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Abstract—Principal Component Analysis (PCA) is extensively used in computer

vision and image processing. Since it provides the optimal linear subspace in a

least-square sense, it has been used for dimensionality reduction and subspace

analysis in various domains. However, its scalability is very limited because of its

inherent computational complexity. We introduce a new framework for applying

PCA to visual data which takes advantage of the spatio-temporal correlation and

localized frequency variations that are typically found in such data. Instead of

applying PCA to the whole volume of data (complete set of images), we partition the

volume into a set of blocks and apply PCA to each block. Then, we group the

subspaces corresponding to the blocks and merge them together. As a result, we

not only achieve greater efficiency in the resulting representation of the visual data,

but also successfully scale PCA to handle large data sets. We present a thorough

analysis of the computational complexity and storage benefits of our approach. We

apply our algorithm to several types of videos. We show that, in addition to its

storage and speed benefits, the algorithm results in a useful representation of the

visual data.

Index Terms—Principal component analysis, singular value decomposition,

eigenvalues and eigenvectors, natural image statistics, clustering, region

growing/partitioning.

�

1 SCALING PCA

THERE aremany instances in computer vision and image processing
where we want to reduce the redundancy within a collection of
images. These situations frequently occur when many observations
need to be handled, for example, in object or face recognition, object
tracking, and image-based rendering. Given a data set that
presumably spans a manifold much smaller in dimension than its
raw embedding dimensionality, it is traditional to apply Principal
Component Analysis (PCA) [12], [14] to extract the subspace. PCA
handles a Euclidean vector space and from several independent
identically distributed vectors (or multidimensional point observa-
tions) recovers subspaces that are optimal in the least squared-error
reconstruction sense [22].

However, the inherent computational complexity of PCA can
make it hard to scale. As a data set becomes large, the corresponding
covariance/datamatrixgrowsanddirect eigendecomposition/SVD
can become intractable. Also, as data increases in size, the memory
required to even store the data matrix also grows and may push the
storage limit of the machine. Furthermore, since eigen decomposi-
tion on an n� n covariance matrix requires Oðn3Þ computation, the
runtime of PCA rapidly increases with the length of an image
sequence.

Note that PCA can be applied to any given data set by breaking
the data into pieces and vectorizing them. PCA can then be applied
to each piece of vector treating them as if they were independent
identically distributed. Fig. 1 illustrates the memory required to
store an image sequence after the application of PCA, as a function
of the spatial extent x (span) of the pieces the data is broken into. In
this illustration, we are assuming the same reconstruction error for
each of the cases along this axis. The bar on the right represents the
commonly used approachwhere the data is not broken down in any

way—the span is the size of the image (we call this global PCA). On
the left, we show the memory needed to store the raw data, which is
equivalent to applying PCA to each pixel (referred to as pixelwise
PCA). In this paper, we are interested in characterizing the shaded
region in between the two bars.

Onemight imagine that the amount of storage in Fig. 1 gradually
drops from the left bar to the right one and that we cannot achieve
better compression than global PCA (curve (a) in Fig. 1). This is the
case when the raw visual variation of the data already lies in an
extremely low-dimensional subspace; for instance, when the image
sequence is of objects with pure Lambertian reflection. Another
extreme case is when the whole data volume is filled with spatially
and temporary high-frequency variations; for instance, if the image
sequence is of the appearance of a mirror under varying complex
illumination environment. In such cases, PCA would not achieve
compression of the data and, hence, partitioning it further would
simply add storage overhead associated with multiple subspaces
(curve (b) in Fig. 1).

Fortunately, research on natural image statistics [24] reveals that
for almost any visual data, high-frequency variations in the data
tend to be localized in space and time in regions that are distributed
over the data. In addition, the spatial and temporal variationswithin
a local region may be correlated with those of other regions [24].
These phenomena almost always ensure there exists a minimum
within the shaded region in Fig. 1 that is significantly more efficient
in storage and runtime than global PCA (curve (c) in Fig. 1).

In this paper, we present an algorithm that enables a user to
explore the shaded region in Fig. 1. The algorithm has two key
attributes:

. Partitioning: It partitions the data volume into smaller
blocks and applies PCA to the blocks individually. We refer
to this approach as blockwise PCA. With blockwise PCA,
we are able to take full advantage of the local linearity in
the data.

