentrationb of scattering particles. The beam
spreading retains the directionality of the incident collimated
beam until some distances where the transition to diffusion
regime occurs. At this point the light field is essentially dif-
fuse and has no directionality that was present upon enter-
ing the medium. This effect can also be seen in Figure1
where in the liquid with large number of scattering parti-
cles (i.e. larger scattering coefficientb), light distribution
quickly becomes diffuse. The beam spread width also grows
faster with larger mean square scattering angle〈θ2〉. The
more forward-peaked the phase function is, the slower the
increase in the beam spread width. As expected, in the ab-
sence of scattering, the beam spread width is zero and the
beam is only attenuated due to absorption. The beam spread
width expression also does not have an upper bound. At first
glance this seems bothersome, but as we show later, the at-
tenuation increases at an even faster rate.

McLeanet al. [MFW98] summarize different expressions
for spreading width in the medium. Our particular expres-
sion in equation1 has the same functional form as many
other expressions with a different constant factor. Due to dif-
ferent assumptions and methods, most derivations differ in
the constant factor [MFW98]. Being relatively simple, our
approach provides an expression for spatial blurring that is
easy to evaluate. Rigorous approaches typically do not pro-
vide a general closed form solution and only special cases,
discussed below, can be evaluated. When we use these spe-
cial cases to compare our results against these more so-
phisticated theoretical methods, we find the accuracy of our
method to be sufficient given the needs of computer graphics
applications. This lends more solid ground to our approach.

Limiting Cases. For long paths (S � l ), the square
of the spatial width grows linearly with distanceS along
the path:w2 = 3

4〈θ
2〉bSl2. For another special case of no

absorption (l = ∞), the width is w2 = b〈θ2〉S3/16. For
these limiting cases, using a much more rigorous deriva-
tion, Tessendorf [Tes87] obtained the spatial width ofw2 =
b〈θ2〉S3/24 for case of no absorption andw2 = b〈θ2〉Sl2/2
with absorption. In comparison with Tessendorf, we obtain

Figure 3: Monte Carlo simulation of a scattering medium. Density
estimation of photons yields energy distribution in the medium. A
slice through the volume taken at the laser plane (horizontal slice at
the height at which photons were injected into the medium) isshown
for a particular configuration. Dimensions of the simulation domain
are shown as well as an actual slice through the volume. A vertical
profile at some distance from the source is shown.

a correct functional dependence on bothSand medium pa-
rameters, but are off by a constant factor of 3/2. This dis-
crepancy can be offset by multiplying our expression by a
constant correction factor (in this case the correction factor
is 2/3).

Absorption Effects. Note that unlike many comparable
formulations for the beam spread, our expression does have
dependence on absorption in the medium. Intuitively, if ab-
sorption is included, some light gets absorbed and conse-
quently the spread of the beam is narrower than with scatter-
ing only. This is consistent with observations that scattering
redistributes light in all directions while absorption hasjust
the opposite effect and tries to keep the beam collimated to
minimize attenuation. For many materials of practical inter-
est (e.g. clouds, water, snow), the absorption is often orders
of magnitude smaller than the scattering.

3.3. Monte Carlo Comparison

To check spatial spread width predictions from the model,
we compare blurring widths with Monte Carlo simulations.
Scattering of a laser beam entering participating media was
chosen for this testing since it provides the closest real-life
analogy with the idea of a single ray. A simulation was per-
formed by shooting 30 million photons into the medium and
storing their energies at the position of each scattering event.
Energy density estimation is done for the photons satisfying
the necessary boundary conditions, in this case those with
propagation direction within a small angle of the horizontal
axis. A 2D slice through the simulation volume in the plane
of the laser beam produces images of the type shown in Fig-
ure3. A single vertical column in this image is also shown.
The shape of this function can be directly compared with our
expressions for spatial spreading of the beam.

Monte Carlo simulation was preferred to the real exper-
imental curves because it is much easier to obtain the in-
formation we need for the most direct comparison with the
theory. Direct numerical comparison between actual experi-
ment and Monte Carlo simulation and our model is very dif-
ficult because exact optical properties for real materials are
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Figure 4: Top left plot shows the average case normalized inten-
sity profile compared to a Gaussian with corresponding theoretical
width. Other plots show spatial spread widths for differentscattering
coefficientsb as a function of distance along the beam. The scatter-
ing medium was simulated using the following parameters:g = 0.9
(〈θ2〉 = 0.24),a = 0.0003mm−1.

rarely available. To validate Monte Carlo simulation results
we, in turn, use them to create side views of the propagat-
ing beam from outside the container and compare them with
real photographs shown on Figure1. Profiles of such images
were found to be very similar in shape.

