
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997 989

A Simple Algorithm for Nearest Neighbor
Search in High Dimensions

Sameer A. Nene and Shree K. Nayar

Abstract —The problem of finding the closest point in high-dimensional spaces is common in pattern recognition. Unfortunately, the
complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them
impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user-specified
distance e. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance e.
The use of projection search combined with a novel data structure dramatically improves performance in high dimensions. A
complexity analysis is presented which helps to automatically determine e in structured problems. A comprehensive set of
benchmarks clearly shows the superiority of the proposed algorithm for a variety of structured and unstructured search problems.
Object recognition is demonstrated as an example application. The simplicity of the algorithm makes it possible to construct an
inexpensive hardware search engine which can be 100 times faster than its software equivalent. A C++ implementation of our
algorithm is available upon request to search@cs.columbia.edu/CAVE/.

Index Terms —Pattern classification, nearest neighbor, searching by slicing, benchmarks, object recognition, visual
correspondence, hardware architecture.

—————————— ✦ ——————————

1 INTRODUCTION

EARCHING for nearest neighbors continues to prove itself
as an important problem in many fields of science and

engineering. The nearest neighbor problem in multiple di-
mensions is stated as follows: given a set of n points and a
novel query point Q in a d-dimensional space, “Find a point
in the set such that its distance from Q is lesser than, or
equal to, the distance of Q from any other point in the set”
[21]. A variety of search algorithms have been advanced
since Knuth first stated this (post office) problem. Why
then, do we need a new algorithm? The answer is that ex-
isting techniques perform very poorly in high dimensional
spaces. The complexity of most techniques grows exponen-
tially with the dimensionality, d. By high dimensional, we
mean when, say d > 25. Such high dimensionality occurs
commonly in applications that use eigenspace based ap-
pearance matching, such as real-time object recognition
[24], visual positioning, tracking, and inspection [26], and
feature detection [25]. Moreover, these techniques require
that nearest neighbor search be performed using the
Euclidean distance (or L2) norm. This can be a hard prob-
lem, especially when dimensionality is high. High dimen-
sionality is also observed in visual correspondence prob-
lems such as motion estimation in MPEG coding (d > 256)
[29], disparity estimation in binocular stereo (d = 25-81),
and optical flow computation in structure from motion
(also d = 25-81).

In this paper, we propose a simple algorithm to effi-
ciently search for the nearest neighbor within distance e in

high dimensions. We shall see that the complexity of the
proposed algorithm, for small e, grows very slowly with d.
Our algorithm is successful because it does not tackle the
nearest neighbor problem as originally stated; it only finds
points within distance e from the novel point. This property
is sufficient in most pattern recognition problems (and for
the problems stated above), because a “match” is declared
with high confidence only when a novel point is sufficiently
close to a training point. Occasionally, it is not possible to
assume that e is known, so we suggest a method to auto-
matically choose e. We now briefly outline the proposed
algorithm.

Our algorithm is based on the projection search para-
digm first used by Friedman [14]. Friedman’s simple tech-
nique works as follows. In the preprocessing step, d dimen-
sional training points are ordered in d different ways by
individually sorting each of their coordinates. Each of the d
sorted coordinate arrays can be thought of as a 1D axis with
the entire d-dimensional space collapsed (or projected) onto
it. Given a novel point Q, the nearest neighbor is found as
follows. A small offset e is subtracted from, and added to,
each of Q’s coordinates to obtain two values. Two binary
searches are performed on each of the sorted arrays to lo-
cate the positions of both the values. An axis with the
minimum number of points in between the positions is cho-
sen. Finally, points in between the positions on the chosen
axis are exhaustively searched to obtain the closest point.
The complexity of this technique is roughly O(nde) and is
clearly inefficient in high d.

This simple projection search was improved upon by
Yunck [40]. He utilizes a precomputed data structure which
maintains a mapping from the sorted to the unsorted
(original) coordinate arrays. In addition to this mapping, an
indicator array of n elements is used. Each element of the

0162-8828/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• The authors are with the Department of Computer Science, Columbia Uni-
versity, New York. E-mail: {sameer, nayar}@cs.columbia.edu.

Manuscript received 5 Feb. 1996; revised 29 May 1997. Recommended for accep-
tance by A. Webb.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 105305.

S

990 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

indicator array, henceforth called an indicator, corresponds
to a point. At the beginning of a search, all indicators are
initialized to the number “1.” As before, a small offset e is
subtracted from and added to each of the novel point Q’s
coordinates to obtain two values. Two binary searches are
performed on each of the d sorted arrays to locate the posi-
tions of both the values. The mapping from sorted to un-
sorted arrays is used to find the points corresponding to the
coordinates in between these values. Indicators correspond-
ing to these points are (binary) shifted to the left by one bit
and the entire process repeated for each of the d dimen-
sions. At the end, points whose indicators have the value 2d

must lie within an 2e hypercube. An exhaustive search can
now be performed on the hypercube points to find the
nearest neighbor.

With the above data structure, Yunck was able to find
points within the hypercube using primarily integer opera-
tions. However, the total number of machine operations
required (integer and floating point) to find points within
the hypercube are similar to that of Friedman’s algorithm
(roughly O(nde)). Due to this, and the fact that most mod-
ern CPUs do not significantly penalize floating point op-
erations, the improvement is only slight (benchmarked in a
later section). We propose a data structure that significantly
reduces the total number of machine operations required to
locate points within the hypercube to roughly

O n n
d

e
e

e
+FH IK-

-
1
1e j . Moreover, this data structure facilitates a

very simple hardware implementation which can result in a
further increase in performance by two orders of magnitude.