. Grouping: It subsequently clusters the subspaces obtained
from blockwise PCA, merging them into clusters each with
a single subspace. We refer to this as clustered blockwise
PCA. This merging of subspaces enables us to tie together
blocks with similar local subspaces or statistics to achieve
greater efficiency in representation by avoiding redundant
encoding of subspaces.

In practice, these simple ideas work surprisingly well. We can
not only scale PCA to handle large data sets, but also simulta-
neously achieve greater efficiency in the representation of the
visual data. Note that, since we do not rely on any specific PCA
algorithm, any matrix decomposition technique can be used to
obtain the local subspaces. We have conducted a detailed
complexity analysis (storage and time) of our algorithm and its
benefits over global PCA. We present experimental results that
verify our complexity claims.

2 RELATED WORK

Extensive work has been done to make PCA applicable to large
data sets. In particular, incremental methods have drawn wide
attention because of their memory efficiency. Several methods
have been proposed that update an already computed subspace as
we add observations in an online setting time [3], [4], [20], [10].
However, these incremental methods are known to be prone to
errors which may accumulate over time. While variants have been
proposed to address this problem [9], there exists an inherent
tradeoff between error and computational efficiency. While all
these incremental methods are computationally efficient, none of
them exploit the local linearity or the spatio-temporal correlations
within the image sequence.

However, several nonincremental PCA-based algorithms that
take account of spatial or temporal correlation in the data have been
proposed [15], [16], [1], [19], [27]. These methods exploit the local
spatial correlation within fixed and connected regions obtained
manually or automatically. These spatially local PCA methods can
be considered as special cases of our framework: We also take
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temporal correlation into account and also allow the local regions to
be unconnected spatially and temporarlly.

Murase and Lindenbaum [21] utilize DCT coefficients to group
small image regions along the temporal axis into four different
classes to which PCA is applied individually. Jebara et al. [13]
extended the method in [19] to group pixels into a fixed number of
subspaces through an EM-based algorithm. These methods, which
exploit both the spatial and temporal correlation in the data, can also
beconsideredas special casesof our framework:Wealloweachof the
resulting subspace corresponding to several spatio-temporal regions
have different dimensionality which is determined adaptively.

From a statistical point of view, the distribution of the variation
of visual data can be far from a Gaussian distribution, while PCA
assumes the data it is applied to is Gaussian. However, variations
within local regions can often be modeled with Gaussian distribu-
tions and regions in different spatio-temporal locations may have
identical Gaussian distributions. A recent Bayesian analysis of PCA
[2] suggests that there is a trade-off between the number of
subspaces, the dimensionality of each subspace, and the dimension-
ality of the data. Our clustered blockwise PCA framework seeks to
exploit this tradeoff.

3 BLOCKWISE PCA

We first consider blockwise PCA by exploring various partitionings
of the visual data volume (of size W �H � F ¼ width� height
�frames) and discuss its computational complexity, its storage
requirements, and compare it to global PCA.

3.1 Computational Complexity

Whenwe apply global PCA, we first vectorize each image in a raster
scan manner and stack the vectors as columns to obtain a
WH � F data matrix. Then, either eigen decomposition can be
applied to the covariance matrix of the data matrix or SVD can be
directly applied to the data matrix to obtain the eigenvectors and
eigenvalues (singular values are square roots of eigenvalues). In
either case, the mean image can be subtracted from the raw data
matrix. As the data matrix grows in size, even computing the
covariance matrix becomes intractable. Hence, it is more practical to
directly apply SVD to the data matrix. Also, SVD is known to be
computationally fast and reliable compared to eigen decomposition.

The computational complexity of the most efficient SVD
algorithm, known as R-bidiagonalization-based SVD, for a
M�N matrix is CSVD¼ Oðk1M2N þ k2N

3Þ [8]. In vision applica-
tions, we often use PCA to obtain basis images; we compute
eigenvectors of length WH. This corresponds to computing only
the left singular vectors U and the singular values � of A ¼ U�V ,
where A is the data matrix. For this case, k1 ¼ 4 and k2 ¼ 13 in
CSVD. Therefore, the computational cost for global PCA becomes:

CG ¼ O 4ðWHÞ2F þ 13F 3
� �

: ð1Þ

Now, let us consider applying blockwise PCA with the block
sizes set to (Bw;Bh; Bf ). The complexity of computing the
subspace corresponding to each block is Oð4ðBwBhÞ2Bf þ 13B3

fÞ.
Since we have WHF

BwBhBf
blocks, the total cost is:

CB ¼ O 4WHFBwBh þ
13WHFB2

f

BwBh

 !
: ð2Þ

Hence,

CG � CB � 4WHF ðWH �BwBhÞ þ 13F F 2 � WH

BwBh
B2

f

� �
: ð3Þ

As we have Bw�W;Bh�H;Bf �F , the first term of (3) is

greater than 0. Additionally, when ð FBf
Þ2 � WH

BwBh
, the second

term of (3) also becomes greater than 0 and blockwise PCA is

guaranteed to run faster than global PCA. If we use a cubic

block, the speed of blockwise PCA compared to global PCA

increases with the number of frames. When runtime is critical

to us, we can always set the block size in the temporal domain

(Bf ) to be smaller.

3.2 Storage

If we use global PCA to represent the whole data set in a single
kG-dimensional subspace, the total amount of data we need to store
will be

SG ¼ ðkG þ 1ÞWH þ kGF; ð4Þ

where the first term is for the eigenvectors plus one mean vector
and the second term is for the coefficients. The coefficients are the
projections of each image in the subspace.

Now, if we apply blockwise PCA with ðBw;Bh; BfÞ and
construct subspaces for each block with the same number of
dimensions, kG, the total amount of storage needed is

SB ¼ ðkG þ 1ÞWH
F

Bf
þ kGF

WH

BwBh
: ð5Þ

It is easy to see that, if the dimensionality of each block subspace is
the same as the dimensionality of the subspace computed by global
PCA, the total amount of storage will increase as the block size
decreases. However, it is safe to expect that the blocks will have
very low dimensionality compared to the complete data set; the
power of using blocks lies in the fact that, even when the data has
global nonlinearities, it can be well-approximated by linear models
at a local level. Therefore, in general, the dimensionality of blocks
is expected to be much lower than that of the complete data set.

As PCA extracts the optimal subspace of the data set in a least-
square sense, we apply it to reduce the redundancy while
preserving the total RMS error between the original data and the
data reconstructed using the extracted subspace. As each eigenvalue
represents the variance along its corresponding eigenvector, a good
measure often used to predict the RMS error is the eigenratio
defined as

Rk ¼
Xk
i

�iPM
j �j

;

where �i is the ith largest eigenvalue [7]. Now, if we determine
each block’s subspace dimensionality by thresholding this eigen-
ratio allowing each block subspace to have a different dimension-
ality, the total amount of storage becomes:

ŜSB ¼ ð�kkB þ 1ÞWH
F

Bf
þ �kkBF

WH

BwBh
; ð6Þ

where �kkB ¼ ð WHF
BwBhBf

Þ�1P WHF
BwBhBf

i kiB is the average number of dimen-
sions of all the block subspaces. Note that different measures, such
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Fig. 1. PCA can be applied to a volume of image data by breaking into vector
pieces with span x. The bar on the left represents the storage needed for the raw
data, which is equivalent to applying PCA at a pixel level. The bar on the right
corresponds to the traditional approach of applying PCA at an image level (global
PCA). We are assuming the reconstruction error is the same for each of the cases.
The nature of visual data is such that there is almost always a minimum in the
shaded region in between. This span size can be significantly more efficient for
storage and runtime than either extreme (curve (c)).



as eigengaps [5], can be used to adaptively determine the
dimensionality of the subspace corresponding to each subspace.

From (4) and (6), we see that we can achieve better compression
(SB � SG) when

�kkB
kG

� 1þ F

WH

� �
F

Bf
þ 1

BwBh

� ��1

: ð7Þ

Here, we have neglected the storage of the mean vectors for
simplicity.

Loosely speaking, we expect to obtain smaller storage with
blockwise PCA compared to global PCA when the average number
of dimensions is below some fraction of the dimensionality of the
global subspace. In otherwords,whenglobal PCAdoes a “great” job
and produces a very compact subspace, it becomes hard for
blockwise PCA to satisfy (7). A rare case where this happens is
when the data is made of images of perfectly Lambertian objects lit
from different directions without cast shadows. In this case, it is
well-known that the underlying subspace is three-dimensional [11],
[23]. This is, however, a very special and rare case where we don’t
benefit from applying blockwise PCA. Generally, visual data
exhibitsmore complex (nonlinear) appearance variations over space
and time. Blockwise PCA exploits the local linearity in such overall
nonlinear data and, thus, is able to provide a better compression.