Normalized cross-sections of the beam at different dis-
tances from the entry point along with those predicted by
the model were plotted. An example is shown in Figure4.
While a significant portion of the profile is well approx-
imated by a Gaussian, the figure also demonstrates that a
wider non-Gaussian component not captured by our model
is also present. Since this component has low magnitude
compared with the main profile, we believe it will not sig-
nificantly affect rendered images. A more accurate model
would certainly be needed for applications where such de-
tails of scattering are important. Figure4 shows our average
case—some curve shapes agree better with our predictions
while others deviate more.

We extracted Full Width at Half Maximum (FWHM) of
the beam cross-section as the function of distance from the
entry point for several Monte Carlo simulations using differ-
ent scattering coefficientb, while other values were fixed to
their typical values. The results are shown in Figure4 along
with corresponding theoretical predictions. Noticeable blur-
ring starts only after the beam travels some distance in the
medium. We therefore compute blurring width by plugging
in a shifted length value into our expressions which corre-
sponds to a horizontal offset of calculated curves. A value of
8/b for the amount of shift gives good agreement with the
experiment.

To study beam attenuation (discussed in more detail in
Section4.5), we plot the dependence of light energy den-

Figure 5: Laser beam attenuation. Left: beam attenuation compar-
ison between Monte Carlo simulation, Beer-Lambert exponential
attenuation law, and modified exponential attenuation. Right: log-
scale plot of beam attenuation.

sity along the beam axis from the distance to the beam en-
try point (Figure5). We found that for the first several or-
ders of magnitude, the attenuation is well described by the
Beer-Lambert exponential attenuation law. The effective at-
tenuation coefficient, however, is noticeably lower than our
simpleexp(−cs) prediction and deviation is increasing for
denser media reaching about 0.45c for the densest medium
we used. The attenuation coefficient given by diffusion ap-
proximation does even worse job due to inapplicability of
this approximation to the clearly direction-dependent case
we study. Obtaining a better expression for attenuation is left
as an important area of future research.

4. Mathematical Details

In this section, we introduce the mathematical preliminaries
of the radiative transfer equation and path integration, nec-
essary for relating the traditional light transport equation to
a less commonly used convolution formulation. We provide
some intuition behind the point spread function and how it
relates to traditional ray tracing.

Readers more interested in implementation may wish to
skip to Section5, that will use the point spread function for
a practical algorithm to compute effects of multiple scatter-
ing.

4.1. Radiative Transfer Equation

Optical properties of volumetric materials can be character-
ized by densityρ(x), their scattering and absorption coeffi-
cientsb(x) anda(x), the extinction coefficientc(x) = a(x)+
b(x), and the phase functionP(x,~ω,~ω′). The phase function
P describes the probability of light coming from incident di-
rection~ω scattering into direction~ω′ at pointx. The phase
function is normalized,

R

4π P(~ω,~ω′)dω′ = 1 and only de-
pends on the phase angle cosθ =~ω ·~ω′. The mean cosineg of
the scattering angle is defined asg=

R

4π P(~ω,~ω′)(~ω ·~ω′)dω′

and the average square of the scattering angle〈θ2〉 is

〈θ2〉 = 2π
Z π

0
θ2P(~ω,~ω′)sinθ dθ. (2)

The most general case of light transport in arbitrary media
is described by the time-dependent radiative transport equa-
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(a) No scattering (b) Single scattering
Figure 6: Green’s propagator for the light transport equation can
be related to marching along a ray and computing effects of attenu-
ation operatorGnoscatterand single-scattering operatorGsingle.

tion [Cha60, Ish78],
(

∂
∂s

+~ω ·∇+c(x)

)

L(s,x,~ω) =

b(x)

Z

4π
P(~ω,~ω′)L(s,x,~ω′dΩ′)+Q(s,x,~ω), (3)

where we have expressed timet in units of lengths, with
s= vt. As compared to the standard time-independent equa-
tion, we have introduced the term∂/∂son the left-hand side.
Q(s,x,~ω) is the source term, accounting for emitted illumi-
nation from light sources.