2 PREVIOUS WORK

Search algorithms can be divided into the following broad
categories:

(a) Exhaustive search,
(b) Hashing and indexing,
(c) Static space partitioning,
(d) Dynamic space partitioning,
(e) Randomized algorithms.

The algorithm described in this paper falls into cate-
gory (d). The algorithms can be further categorized into
those that work in vector spaces and those that work in
metric spaces. Categories (b)-(d) fall into the former, while
category (a) falls into the later. Metric space search tech-
niques are used when it is possible to somehow compute a
distance measure between sample “points” or pieces of
data but the space in which the points reside lacks an ex-
plicit coordinate structure. In this paper, we focus only on
vector space techniques. For a detailed discussion on
searching in metric spaces, refer to [13], [23], and [37].

Exhaustive search, as the term implies, involves com-
puting the distance of the novel point from each and every
point in the set and finding the point with the minimum
distance. This approach is clearly inefficient and its com-
plexity is O(nd). Hashing and indexing are the fastest
search techniques and run in constant time. However, the
space required to store an index table increases exponen-
tially with d. Hence, hybrid schemes of hashing from a high

dimensional space to a low (one or two) dimensional space
and then indexing in this low dimensional space have been
proposed. Such a dimensionality reduction is called geo-
metric hashing [38], [9]. The problem is that, with increas-
ing dimensionality, it becomes difficult to construct a hash
function that distributes data uniformly across the entire
hash table (index). An added drawback arises from the fact
that hashing inherently partitions space into bins. If two
points in adjacent bins are closer to each other than a third
point within the same bin. A search algorithm that uses a
hash table, or an index, will not correctly find the point in
the adjacent bin. Hence, hashing and indexing are only
really effective when the novel point is exactly equal to one
of the database points.

Space partitioning techniques have led to a few elegant
solutions to multidimensional search problems. A method
of particular theoretical significance divides the search
space into Voronoi polygons. A Voronoi polygon is a geo-
metrical construct obtained by intersecting perpendicular
bisectors of adjacent points. In a 2D search space, Voronoi
polygons allow the nearest neighbor to be found in
O(log2n) operations, where, n is the number of points in the
database. Unfortunately, the cost of constructing and stor-
ing Voronoi diagrams grows exponentially with the num-
ber of dimensions. Details can be found in [3], [12], [20],
and [31]. Another algorithm of interest is the 1D binary
search generalized to d dimensions [11]. This runs in
O(log2n) time but requires storage O(n4), which makes it
impractical for n > 100.

Perhaps the most widely used algorithm for searching in
multiple dimensions is a static space partitioning technique
based on a k-dimensional binary search tree, called the k-d
tree [5], [6]. The k-d tree is a data structure that partitions
space using hyperplanes placed perpendicular to the coor-
dinate axes. The partitions are arranged hierarchically to
form a tree. In its simplest form, a k-d tree is constructed as
follows. A point in the database is chosen to be the root
node. Points lying on one side of a hyperplane passing
through the root node are added to the left child and the
points on the other side are added to the right child. This
process is applied recursively on the left and right children
until a small number of points remain. The resulting tree of
hierarchically arranged hyperplanes induces a partition of
space into hyper-rectangular regions, termed buckets, each
containing a small number of points. The k-d tree can be
used to search for the nearest neighbor as follows. The k
coordinates of a novel point are used to descend the tree to
find the bucket which contains it. An exhaustive search is
performed to determine the closest point within that
bucket. The size of a “query” hypersphere is set to the dis-
tance of this closest point. Information stored at the parent
nodes is used to determine if this hypersphere intersects
with any other buckets. If it does, then that bucket is ex-
haustively searched and the size of the hypersphere is re-
vised if necessary. For fixed d, and under certain assump-
tions about the underlying data, the k-d tree requires
O(nlog2n) operations to construct and O(log2n) operations
to search [7], [8], [15].

k-d trees are extremely versatile and efficient to use in
low dimensions. However, the performance degrades ex-

NENE AND NAYAR: A SIMPLE ALGORITHM FOR NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 991

ponentially1 with increasing dimensionality. This is be-
cause, in high dimensions, the query hypersphere tends to
intersect many adjacent buckets, leading to a dramatic in-
crease in the number of points examined. k-d trees are dy-
namic data structures which means that data can be added
or deleted at a small cost. The impact of adding or deleting
data on the search performance is, however, quite unpre-
dictable and is related to the amount of imbalance the new
data causes in the tree. High imbalance generally means
slower searches. A number of improvements to the basic
algorithm have been suggested. Friedman recommends
that the partitioning hyperplane be chosen such that it
passes through the median point and is placed perpen-
dicular to the coordinate axis along whose direction the
spread of the points is maximum [15]. Sproull suggests us-
ing a truncated distance computation to increase efficiency
in high dimensions [36]. Variants of the k-d tree have been
used to address specific search problems [2], [33].

An R-tree is also a space partitioning structure, but un-
like k-d trees, the partitioning element is not a hyperplane
but a hyper-rectangular region [18]. This hierarchical rec-
tangular structure is useful in applications such as search-
ing by image content [30] where one needs to locate the
closest manifold (or cluster) to a novel manifold (or cluster).
An R-tree also addresses some of the problems involved in
implementing k-d trees in large disk based databases. The
R-tree is also a dynamic data structure, but unlike the k-d
tree, the search performance is not affected by addition or
deletion of data. A number of variants of R-Trees improve
on the basic technique, such as packed R-trees [34], R+-trees
[35], and R*-trees [4]. Although R-trees are useful in im-
plementing sophisticated queries and managing large data-
bases, the performance of nearest neighbor point searches
in high dimensions is very similar to that of k-d trees; com-
plexity grows exponentially with d.