4 CLUSTERED BLOCKWISE PCA

Blockwise PCA enables us to apply PCA to a large data set faster
and more importantly, with higher compression compared to
global PCA. In addition, it gives us a convenient representation of
the data as a set of subspaces, which can be used to exploit self-
similarities that commonly occur within visual data. We can
combine the subspaces of “similar” block which results in a further
reduction in the total amount of storage. Note that such
correlations in appearance can occur not only in the spatial
domain but also in the temporal domain.

4.1 Distance Metric

We first need a metric to measure the proximity/distance between
different subspaces. Linear subspaces can be represented by their
orthogonal projection matrix, P ¼ V V T , where V is a matrix whose
columns are the eigenvectors of the subspace. The distance
between two subspaces can be measured by the difference between
their corresponding projection matrices [8]:

�ðX ;YÞ ¼k PX � PY k2; ð8Þ

where PX and PY are the projection matrices of subspaces X and Y,
respectively. It can be shown that [26]:

�ðX ;YÞ ¼ sin �1; ð9Þ

where �1 is the first (largest) canonical angle. Canonical angles are
the angles between all pairs of orthonormal vectors of the QR-
decomposed eigenvector matrices of the two subspaces. Therefore,
the largest canonical angle provides a rotation invariant distance
between two subspaces. Thus, without computing the projection
matrices, we are able to compute the distance �.

We threshold this distance measure to decide whether the two
subspaces of interest should be merged. Note that we do not want
to merge subspace X with Y when the dimensionality of X is
smaller than Y since it will not result in a reduction in the total
amount of storage.

4.2 Merging Subspaces

We use the algorithm developed by Hall et al. [10] to merge a pair
of subspaces. Readers are referred to [10] for details.1 Note that we
do not need to go back to the raw data to merge subspaces.

For each block, we compute � between its subspace and all
other subspaces and store the block numbers whose subspaces fall
below a distance threshold. Although this is a greedy approach
with Oðn2Þ, where n is the number of blocks, since we do not
evaluate the distance to a subspace that is already marked because
it is close to another subspace, its average computational cost is
much lower in practice. After listing all the subspaces that are close
to each other in terms of distance �, we merge each pair one-by-one
with the subspace merging algorithm in [10].

Clustering and merging the block subspaces results in a
reduction in the number of subspaces, which results in a decrease
in the first term of (6). Note, however, that we will introduce a small
overhead in storage to keep record of the correspondence between a
subspace and a block. This can be kept as n integers where n is the
number of blocks.

When a new set of images are added to the data, once the number
of these images becomes equal to the temporal size of the block, one
can apply PCA to the blocks within this new data set and merge the
subspaces that are close to existing subspaces. In this way, the
necessary storage will not increase linearly to the size of the added
data and correlation of local visual events can be exploited as new
data is added. However, if an existing subspace is merged with a
subspace computed from a new data block, the projection of the
existing data block should be updated with the projection in the
newly merged subspace. This will introduce a computational
overhead. However, this recomputation of projection is computa-
tionally cheap which involves only matrix multiplication.

5 EXPERIMENTS wITH REAL DATA

When we apply blockwise PCA and clustered blockwise PCA to
any data, we need to decide the size of the blocks. The block size
which produces the highest compression depends on the type of
the data. As a result, determining the optimal spatial/temporal
block size will involve trying different block sizes and computing
the reconstruction error for each of the cases. Note that the
reconstruction error cannot be precisely predicted when comput-
ing the subspaces; eigen ratio is only a rough indication of the
preserved energy. Since the spatial and temporal block size can
have an exponential number of combinations, we will need to
choose some predetermined block sizes as candidates. There are
several facts we can take into consideration when we specify the
block size or the candidate block sizes when automatically
determining it with this try and reconstruct algorithm.