From the general theory of linear integral equa-
tions [BG70], it is known that the solution of equation3 can
be expressed as a convolution of the initial source radiance
distributionQ = L0(x

′,~ω′) with a Green’s function or prop-
agator (evolution operator)G(s,x,x′,~ω,~ω′):

L(s,x,~ω) =
Z

G(s,x,x′,~ω,~ω′)L0(x
′,~ω′)dx′ d~ω′. (4)

Physically, the Green propagatorG(s,x,x′,~ω,~ω′) repre-
sents radiance at pointx in direction~ω at times due to light
emitted at time zero by a point light source located atx′ shin-
ing in direction~ω′. Mathematically, it is the solution of the
homogeneous version of equation3 (i.e. with source term
set to zero) with initial condition expressed using the Dirac
delta functionδ as

G(s= 0,x,~ω,x′,~ω′) = δ(x− x′)δ(~ω−~ω′). (5)

4.2. Green’s propagator and relation to raytracing

In the absence of scattering (b= 0), the solution for the com-
plete propagatorG is almost trivial:

G(s,x,~ω,x′,~ω′) ≡ Gnoscatter(s,x,~ω,x′,~ω′) =

δ(x−~ωs− x′)δ(~ω−~ω′)×exp

(

−
Z s

0
c(x−~ω(s− s′))ds′

)

. (6)

Here the light travels in a straight line and is attenuated by
the absorption coefficienta(x) = c(x). One can see that in
this case, the formulation using the propagator is equiva-
lent to simple raytracing (Figure6). This simple attenuation
model is quite popular in computer graphics and it is often
part of popular APIs like OpenGL (fog attenuation).

We can also write the propagatorG to include an arbi-
trary number of scattering events. For example, single scat-
tering propagatorGsingle includes light that has been scat-
tered only once and the light that has not been scattered at
all (as above). To formalize it, we note that propagation from
starting position and direction(x′,~ω′) to final position and
direction(x,~ω) requires three steps. First, light is attenuated
over distances′ to an intermediate pointx′′. Second, the light
scatters at pointx′′ from initial direction~ω′ to final direction
~ω. Only a fraction that is determined by the phase function
P of the incident radiance scatters into the new direction.
Third, light is further attenuated from the intermediate point
x′′ to the final pointx′. To include all possible intermediate
points where a scattering event occurs, the propagatorGsingle
is given by integration over all intermediate points:

Gsingle(s,x,~ω,x′,~ω′) = Gnoscatter(s,x,~ω,x′,~ω′)+
Z s

0
ds′

Z

|x′′−x′|=s′

Z

S2

(

Gnoscatter(s− s′,x,~ω,x′′,~ω′′′)×b(x′′) (7)

Z

S2
P(x′′,~ω′′,~ω′′′)Gnoscatter(s′,x′′,~ω′′,x′,~ω′)dω′′

)

dω′′′dx′′ .

This expression again directly corresponds to the standard
single scattering ray marching algorithm commonly used
in computer graphics. Marching along the viewing ray and
sending shadow rays (that are also attenuated) toward a light
source corresponds to the three steps discussed above (Fig-
ure6).

We could further rewrite the propagator to include higher
order of scattering events by recursively expanding the prop-
agator. But, as demonstrated by equation7, the expression
would quickly become unmanageably complex due to addi-
tional angular integrations that have to be performed to ac-
count for higher orders of scattering. Therefore, it is often
useful in practice to split the propagatorG into two parts: un-
scattered and single-scattered (or “direct”) lightGd = Gsingle
and one for multiply scattered (or “indirect”) lightGs and
solve them separately:

G(s,x,~ω,x′,~ω′) = Gd(s,x,~ω,x′,~ω′)+Gs(s,x,~ω,x′,~ω′)
(8)

The initial condition for the scattered light propagatorGs is
straightforward, because there is no multiply scattered light
in the beginning:

Gs(s= 0,x,~ω,x′,~ω′) = 0 (9)

We will use existing techniques for computing direct
lighting described byGd. Our main goal in this work will
be to efficiently deal with propagatorGs (multiply-scattered
light) that could lead to faster rendering algorithms for par-
ticipating media.