Other static space partitioning techniques have been
proposed such as branch and bound [16], quad-trees [17],
vp-trees [39], and hB-trees [22], none of which significantly
improve performance for high dimensions. Clarkson de-
scribes a randomized algorithm which finds the closest
point in d dimensional space in O(log2n) operations using a
RPO (randomized post office) tree [10]. However, the time

taken to construct the RPO tree is O(nËd/2Û(1+e)) and the space

required to store it is also O(nËd/2Û(1+e)). This makes it im-
practical when the number of points n is large or if d > 3.

3 THE ALGORITHM

3.1 Searching by Slicing
We illustrate the proposed high dimensional search algo-
rithm using a simple example in 3D space, shown in Fig. 1.
We call the set of points in which we wish to search for the
closest point as the point set. Then, our goal is to find the
point in the point set that is closest to a novel query point

1. Although this appears contradictory to the previous statement, the

claim of O(log2n) complexity is made assuming fixed d and varying n [7],
[8], [15]. The exact relationship between d and complexity has not yet been
established, but it has been observed by us and many others that it is
roughly exponential.

Q(x, y, z) and within a distance e. Our approach is to first
find all the points that lie inside a cube (see Fig. 1) of side 2e
centered at Q. Since e is typically small, the number of
points inside the cube is also small. The closest point can
then be found by performing an exhaustive search on these
points. If there are no points inside the cube, we know that
there are no points within e.

Fig. 1. The proposed algorithm efficiently finds points inside a cube of
size 2e around the novel query point Q. The closest point is then found
by performing an exhaustive search within the cube using the Euclid-
ean distance metric.

The points within the cube can be found as follows. First,
we find the points that are sandwiched between a pair of
parallel planes X1 and X2 (see Fig. 1) and add them to a list,
which we call the candidate list. The planes are perpendicu-
lar to the first axis of the coordinate frame and are located
on either side of point Q at a distance of e. Next, we trim
the candidate list by discarding points that are not also
sandwiched between the parallel pair of planes Y1 and Y2,
that are perpendicular to X1 and X2, again located on either
side of Q at a distance e. This procedure is repeated for
planes Z1 and Z2, at the end of which, the candidate list con-
tains only points within the cube of size 2e centered on Q.

Since the number of points in the final trimmed list is
typically small, the cost of the exhaustive search is negligi-
ble. The major computational cost in our technique is there-
fore in constructing and trimming the candidate list.

3.2 Data Structure
Candidate list construction and trimming can done in a
variety of ways. Here, we propose a method that uses a
simple pre-constructed data structure along with 1D binary
searches [1] to efficiently find points sandwiched between a
pair of parallel hyperplanes. The data structure is con-
structed from the raw point set and is depicted in Fig. 2. It
is assumed that the point set is static and hence, for a given

992 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

point set, the data structure needs to be constructed only
once. The point set is stored as a collection of d 1D arrays,
where the jth array contains the jth coordinate of the points.
Thus, in the point set, coordinates of a point lie along the
same row. This is illustrated by the dotted lines in Fig. 2.
Now suppose that novel point Q has coordinates Q1, Q2, �,
Qd. Recall that in order to construct the candidate list, we
need to find points in the point set that lie between a pair of
parallel hyperplanes separated by a distance 2e, perpen-
dicular to the first coordinate axis, and centered at Q1; that
is, we need to locate points whose first coordinate lies be-
tween the limits Q1 � e and Q1 + e. This can be done with
the help of two binary searches, one for each limit, if the
coordinate array were sorted beforehand.

Fig. 2. Data structures used for constructing and trimming the candi-
date list. The point set corresponds to the raw list of data points, while
in the ordered set each coordinate is sorted. The forward and back-
ward maps enable efficient correspondence between the point and
ordered sets.

To this end, we sort each of the d-coordinate arrays in the
point set independently to obtain the ordered set. Unfortu-
nately, sorting raw coordinates does not leave us with any
information regarding which points in the arrays of the or-
dered set correspond to any given point in the point set, and
vice versa. For this purpose, we maintain two maps. The
backward map maps a coordinate in the ordered set to the cor-
responding coordinate in the point set and, conversely, the
forward map maps a point in the point set to a point in the
ordered set. Notice that the maps are simple integer arrays; if
P[d][n] is the point set, O[d][n] is the ordered set, F[d][n] and
B[d][n] are the forward and backward maps, respectively,
then O[i][F[i][j]] = P[i][j] and P[i][B[i][j]] = O[i][j].

Using the backward map, we find the corresponding
points in the point set (shown as dark shaded areas) and
add the appropriate points to the candidate list. With this,
the construction of the candidate list is complete. Next, we
trim the candidate list by iterating on k = 2, 3, …, d, as fol-
lows. In iteration k, we check every point in the candidate
list, by using the forward map, to see if its kth coordinate
lies within the limits Qk – e and Qk + e. Each of these limits
is also obtained by binary search. Points with kth coordi-
nates that lie outside this range (shown in light gray) are
discarded from the list.

At the end of the final iteration, points remaining on the

candidate list are the ones which lie inside a hypercube of
side 2e centered at Q. In our discussion, we proposed con-
structing the candidate list using the first dimension, and
then performing list trimming using dimensions 2, 3, …, d,
in that order. We wish to emphasize that these operations
can be done in any order and still yield the desired result.
In the next section, we shall see that it is possible to deter-
mine an optimal ordering such that the cost of constructing
and trimming the list is minimized.