The spatial block size (Bw and Bh) should be determined by
examining the spatial variation within the images. Ideally, we
should isolate high-frequency variations in individual blocks, so
that they do not creep into the blocks with low-frequency
variations. The temporal block size (Bf ) mainly effects the
subspace clustering stage. If the spatial appearance does not
change in the data and other attributes such as lighting vary along
the temporal axis, a tube-type blockwise/clustered blockwise PCA
(Bf = number of frames) provides the highest compression.
Ideally, the temporal block size should be matched with the
temporal visual variation frequency. These factors can be used to
select a block size and avoid trying all block sizes.

5.1 Example 1: Image-Based Relighting

Image-based relighting [6], [17], [18] aims to synthesize a “relighted”
scene image from images of the same scene captured under various
lighting conditions. As image-based relighting is based on inter-
polation, it suffers from the same problem as image-based
rendering; the sampling of the acquired images with respect to
lighting has to be dense enough to satisfy the Nyquist condition. As
a result, the input data set is typically very large and compression
becomes crucial.

The top left image in Fig. 2 shows one image from a sequence of
1,440 images of a scene containing various types of object with
different material properties, which was lit by a light source from
different directions. This data was obtained from the CAVE
Laboratory at Columbia University. The image size is 320� 240.
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1. Unlike the original algorithm, we do not merge the mean vectors. We
keep them individually associated with each block.



Table 1 shows the results of applying global, blockwise, and
clustered blockwise PCA to this data set. Because we were not able
to directly apply global PCA to this large data set, we applied it to
120 images at a time and applied SVD on the obtained set of
eigenvectors scaled by their eigenvalues. Because we could not even
apply this approximate version of global PCA to the whole
sequence, we did this for the first 720 images and the last 720
images, separately. We did not have enough memory to store the
high-dimensional subspace needed to reduce the RMS error of
global PCA below the value in Table 1; the dimensionality turned
out to be around 500 for an RMS error even as high as three gray
levels. For reasons mentioned in the previous section, we applied a
tube-type blockwise/clustered blockwise PCA to this sequence
(block size = 16� 16� 1; 440).

The results show that clustered blockwise PCA clearly outper-
forms global PCA. This is an example where clustered blockwise
PCA enables us to apply PCA to a data set that is too large for global
PCA to handle. Furthermore, it results in better compression.

We should mention that, although the RMS errors for the
different cases are similar, the errors in the reconstructed images
have different characteristics. While global PCA achieves compres-
sion by cutting off the high frequencies in the image, blockwise and
clustered blockwise PCA achieve compression by dropping the
high-frequency variations within blocks. Therefore, blockwise and
clustered blockwise PCA tend to preserve the global appearance
due to the lighting while global PCA tends to compromise it. Fig. 2
shows a side-by-side comparison of reconstructed images. In the
dashed circle in Fig. 2, we see that the appearance of the pepper
dispenser is not consistent with the lighting and makes the image
look odd. On the other hand, within the dashed box, we see that the
shadow cast by the knife onto the fish is blurred and thus blocky in
the image reconstructed by clustered blockwise PCA.However, this

shadow remains consistentwith the lighting direction, which is very
important for relighting applications.

5.2 Example 2: Talking Head

Global PCAdoes notworkwell on image sequenceswhere objects in
the scene are in motion; in such cases, the data lacks global linearity.
However, there is considerable interest in applying subspace
analysis on such types of data. For instance, image sequences of a
person’s face while talking would be of high interest for analysis in
computer vision. The top row of Fig. 3 shows three frames of a
sequence of 640 images of a person talking in front of a camera.
The image size is 240� 360. It is expected that the data matrix for
this type of data becomes full-rank and we cannot reduce the
dimensionality through global PCA. On the other hand, with
clustered blockwise PCA, we are able to not only exploit the local
linearity and the spatio-temporal appearance correlations, but also
take advantage of the regions that remain static over time.