4.3. Path Integral Formulation

The path integral (PI) approach provides a particular way to
express the propagatorG(s,x,~ω,x′,~ω′). It is based on the
simple observation that the full process of energy transfer
from one point to another can be thought of as a sum over
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transfer events taking place along many different paths con-
necting pointsx andx′, each subject to boundary conditions
restricting path directions at these points to~ω and~ω′, re-
spectively. The full propagator is then just an integral of in-
dividual path contributions over all such paths. This object
is called thepath integral. One can further notice that the in-
tensity of light traveling along each path will be only dimin-
ishing due to absorption and scattering events along the path.
This is because in-scattering into the path, which is generally
treated as a process increasing light intensity, in a particular
direction will be due to photons traveling adifferent path
in the medium (we ignore here exact backscattering which
can return photons exactly to the same path). Therefore, if
we introduce effective attenuationτ along the path, we can
write the individual path contribution (weight) asexp(−τ),
and the complete propagator as

G∼
Z

exp(−τ(path))Dx, (10)

where the attenuationτ is analogous to the classicalaction
A along the path, with exp(−τ(path)) ∼ exp(−A(path)).

Because the integration is performed over the infinite-
dimensional path space using highly non-intuitive differ-
ential measureDx defined for it, the mathematics of
path integrals is exceptionally complex [FH65, LRT82].
Tessendorf [Tes89] derived a path integral expression for
the propagatorG in homogeneous materials. Interested read-
ers are referred to his further work [Tes91, Tes92] for de-
tailed derivations of the path integral formulation. Using
much simpler tools, one can still obtain some useful re-
sults [PAS03] of the PI theory, which we will present here
without detailed derivations.

First, part of path weight or action due to multiple scatter-
ing in the integral in equation10can be shown to be propor-
tional to:

exp(−A(path)) ∼

exp

(

−

Z s

0

[

a(~γP(s′))+
α

b(~γP(s′))

∣

∣

∣

∣

dθ
ds′

∣

∣

∣

∣

2
]

ds′
)

, (11)

where~γ(s) is a path length parameterized path,dθ/ds is its
curvature, andα = 1/4(1− g) = 1/(2〈θ2〉), where〈θ2〉 is
the mean square scattering angle. Integration is performed
along the path.

One can find a path which maximizes this expression (i.e.
has minimal attenuation or action among all possible paths).
We call it the most probable path (MPP). For the important
special case of homogeneous media under boundary condi-
tions when path directions are specified at both ends, one
can determine the shape of MPP of given length analyti-
cally with the standard Euler-Lagrange minimization proce-
dure [Fox87]. The result is a “uniformly turning” path of
constant curvature which is changing its direction at a con-
stant rate.

We further assume that only a small fraction of paths

Figure 7: Once we find a set of most probable paths for given
initial conditions, we compute contributions along those paths and
some neighborhood around these paths. All other paths are ignored
because they are deemed not important. In practice, we do noteven
consider the full set of MPPs, but rather a subset of those which are
the easiest to treat.

“around” the MPP contribute significantly to the integral
and will restrict the integral to account for the contribu-
tion of these important paths only. Formally, this constitutes
a Wentzel-Kramer-Brillouin (WKB) expansion [LRT82] of
the path integral while physically and visually it accounts
for the fact that blurring of the radiance distribution is the
most notable characteristic of participating media. The basic
idea of our approach, using the most probable path, and a
neighborhood around it, is shown in Figure7.

4.4. Surrounding Path Contribution

In computer graphics, a boundary condition of particular in-
terest is asingle-sidedone, which requires the path to start at
a particular point in space with particular initial direction (an
example is the eye position and primary viewing ray direc-
tion) but applies no additional restrictions on the second end
of the path. The path will usually terminate once it reaches
an object (or a light source) in the scene. Suppose we found
the MPP for this boundary condition and computed its con-
tribution. We would now like to approximate the complete
path integral by taking into account only the contribution of
“surrounding” paths. This operation formally constitutesa
WKB expansion of the integral.