It is important to note that the only operations used in
trimming the list are integer comparisons and memory
lookups. Moreover, by using the proposed data structure,
we have limited the use of floating point operations to just
the binary searches needed to find the row indices corre-
sponding to the hyperplanes. This feature is critical to the
efficiency of the proposed algorithm, when compared with
competing ones. It not only facilitates a simple software
implementation, but also permits the implementation of a
hardware search engine.

As previously stated, the algorithm needs to be supplied
with an “appropriate” e prior to search. This is possible for
a large class of problems (in pattern recognition, for in-
stance) where a match can be declared only if the novel
point Q is sufficiently close to a database point. It is reason-
able to assume that e is given a priori, however, the choice
of e can prove problematic if this is not the case. One solu-
tion is to set e large, but this might seriously impact per-
formance. On the other hand, a small e could result in the
hypercube being empty. How do we determine an optimal
e for a given problem? How exactly does e affect the per-
formance of the algorithm? We seek answers to these ques-
tions in the following section.

4 COMPLEXITY

In this section, we attempt to analyze the computational
complexity of data structure storage, construction, and
nearest neighbor search. As we saw in the previous section,
constructing the data structure is essentially sorting d ar-
rays of size n. is can be done in O(dnlog2n) time. The only
additional storage necessary is to hold the forward and
backward maps. This requires space O(nd). For nearest
neighbor search, the major computational cost is in the
process of candidate list construction and trimming. The
number of points initially added to the candidate list de-
pends not only on e, but also on the distribution of data in
the point set and the location of the novel point Q. Hence,
to facilitate analysis, we structure the problem by assuming
widely used distributions for the point set. The following
notation is used.

• Random variables are denoted by uppercase letters,
for instance, Q.

• Vectors are in bold, such as, q.
• Suffixes are used to denote individual elements of

vectors, for instance, Qk is the kth element of vector Q.
• Probability density is written as P{Q = q} if Q is dis-

crete, and as fQ(q) if Q is continuous.

NENE AND NAYAR: A SIMPLE ALGORITHM FOR NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 993

Fig. 3. The projection of the point set and the novel point onto one of
the dimensions of the search space. The number of points inside bin B
is given by the binomial distribution.

Fig. 3 shows the novel point Q and a set of n points in 2D
space drawn from a known distribution. Recall that the
candidate list is initialized with points sandwiched between
a hyperplane pair in the first dimension, or more generally,
in the cth dimension. This corresponds to the points inside
bin B in Fig. 3, where the entire point set and Q are pro-
jected to the cth coordinate axis. The boundaries of bin B
are where the hyperplanes intersect the axis c, at Qc – e and
Qc + e. Let Mc be the number of points in bin B. In order to
determine the average number of points added to the candi-
date list, we must compute E[Mc]. Define Zc to be the distance
between Qc and any point on the candidate list. The distribu-
tion of Zc may be calculated from the distribution of the point
set. Define Pc to be the probability that any projected point in
the point set is within distance e from Qc; that is,

Pc = P{–e � Zc � e|Qc} (1)

It is now possible to write an expression for the density of
Mc in terms of Pc. Irrespective of the distribution of the
points, Mc is binomially distributed2:

P M k Q P P n
kc c c

k
c

n k
= = - F

H
I
K

-n s c h1 (2)

From the above expression, the average number of points in
bin B, E[Mc | Qc], is easily determined to be

E M Q kP M k Q

nP

c c c c
k

n

c

= =

=
=
Â n s

0 (3)

Note that E[Mc|Qc] is itself a random variable that depends
on c and the location of Q. If the distribution of Q is known,
the expected number of points in the bin can be computed
as E[Mc] = E[E[Mc|Qc]]. Since we perform one lookup in the
backward map for every point between a hyperplane pair,
and this is the main computational effort, (3) directly esti-
mates the cost of candidate list construction.

Next, we derive an expression for the total number of
points remaining on the candidate list as we trim through
the dimensions in the sequence c1, c2, …, cd. Recall that in
the iteration k, we perform a forward map lookup for every
point in the candidate list and see if it lies between the ckth

2. This is equivalent to the elementary probability problem: given that a
success (a point is within bin B) can occur with probability Pc, the number
of successes that occur in n independent trials (points) is binomially dis-
tributed.

hyperplane pair. How many points on the candidate list lie
between this hyperplane pair? Once again, (3) can be used,
this time replacing n with the number of points on the can-
didate list rather than the entire point set. We assume that
the point set is independently distributed. Hence, if Nk is
the total number of points on the candidate list before the
iteration k,

N P N N n

n P

k c k

c
i

k
k

i

= =

=

-

=
’

1 0

1

,

(4)

Define N to be the total cost of constructing and trimming
the candidate list. For each trim, we need to perform one
forward map lookup and two integer comparisons. Hence,
if we assign one cost unit to each of these operations, an
expression for N can be written with the aid of (4) as

N N N N N

N N

n P P

d

k
k

d

c c
i

k

k

d

i

= + + + +

= +

= +
F
HG

I
KJ

-

=

-

==

-

Â

’Â

1 1 2 1

1
1

1

11

1

3 3 3

3

3
1

. . .

(5)

which on the average is

E N nE P Pc c
i

k

k

d

i
Q = +

L
N
MM

O
Q
PP==

-

’Â1
3

11

1

(6)

Equation (6) suggests that if the distributions fQ(q) and fZ(z)
are known, we can compute the average cost E[N] =
E[E[N|Q]] in terms of e. In the next section, we shall ex-
amine two cases of particular interest:

• Z is uniformly distributed, and
• Z is normally distributed.