We applied blockwise/clustered blockwise PCA with block-
size 40� 40� 40 to this data set. While applying blockwise PCA,
we can easily measure how much variation each block contains.
For instance, as each eigenvector is 1,600 pixels long, on average,
each element in the eigenvectors has 1ffiffiffiffiffiffiffiffi

1;600
p ¼ 1

40 gray levels to
contribute to each pixel’s variation. Thus, we can use the value
obtained by multiplying the first eigenvalue with 1

40 as a rough
indicator of how much the appearance varies within a block.
This value indicates the variance of each pixel along the first
eigenvector. We thresholded this value with 1.0 and all the
blocks that fell below the threshold were considered to be static;
only their mean vectors were stored. Table 2 shows the results of
applying blockwise/clustered blockwise PCA to the talking head
video. We applied the snapshot method [25] to find the the
global subspace that gives a three gray levels RMS error. Since
the dimensionality in this case was extremely high, we did not
store the eigenvector matrix on local memory. Thus, we could
not reconstruct images from the global subspace. Clearly,
blockwise PCA and clustered blockwise PCA outperform global
PCA in terms of compression. Also, while we had to run a
greedy algorithm to construct the covariance matrix for global
PCA (which took several hours), blockwise PCA and subsequent
clustering took less than 2 minutes each.

6 CLUSTERED SUBSPACES AS A REPRESENTATION

Fig. 3 shows the clustering results for three slices of blocks
corresponding to frames 441 to 480, 481 to 520, and 521 to 560, for
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Fig. 2. Comparison between an original image and images reconstructed using
subspaces obtained by global PCA, blockwise PCA and clustered blockwise PCA.
While blockwise PCA, and clustered blockwise PCA preserve the global
appearancewith respect to the lighting direction, global PCA fails to do so (see text).

TABLE 1
Comparison between Global PCA, Blockwise PCA, and Clustered

Blockwise PCA Applied on 1,440 Images of a Static Scene with Various
Objects Lit by a Light Source from Different Directions

Blockwise PCA and clustered blockwise PCA outperform global PCA. In particular,
clustered blockwise PCA gives an improvement in compression of a factor of nine
over global PCA.

Fig. 3. Results of clustering subspaces corresponding to blocks (blocksize =
40� 40� 40) for the talking head data. Three slices of blocks are shown here. The
first image in each block slice is shown in the first row (the grid shows the spatial
blocks). The second row shows the clustering results; the numbers are those of
the subspaces that remain after subspace merging. The black blocks (without
block numbers) were detected as static blocks. All static regions in the sequence
were successfully detected and the moving regions are efficiently represented with
a small number of subspaces, resulting in a high-compression ratio.



the talking head sequence. The first frames of these block slices are
shown in the first row with their clustered block numbers in the
second row. Black regions without block numbers indicate the
blocks that were detected as static. As can be seen, only the moving
parts, such as eyes and lips, were extracted and represented as
subspaces. We can clearly see that clustered blockwise PCA
identifies similar visual variations and represents them using a
smaller number of subspaces. The eyes are represented in two
subspaces, one for each eye. Also, note how the subspaces
corresponding to block number 310, 446, 447, and 525 are reused.
These blocks appear in frames earlier than 441. This shows that
variations in the data are efficiently reused which results in a high-
compression ratio.

From these clustering results, we can see that clustered blockwise
PCA not only exploits the local linearity and spatio-temporal
correlations to achieve higher compression, but also provides us
with a representation that can be used for further analysis of the
data. For instance, Fig. 4 shows plots (from frame 441 to frame 580)
of the coefficients corresponding to the first two eigenvectors of
subspace number 621 (which has three dimensions). We can clearly
see the periodicity of the coefficient signatures. This results from the
blinking of the right eye.

7 CONCLUSION

We introduced clustered blockwise PCA for representing visual
data. Clustered blockwise PCA not only takes advantage of the fact
that typical visualdata contains localizedvariations, butalsoexploits
the spatio-temporal correlations within the data. We have shown
that clustered blockwise PCA achieves higher efficiency not only in
terms of storage, but also computational cost. As a result, we have
successfully scaled PCA to be applied to large problems without
loosing any of the inherent advantageous properties of PCA itself.

In future work, we will investigate automatic methods for
estimating the optimal spatial and temporal block size and/or

allowing it to vary across the data volume. This remains an open
problem which hinges upon the availability of novel practical
algorithms.
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TABLE 2
Comparison between the Results of Applying

Global PCA, Blockwise PCA, and Clustered Blockwise PCA
on an Image Sequence of a Person Talking

Fig. 4. Plots of the coefficients related to the first and second eigenvectors of
subspace number 621, plotted for frame 421 to 560 of the talking head sequence.
We see the strong periodicity of the coefficient signatures. This is due to the
blinking of the right eye of the person in the sequence. This simple example
illustrates why the representation produced by clustered blockwise PCA can prove
very useful in a variety of visual tasks.