If we parameterize the family of nearby paths using some
vector of parameters~ξ (with~ξ=0 at the MPP), the path in-
tegral can be written as an integral over these parameters.
Note that becauseA in equation11 has the global minimum
at the MPP, its expansion in terms of parameters~ξ will start
from square terms. That is, if there is only one parameterξ,
a simple Taylor series is,

A(ξ) = A(0)+
1
2

ξ2 ∂2A
∂ξ2 + . . . ,

exp(−A(path)) ∼ exp(−A(MPP))exp

(

−
1
2

ξ2 ∂2A
∂ξ2

)

,(12)

where the linear term in the top equation is omitted because
A(0) is a minimum, andA(0) corresponds to the action for
the most probable path. Note that the bottom equation has a
Gaussian form, giving weights to nearby paths according to
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their “distance” from the MPP. If~ξ is now a vector, we may
write the propagator in equation10as

G∼ exp(−A(MPP))
Z

ξ
exp(−(ξ∇ξ)

2A/2)dξ. (13)

The first term here is the MPP contribution and the integral
is over re-parameterized path space. Although integration
space is still infinite-dimensional, we can use this expression
to estimate some important properties of the radiance distri-
bution by writing out the expansion ofA for some family of
nearby paths in terms of relevant parameters while keeping
others fixed. In particular, we will be interested in radiation
blurring along the path, which can be measured by thespa-
tial width of contributing paths.

4.5. Full Propagator

So far we considered different parts of multiply-scattered
light propagatorGs as suited our needs. We now put ev-
erything together and write the full approximate expression
which will be directly used by the rendering algorithm. To
obtain full energy transfer expression, we multiply the con-
tribution of each path by its probability and sum over all
paths. Note that from statistical point of view, this is just
the expected value of “standard” single path attenuation
exp(−

R s
0 c(~γ(s′))ds′) over the pdf of paths given by equa-

tion 11. We can therefore writeGs as

Gs(s,x,~ω,x′,~ω′) =
Z

exp

(

−
Z s

0
c(~γ(s′))ds′

)

Cexp(−A(~γ(s′)))Dx (14)

The first factor simply states that light which scatters out
of the path (or absorbed along it) is lost as far as the given
path is concerned and is analogous toGnoscatterpresent in
the expression forGsingle, equation7. The second factor is
due to accounting for probability of the specific sequence of
scattering events (and absence of any absorption ones) which
forced this particular path and not any other to be chosen and
C is a normalization constant.

An expression for multiply scattered radiance is obtained
using general equation4. Singly scattered (per unit length)
radiancebL0 serves as the sourceQ for multiply scattered
light, leading to

Ls(s,x,~ω) =
Z

x′ ,~ω′

Z

exp

(

−
Z s

0
c(~γ(s′))ds′

)

Cexp(−A(~γ(s′)))Dxb(x′)L0(x
′,~ω′)dx′d~ω′ (15)

We will now replace integral over complete path space
with that over only paths surrounding the MPP, treating the
first term in equation14 as approximately the same for all
such paths and take it out of the path integral. The second
term can be expressed by equation12 andexp(−A(MPP))
is also taken out of the path integral. The rest of the path
integral gives simply the fraction of all paths which satisfy
boundary conditionsregardlessof the specific path shape

(but adjusted for absorption to avoid double-counting since
this is already included in the first term in equation14). For
simplicity, we consider here only directional light sources
and assume that single scattered light distribution is strongly
forward peaked, ignoring angular spreading introduced by
single scattering event. This means that path fraction is di-
rectly given by the multiply-scattered phase functionPMS
which gives the probability of light being scattered by a
given angle after given number of scattering events. Only
the integration over the support of the Gaussian remains:

L(s,x,~ω) = exp

(

−

Z s

0
c(MPPs(s

′))ds′
)

exp(−Ac(MPPs))

×PMS(~ω−~ω′)
Z

plane⊥MPP
gauss(x′,w(s))b(x′)L0(x

′,~ω′)dx′(16)

wheregauss(x′,w(s)) is a Gaussian of widthw(s) given by
expression1 applied at positionx′ andAc represents the cur-
vature part of the action function. Parameters emphasizes
thatMPPs is constructed for given total length s. Explicit in-
tegration over complete(x′,~ω′)-space present in the original
expression is replaced by integration over its much reduced
subset selected by the set of MPPs we consider. This is the
key to efficiency of algorithms based on WKB expansion
of the path integral. For arbitrary light sources, directional
integration will remain and can be performed using similar
procedures and expressions for angular blurring [APRN04].