Note that we have left out the cost of exhaustive search on
points within the final hypercube. The reason is that the
cost of an exhaustive search is dependent on the distance
metric used. This cost is however very small and can be
neglected in most cases when n @ d. If it needs to be con-
sidered, it can be added to (6).

We end this section by making an observation. We had
mentioned earlier that it is of advantage to examine the
dimensions in a specific order. What is this order? By ex-
panding the summation and product and by factoring
terms, (5) can be rewritten as

N n P P P Pc c c c= + + + +FH IK
F
HG

I
KJ1 1 2 3

3 1 1 1 . . .c he je j (7)

It is immediate that the value of N is minimum when

P P Pc c cd1 2 1
< < <

-
. . .

In other words, c1, c2, …, cd should be chosen such that the
numbers of sandwiched points between hyperplane pairs
are in ascending order. This can be easily ensured by sim-
ply sorting the numbers of sandwiched points. Note that

994 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

there are only d such numbers, which can be obtained in
time O(d) by simply taking the difference of the indices to
the ordered set returned by each pair of binary searches.
Further, the cost of sorting these numbers is O(dlog2d) by
heap sort [1]. Clearly, both these costs are negligible in any
problem of reasonable dimensionality.

4.1 Uniformly Distributed Point Set
We now look at the specific case of a point set that is uni-
formly distributed. If X is a point in the point set, we as-
sume an independent and uniform distribution with extent
l on each of its coordinates as

f x l l x l cXc
a f = - £ £ "RST

1 2 2
0

/ / / ,if
otherwise

(8)

Using (8), and the fact that Zc = Xc – Qc, an expression for
the density of Zc can be written as

f z
l l Q z l Q

c
Z Q

c c
c c

a f = - - £ £ - "RST
1 2 2
0

/ / /
,

if
otherwise

(9)

Pc can now be written as

P P Z Q f z dz

l dz

l

c c c Z Qc c
= - £ £ =

£

£

-

-

z
z

e e

e

e

e

e

e

n s a f
1

2
(10)

Substituting (10) in (6), and considering the upper bound
(worst case), we get

E N n l l l l

n l
l

l

d

d

= + +
F
HG

I
KJ + +

F
HG

I
KJ

F
H
GG

I
K
JJ

F
H
GG

I
K
JJ

= +
-
F
HG

I
KJ

-
-

F

H

GGGGG

I

K

JJJJJ

F

H

GGGGG

I

K

JJJJJ

-2
3

2 2 2

2
3

1
2

1
2 1

2 1
e e e e

e

e

e

. . .

(11)

By neglecting constants, we write

E N O n n
d

= +
-
-

F
HG

I
KJ

e

e

e

1
1 (12)

For small e, we observe that ed � 0, because of which cost is
independent of d:

E N O n nª + -
F
HG

I
KJe

e

1
1 (13)

In Fig. 4, (11) is plotted against e for different d (Fig. 4a) and
different n (Fig. 4b) for l = 1. Observe that as long as e < .25,
the cost varies little with d, and is linearly proportional to n.
This also means that keeping e small is crucial to the per-
formance of the algorithm. As we shall see later, e can, in fact,
be kept small for many problems. Hence, even though the
cost of our algorithm grows linearly with n, e is small enough
that in many real problems, it is better to pay this price of

linearity, rather than an exponential dependence on d.

4.2 Normally Distributed Point Set
Next, we look at the case when the point set is normally
distributed. If X is a point in the point set, we assume an
independent and normal distribution with variance s on
each of its coordinates:

f x
x

Xc
a f =

-1

2 2

2

2ps s
exp (14)

As before, using Zc = Xc – Qc, an expression for the density
of Zc can be obtained to get

f z
z Q

Z Q
c

c c
a f c h

=
- -1

2 2

2

2ps s
exp (15)

Pc can then be written as

P P Z Q f z dz

Q Q

c c c Z Q

c c

c c
= - £ £ =

=
-

+
+F

HG
I
KJ

-ze e

e e

e

e

n s a f
1
2 2 2

erf erf
s s

(16)

(a)

(b)

Fig. 4. The average cost of the algorithm is independent of d and
grows only linearly for small e. The point set in both cases is assumed
to be uniformly distributed with extent l = 1. (a) The point set contains
100,000 points in 5D, 10D, 15D, 20D, and 25D spaces. (b) The point
set is 15D and contains 50,000, 75,000, 100,000, 125,000, and
150,000 points.

NENE AND NAYAR: A SIMPLE ALGORITHM FOR NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 995

This expression can be substituted into (6) and evaluated
numerically to estimate cost for a given Q. Fig. 5 shows the
cost as a function of e for Q = 0 and s = 1. As with uniform
distribution, we observe that when e < 1, the cost is nearly
independent of d and grows linearly with n. In a variety of
pattern classification problems, data take the form of indi-
vidual Gaussian clusters or mixtures of Gaussian clusters.
In such cases, the above results can serve as the basis for
complexity analysis.
5 DETERMINING e

It is apparent from the analysis in the preceding section that
the cost of the proposed algorithm depends critically on e.
Setting e too high results in a huge increase in cost with d,
while setting e too small may result in an empty candidate
list. Although the freedom to choose e may be attractive in
some applications, it may prove non-intuitive and hard in
others. In such cases, can we automatically determine e so
that the closest point can be found with high certainty? If
the distribution of the point set is known, we can.