INHOMOGENEOUS MEDIA. The final step is to recall
that in computer graphics we need a time-independent so-
lution given by integration of expression16 over all path
lengths s. We also note that since only integrals along paths
are used, the result does not depend on whether the medium
is homogeneous or not (but, in general, the set of MPPs will).
It is useful therefore to write final expressions using the total
number of scattering events along the path` =

R

b(~γ(s′))ds′:

L(x,~ω) =
Z

`
d`exp(−(c/b)`(MPP̀ ))exp(−Ac(MPP̀ ))

×PMS(`,~ω−~ω′)
Z

plane⊥MPP
gauss(x′,w(`))L0(x′,~ω′)dx′, (17)

Multiply-scattered phase function in WKB approximation
is given by Tessendorf and Wasson [TW94] asPMS(`,θ, ) =
(1/N)P(θ/

√

`/(1−exp(−`))) with new normalization
constantN introduced to ensure that

R

PMS(`,θ)dω = 1. We
can also re-parameterize our (2/3)-corrected expression1 for
blurring width as

w2 =
〈θ2〉`S2

24(1+ 〈θ2〉(a/b)`2/12)
. (18)

As will be clear from our algorithm, we will be avoiding con-
structing curved MPPs which was shown to be quite compli-
cated [PAS03]. Under such conditions, keeping the curva-
ture term inAc(MPP) in its exact form is an overkill and we

can simplify it to
R α

β

∣

∣

∣

dθ
ds′

∣

∣

∣

2
ds′ ≈ α(∆θ)2/` where∆θ is the

total angle change along the path. This completes the deriva-
tion. In section5 we will describe the procedure we use to
efficiently implement calculation suggested by equation17.
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Algorithm 1 Preprocessing

function PreprocessVolume(Volume V)
for each light sourceSi

Li = ComputeLightAttenuationVolume(V, Si )
BuildVolumePyramid(Li )

function ComputeLightAttenuationVolume(Volume V, Light S)
for each voxel xi in V

// Compute transmittanceT from voxelxi to
// light sourceS(xlight) – see Figure8.
T = exp( - c * Distance(xi , xlight) )
StoreLi = T * LightIntensity( S ) in voxel xi

function BuildVolumePyramid(Light Volume LV)
for each level l (from 1 to log2(size)) in LV

Resample levell −1 to half the size
Apply Gaussian filter with widthσ to downsampled volume

5. Rendering Algorithm

Our implementation sacrifices the accuracy of computation
for efficiency by making a number of further simplifications
to deal with already simplified but still rather complex equa-
tion 16. We believe that since the main observable conse-
quence of multiple scattering is blurring, it is not crucialto
accurately reproduce the result of such a process as long as
its most general characteristics (for example, the degree of
blurring with the distance to the observer) are captured. A
process which results inlossof detail should not incur a dra-
matic computational penalty as is the case with most existing
rendering algorithms. The pseudocode for the rendering al-
gorithm is summarized in Algorithm 2.

As a PRECOMPUTATION STEP, we first compute the at-
tenuated light volume for every light source (function Com-
puteLightAttenuation in Algorithm 1). From every voxelxi
in the volume, we send rays towards a light source (xlight ),
compute attenuation along the ray and store the intensity in
the voxel. We currently compute a separate light volume for
each light source. The purpose of this precomputation is to
build an efficient data structure such that we can quickly
lookup how much light is available for redistribution at any
point in the volume. We also build a hierarchical represen-
tation of this data structure (function BuildVolumePyramid
in Algorithm 1). This hierarchy allows us to get lighting in-
formation at different scales. It is built by applying a set of
Gaussian filters with different standard deviationsσ to the
attenuated light volume. The standard deviationσ can be
chosen based on the optical properties of the medium to bet-
ter cover the expected range of blurring widthsw (from 0 to
a user specified maximum width). The filter width for every
level is stored with the rest of the data. We use iterative filter-
ing to accelerate the construction process. The blurred light
can be stored at full resolution but it is wasteful to do so, be-
cause detail is removed by Gaussian blurring. After blurring
we also resample the volume with a tent filter to produce
a lower level stored in a pyramid. Therefore, the hierarchy

Figure 8: To speed up multiple scattering computation we approx-
imate a true curved path with two line segments and compute the
blur width that occurred along this path. We then spatially blur the
incident radiance and apply proper attenuation to compute the con-
tribution of paths within this cone to multiple scattering.

is essentially a three-dimensional mip-map. There are var-
ius data structures that can holding blurred lighting infor-
mation. Our particular implementation is a variation of the
deep shadow map [LV00]. For a reasonably sized volumes
(1283 voxels), creation of the light pyramid takes under 10
seconds.