We first review well known facts about Lp norms. Fig. 6
illustrates these norms for a few selected values of p. All
points on these surfaces are equidistant (in the sense of the

respective norm) from the central point. More formally, the
Lp distance between two vectors a and b is defined as

L a bp k k
p

k

p

a b,
/

a f = -
L
N
MM

O
Q
PPÂ

1

(17)

These distance metrics are also known as Minkowski-p
metrics. So how are these relevant to determining e? The L2
norm occurs most frequently in pattern recognition prob-
lems. Unfortunately, candidate list trimming in our algo-
rithm does not find points within L2, but within L

7
 (i.e., the

hypercube). Since L
7

 bounds L2, one can naively perform
an exhaustive search inside L

7
. However, as seen in Fig. 7a,

this does not always correctly find the closest point. Notice
that P2 is closer to Q than P1, although an exhaustive search
within the cube will incorrectly identify P1 to be the closest.
There is a simple solution to this problem. When perform-
ing an exhaustive search, impose an additional constraint
that only points within an L2 radius e should be considered
(see Fig. 7b). This, however, increases the possibility that
the hypersphere is empty. In the above example, for instance,
P1 will be discarded and we would not be able to find any
point. Clearly then, we need to consider this fact in our
automatic method of determining e which we describe next.

 L1 L2 L3 L2

Fig. 6. An illustration of various norms, also known as Minkowski p-
metrics. All points on these surfaces are equidistant from the central
point. The L

7
 metric bounds Lp for all p.

(a) (b)

Fig. 7. An exhaustive search within a hypercube may yield an incorrect
result. (a) P2 is closer to Q than P1, but just an exhaustive search
within the cube will incorrectly identify P1 as the closest point. (b) This
can be remedied by imposing the constraint that the exhaustive search
should consider only points within an L2 distance e from Q (given that
the length of a side of the hypercube is 2e).

(a)

(b)

Fig. 5. The average cost of the algorithm is independent of d and
grows only linearly for small e. The point set in both cases is assumed
to be normally distributed with variance s = 1. (a) The point set con-
tains 100,000 points in 5D, 10D, 15D, 20D, and 25D spaces (Q = 0).
(b) The point set is 15D and contains 50,000, 75,000, 100,000,
125,000, and 150,000 points (Q = 0).

996 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

 (a) (b)

Fig. 8. e can be computed using two methods. (a) By finding the radius
of the smallest hypersphere that will contain at least one point with high
probability. A search is performed by setting e to this radius and con-
straining the exhaustive search within e. (b) By finding the size of the
smallest hypercube that will contain at least one point with high prob-
ability. When searching, e is set to half the length of a side. Additional
searches have to be performed in the areas marked in bold.

We propose two methods to automatically determine e.
The first computes the radius of the smallest hypersphere
that will contain at least one point with some (specified)
probability. e is set to this radius and the algorithm pro-
ceeds to find all points within a circumscribing hypercube
of side 2e. This method is however not efficient in very high
dimensions; the reason being as follows. As we increase
dimensionality, the difference between the hypersphere
and hypercube volumes becomes so great that the hyper-
cube “corners” contain far more points than the inscribed
hypersphere. Consequently, the extra effort necessary to
perform L2 distance computations on these corner points is
eventually wasted. So rather than find the circumscribing
hypercube, in our second method, we simply find the
length of a side of the smallest hypercube that will contain
at least one point with some (specified) probability. e can
then be set to half the length of this side. This leads to the
problem we described earlier that, when searching some
points outside a hypercube can be closer in the L2 sense
than points inside. We shall now describe both the methods
in detail and see how we can remedy this problem.

5.1 Smallest Hypersphere Method
Let us now see how to analytically compute the minimum
size of a hypersphere given that we want to be able guar-
antee that it is non empty with probability p. Let the radius
of such a hypersphere be ehs. Let M be the total number of
points within this hypersphere. Let Q be the novel point
and define Z to be the L2 distance between Q and any
point in the point set. Once again, M is binomially distrib-
uted with the density

P M k P

P n
k

hs

k

hs

n k

= = £

- £ F
H

I
K

-

Q Z Q

Z Q

m r m re j
m re j

e

e1 (18)

(a)

(b)

Fig. 9. The radius e necessary to find a point inside a hypersphere
varies very little with probability. This means that e can be set to the
knee where probability is close to unity. The point set in both cases is
uniformly distributed with extent l = 1. (a) The point set contains
100,000 points in 5, 10, 15, 20, and 25 dimensional space. (b) The
point is 5D and contains 50,000, 75,000, 100,000, 125,000, and
150,000 points.

Now, the probability p that there is at least one point in
the hypersphere is simply

p P M P M

P hs

n

= > = - =

= - - £

0 1 0

1 1

Q Q

Z Q

m r m r
m re je (19)

The above equation suggests that if we know Q, the density
f zZ Qa f , and the probability p, we can solve for ehs.

For example, consider the case when the point set is uni-
formly distributed with density given by (9). The cumula-
tive distribution function of Z is the uniform distribution
integrated within a hypersphere; which is simply its vol-
ume. Thus,

P
l d dhs

hs
d d

dZ Q£ =e

em r b g
2

2

2p /

/G
(20)

NENE AND NAYAR: A SIMPLE ALGORITHM FOR NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 997

Substituting the above in (19) and solving for ehs, we get

ehs

d

d
n

d
l d d

p= - -
F
HG

I
KJ

G /
/

/
/

2

2
1 12

1
1b g b ge j

p
(21)

Using (21), ehs is plotted against probability for two
cases. In Fig. 9a, d is fixed to different values between five
and 25 with n fixed to 100,000, and in Fig. 9b, n is fixed to
different values between 50,000 to 150,000 with d fixed to
five. Both the figures illustrate an important property which
is that large changes in the probability p result in very small
changes in ehs . This suggests that ehs can be set to the right
hand “knee” of both the curves where probability is very
close to unity. In other words, it is easy to guarantee that at
least one point is within the hypersphere. A search can now
be performed by setting the length of a side of the circum-
scribing hypercube to 2ehs and by imposing an additional
constraint during exhaustive search that only points within
an L2 distance ehs be considered.