DURING RENDERING, we sum up contributions along
light paths. Although the true light path is curved, we instead
approximate true path with two linear segments as shown on
Figure8. We refer to computation steps in Algorithm 2. We
start by stepping into the media along the viewing ray by
some distances1 (line 1) to arrive at pointx1. We then con-
struct a line segment fromx1 to the exit pointxlight in the di-
rection of a light source. This segment has lengths2 (line 2)
and its corresponding number of scattering events is`2 (line
6). We then get the radiance at pointx1 from our blurred
light volume data structure. The level of the pyramid is cho-
sen based on the blurring width given by equation1 (line 8)
for the total approximate length of the pathS= s1 + s2. At
each level we have stored the blur width that we used during
precomputation. We search through the widths in the light
volume pyramid to find the corresponding level. If necessary,
we interpolate between two different levels like in standard
texture mip-mapping (line 9). The multiple scattering contri-
bution has effectively been reduced to a simple table lookup.
Thus far we have determined spatial spreading due to multi-
ple scattering, but have not yet accounted for attenuation.We
multiply spatially spread radiance by the necessary attenua-
tion given by remaining terms in equation16: phase function
(line 11), path curvature (line 12), and attenuation (line 13).

To find the next sampling point, we project the blur width
onto the viewing ray along the light direction to determine
the next sampling point as shown on Figure9. This avoids
counting the same light contribution more than once. Some
moderate overlap still occurs but it can be controlled by in-
creasing step size if it presents a problem. The side effect of
this process is that the step size gets progressively largeras
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Figure 9: To choose the next sampling point (red circle), we
project a sphere with radius equal to the blur width along theline
onto the viewing ray. This process is repeated until the ray exits the
volume or entire ray has been covered by contributions due tomul-
tiple scattering.

Algorithm 2 Rendering algorithm summary

function L = MultipleScattering(Light Volume LV )
// α = 1/4(1−g)
// PMS(theta, `) = N∗P(theta/

√

`/(1−exp(−`)))
// N - precomputedPMS normalization
for each sampling pointxi

(1) s1 = Distance(xi ,xcamera)
(2) s2 = Distance(xi ,xlight)
(3) S= s1 + s2

(4) d` = Distance(xi ,xi−1)∗b
(5) Compute scattering number`1 = `1 + d`
// `2 can be precomputed in ComputeLightAttenuationVolume
(6) Compute scattering number`2

(7) ` = `1 + `2

(8) Compute blur widthw =

√

〈θ2〉`S2

24(1+〈θ2〉(a/b)`2/12)

// Lookup() returns precomputed attenuated radiance L
// from the mip-map at pointxi and blurring levelw
// Multiple scattering contribution has
// been reduced to a simple lookup in the table
(9) L = Lookup(xi , LV, w)
(10) theta = arccos(~ω ·~ω′) // scattering angle
(11) P =PMS(theta, `) // Multiple scattering phase function
(12) C =α∗ theta2/` // Path curvature
// Weight multiple scattering contribution
(13) weight = exp( -(c/b)̀ ) * exp( -C ) * P
// Add multiple scattering contribution
(15) Ltotal = Ltotal + L*weight

return Ltotal

we march along the ray since the blur width is monotonically
increasing with the distance.

For inhomogeneous media, the computational procedure
is similar. The only difference is that due to spatial variation
of optical properties, we need to integrate scattering coeffi-
cient along the path:̀ =

R

b(xstart +s′~ω)ds′. Since` along
the path is expensive to compute during rendering, we com-
pute and storè2 (light part of the path) in another data struc-
ture during preprocessing. This does not lead to any increase

Figure 10: Comparison between no scattering, single scattering
and multiple scattering. The room is filled with very thin scattering
medium.

Figure 11: Comparison between multiple scattering (left) and sin-
gle scattering only (right).

in computation since it is already available during light vol-
ume construction phase. As we step further into the volume,
we also keep track of̀1 for the camera part of the path (s1).

6. Results

We show some examples of volumetric media rendered with
the algorithm presented in this section. Figure10 shows an
artificial scene with a small area light source that shows ba-
sic differences between no scattering (left), single scattering
(middle) and multiple scattering (right). The effects of multi-
ple scattering are clearly visible as the glow around the light
source.