5.2 Smallest Hypercube Method
As before, we attempt to analytically compute the size of
the smallest hypercube given that we want to be able guar-
antee that it is non empty with probability p. Let M be the
number of points within a hypercube of size 2ehc . Define Zc

to be the distance between the cth coordinate of a point set
point and the novel point Q. Once again, M is binomially
distributed with the density

P M k P Z Q

P Z Q n
k

hc c hc c
c

d k

hc c hc c
c

d n k

= = - £ £
F
HG

I
KJ

- - £ £
F
HG

I
KJ

F
H

I
K

=

=

-

’

’

Qm r n s

n s

e e

e e

1

1

1 (22)

Now, the probability p that there is at least one point in the
hypercube is simply

p P M

P M

P Z Qhc c hc c
c

d n

= >

=

0

1 0

1 1
1

Q

Q

m r
m r

n s

= -

= - - - £ £
F
HG

I
KJ=

’ e e (23)

Again, the above equation suggests that if we know Q, the
density f z

Z Qc c
a f , and the probability p, we can solve for ehc .

If for the specific case that the point set is uniformly dis-
tributed, an expression for ehc can be obtained in closed
form as follows. Let the density of the uniform distribution
be given by (9). Using (10) we get,

P Z Q lhc c hc c
c

d
hc

d

- £ £ =
F
HG

I
KJ=

’ e e

en s
1

2
(24)

(a)

(b)

Fig. 10. The value of e necessary to find a point inside a hypercube
varies very little with probability. This means that e can be set to the
knee where probability is close to unity. The point set in both cases is
uniformly distributed with extent l = 1. (a) The point set contains
100,000 points in 5, 10, 15, 20, and 25 dimensional space. (b) The
point set is 5D and contains 50,000, 75,000, 100,000, 125,000, and
150,000 points.

Substituting the above in (23) and solving for ehc , we get

ehc
n dl

p= - -2 1 1
1 1

b ge j/ /
(25)

Using (25), ehc is plotted against probability for two cases.
In Fig. 10a, d is fixed to different values between five and
25, with n is fixed at 100,000, and in Fig. 10b, n is fixed to
different values between 50,000 and 150,000 with d fixed at
five. These are similar to the graphs obtained in the case of
a hypersphere and again, ehc can be set to the right hand
“knee” of both the curves where probability is very close to
unity. Notice that the value of ehc required for the hyper-
cube is much smaller than that required for the hyper-
sphere, especially in high d. This is precisely the reason
why we prefer the second (smallest hypercube) method.

Recall that it is not sufficient to simply search for the
closest point within a hypercube because a point outside

998 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

can be closer than a point inside. To remedy this problem,
we suggest the following technique. First, an exhaustive
search is performed to compute the L2 distance to the clos-
est point within the hypercube. Call this distance r. In
Fig. 8b, the closest point P1 within the hypercube is at a
distance of r from Q. Clearly, if a closer point exists, it can
only be within a hypersphere of radius r. Since parts of this
hypersphere lie outside the original hypercube, we also
search in the hyper-rectangular regions shown in bold (by
performing additional list trimmings). When performing an
exhaustive search in each of these hyper-rectangles, we im-
pose the constraint that a point is considered only if it is less
than distance r from Q. In Fig. 8b, P2 is present in one such
hyper-rectangular region and happens to be closer to Q than
P1. Although this method is more complicated, it gives ex-
cellent performance in sparsely populated high dimensional
spaces (such as a high dimensional uniform distribution).

To conclude, we wish to emphasize that both the hyper-
cube and hypersphere methods can be used interchangea-
bly and both are guaranteed to find the closest point within
e. However, the choice of which one of these methods to
use should depend on the dimensionality of the space and
the local density of points. In densely populated low di-
mensional spaces, the hypersphere method performs quite
well and searching the hyper-rectangular regions is not
worth the additional overhead. In sparsely populated high
dimensional spaces, the effort needed to exhaustively
search the huge circumscribing hypercube is far more than
the overhead of searching the hyper-rectangular regions. It
is, however, difficult to analytically predict which one of
these methods suits a particular class of data. Hence, we
encourage the reader to implement both the methods and
use the one which performs the best. Finally, although the
above discussion is relevant only for the L2 norm, an equiva-
lent analysis can be easily performed for any other norm.

6 BENCHMARKS

We have performed an extensive set of benchmarks on the
proposed algorithm. We looked at two representative classes
of search problems that may benefit from the algorithm.

• In the first class, the data has statistical structure. This
is the case, for instance, when points are uniformly or
normally distributed.

• The second class of problems are statistically un-
structured, for instance, when points lie on a high di-
mensional multivariate manifold, and it is difficult to
say anything about their distribution.

In this section, we will present results for benchmarks
performed on statistically structured data. For bench-
marks on statistically unstructured data, we refer the
reader to Section 7.