Figure11 shows a comparison between single scattering
and multiple scattering in a cloud. Single scattering albedo
in a cloud is very high and many scattering orders must be
considered to get expected appearance. An example in Fig-
ure12 compares a rising smoke image rendered with the al-
gorithm presented in this section and traditional Monte Carlo
ray marching. The difference between the two images is very
subtle (Monte Carlo image is slightly brighter). The Monte
Carlo solution required about 3 hours, while the presented
algorithm took approximately 10 minutes.

Figure13shows inhomogeneous participating media. The
rendering time for this image (800 by 800 resolution at 9
samples per pixel) was about 30 minutes on a 1 GHz Power-
book G4 with 512 Mb of RAM. It is interesting to note that
the single-scattering computation dominated the rendering
time. Both components use the precomputed light volume
that stored reduced intensity. However, the single scattering
computation must resolve very fine features of the partic-
ipating media and the step size is therefore much smaller
than it is in multiple scattering computation. The step size
in ray marching for multiple scattering component gets pro-
gressively larger as we move further away from the cam-
era. The participating medium was stored as density in a
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Figure 12: Rising smoke column rendered with our algorithm
(left) and reference image rendered with Monte Carlo raytracing
(right).

Figure 13: Cornell box with inhomogeneous participating media.
Effects of multiple scattering are clearly visible as the glow around
the light source that cannot be captured by single scattering compu-
tation only.

volume grid containing 1283 voxels. The scattering coef-
ficients are then computed from density by multiplying it
by scattering cross-sections of the volume:a(x) = Cabsρ(x)
and b(x) = Cscaρ(x), whereCabs is the absorption cross-
scattering,Cscais the scattering cross-section, andρ(x) is the
density of the medium at pointx. This requires 8 Mb of stor-
age. The light volume pyramid required 32 Mb, and the pre-
computed value of̀2 required an additional 8 Mb. While the
storage requirements are moderate, they are not insignificant
for large volumes. Monte Carlo methods with standard vari-
ance reduction techniques (e.g. importance sampling, Rus-
sian roulette,etc.) took almost 12 hours to compute, but it
required less memory (8 Mb). Figure14shows multiple scat-
tering in homogeneous participating medium illuminated by
a spotlight.

Figure 14: Multiple scattering in homogeneous participating
medium.

7. Discussion and Future Work

We have presented a practical technique for rendering effects
of multiple scattering in volumetric media. We avoid direct
numerical simulation of multiple scattering by taking advan-
tage of spatial spreading. At the heart of our method is the
expression for blurring width and the point spread function
derived from a path integral analysis of light transport. While
the PSF is derived under simple assumptions, effectively cal-
culating the path width for spreading of a beam in a homo-
geneous medium, it can be applied to inhomogeneous media
as well. The expression is reasonably accurate, as shown by
comparison to both previous theoretical results, and Monte
Carlo simulations. Since we are primarly interested in qual-
itative effects of multiple scattering and not numerical accu-
racy, this approximation is reasonable in practice. The main
benefit is that the qualitative features of multiple scattering,
such as spatial blurring of incident radiance, are computed
more efficiently than previous methods. While the mathe-
matics of the derivation are somewhat involved, the practical
implementation is relatively simple. Further computational
savings are obtained by using a progressively larger step
size in ray marching since the blur size monotonically in-
creases with distance. The net result is a practical algorithm
that captures the characteristic effects of multiple scattering
in a fraction of the time required by Monte Carlo simulation
methods.

There are disadvantages to our approach, that form in-
teresting directions of future work. From a theoretical per-
spective, we consider only the overall statistics of the phase
function, not its particular shape. This and other approxima-
tions result in some quantitative differences with respectto
Monte Carlo simulations. Furthermore, the computation of
multiply scattered light attenuation in our algorithm is not
straightforward, and is worth investigating further. Froma
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practical perspective, the main disadvantage of the current
implementation is that we precompute the light attenuation
volume for each light source. While this is simply an opti-
mization or time-space tradeoff, it can become quite expen-
sive for a large number of light sources. We would benefit
from a more efficient data structure for the lighting volume,
that stored the incident lighting distribution at each point in
a compact representation like spherical harmonics.

In summary, multiple scattering effects like spatial blur-
ring give rise to some of the most distinctive features in vol-
umes and participating media. Previous approaches have in-
volved very expensive Monte Carlo simulations. We have
shown that the same qualitative effects can be obtained in
a ray marching algorithm using a point spread function that
blurs incident illumination.
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