We tested two commonly occurring distributions, nor-
mal and uniform. The proposed algorithm was compared
with the k-d tree and exhaustive search algorithms. Other
algorithms were not included in this benchmark because
they did not yield comparable performance. For the first set
of benchmarks, two normally distributed point sets con-
taining 30,000 and 100,000 points with variance 1.0 were

used. To test the per search execution time, another set of
points, which we shall call the test set, was constructed. The
test set contained 10,000 points, also normally distributed
with variance 1.0. For each algorithm, the execution time
was calculated by averaging the total time required to per-
form a nearest neighbor search on each of the 10,000 points
in the test set. To determine e, we used the “smallest hyper-
cube” method described in Section 5.2. Since the point set is
normally distributed, we cannot use a closed form solution
for e. However, it can be numerically computed as follows.
Substituting (16) into (23), we get

p
Q Q

c

d
c c

n

= - -
-

+
+F

HG
I
KJ

F
HG

I
KJ=

’1 1
1
2 2 21

erf erf
e e

s s
(26)

By setting p (the probability that there is at least one point
in the hypercube) to .99 and s (the variance) to 1.0, we
computed e for each search point Q using the fast and sim-
ple bisection technique [32].

Figs. 11a and 11b show the average execution time per
search when the point set contains 30,000 and 100,000
points respectively. These execution times include the time
taken for search, computation of e using (26), and the time
taken for the few (1 percent) additional3 searches necessary
when a point was not found within the hypercube. Al-
though e varies for each Q, values of e for a few sample
points are as follows.

• For n = 30,000, the values of e at the point Q = (0, 0, ...)
were e = 0.22, 0.54, 0.76, 0.92, and 1.04, corresponding
to d = 5, 10, 15, 20, and 25, respectively. At the point
Q = (0.5, 0.5, ...), the values of e were e = 0.24, 0.61,
0.86, 1.04, and 1.17, corresponding to d = 5, 10, 15, 20,
and 25, respectively.

• For n = 100,000, the values of e at the point Q = (0, 0,
...) were e = 0.17, 0.48, 0.69, 0.85, and 0.97, corre-
sponding to d = 5, 10, 15, 20, and 25, respectively. At
the point Q = (0.5, 0.5, ...), the values of e were
e = 0.19, 0.54, 0.78, 0.96, and 1.09, corresponding to
d = 5, 10, 15, 20, and 25, respectively.

Observe that the proposed algorithm is faster than the k-d
tree algorithm for all d in Fig. 11a. In Fig. 11b, the proposed
algorithm is faster for d > 12. Also notice that the k-d tree
algorithm actually runs slower than exhaustive search for
d > 15. The reason for this observation is as follows. In high
dimensions, the space is so sparsely populated that the ra-
dius of the query hypersphere is very large. Consequently,
the hypersphere intersects almost all the buckets and thus a
large number of points are examined. This, along with the
additional overhead of traversing the tree structure makes it
very inefficient to search the sparse high dimensional space.

For the second set of benchmarks, we used uniformly
distributed point sets containing 30,000 and 100,000 points
with extent 1.0. The test set contained 10,000 points, also
uniformly distributed with extent 1.0. The execution time
per search was calculated by averaging the total time re-
quired to perform a closest point search on each of the
10,000 points in the test set. As before, to determine e, the

3. When a point was not found within the hypercube, we incremented e

by 0.1 and searched again. This process was repeated till a point was found.

NENE AND NAYAR: A SIMPLE ALGORITHM FOR NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 999

“smallest hypercube” method, described in Section 5.2 was
used. Recall, that for uniformly distributed point sets, e can
be computed in the closed form using (25). Figs. 11c and
11d show execution times when the point set contains
30,000 and 100,000 points, respectively.

• For n = 30,000, the values of e were e = 0.09, 0.21, 0.28,
0.32, and 0.35, corresponding to d = 5, 10, 15, 20, and
25, respectively.

• For n = 100,000, the values of e were e = 0.07, 0.18,
0.26, 0.30, and 0.34, corresponding to d = 5, 10, 15, 20,
and 25, respectively.

For uniform distribution, the proposed algorithm does not
perform as well, although, it does appear to be slightly
faster than the k-d tree and exhaustive search algorithms.
The reason is, that the high dimensional space is very
sparsely populated and hence requires e to be quite large.
As a result, the algorithm ends up examining almost all
points, thereby approaching exhaustive search.

7 AN EXAMPLE APPLICATION:
APPEARANCE MATCHING

We now demonstrate two applications where a fast and
efficient high dimensional search technique is desirable.
The first, real time object recognition, requires the closest
point to be found among 36,000 points in a 35D space. In
the second, the closest point is required to be found from
points lying on a multivariate high dimensional manifold.
Both these problems are examples of statistically unstruc-
tured data.

Let us briefly review the object recognition technique of
Murase and Nayar [24]. Object recognition is performed in
two phases:

• appearance learning phase, and
• appearance recognition phase.

In the learning phase, images of each of the hundred objects
in all poses are captured. These images are used to compute
a high dimensional subspace, called the eigenspace. The

(a) (b)

(c) (d)

Fig. 11. The average execution time of the proposed algorithm is benchmarked for statistically structured problems. (a) The point set is normally
distributed with variance 1.0 and contains 30,000 points. (b) The point set is normally distributed with variance 1.0 and contains 100,000 points.
The proposed algorithm is clearly faster in high d. (c) The point set is uniformly distributed with extent 1.0 and contains 30,000 points. (d) The
point set is uniformly distributed with extent 1.0 and contains 100,000 points. The proposed algorithm does not perform as well for uniform distri-
butions due to the extreme sparseness of the point set in high d.

1000 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

images are projected to eigenspace to obtain discrete high
dimensional points. A smooth curve is then interpolated
through points that belong to the same object. In this way,
for each object, we get a curve (or a univariate manifold)
parameterized by its pose. Once we have the manifolds, the
second phase, object recognition, is easy. An image of an
object is projected to eigenspace to obtain a single point.
The manifold closest to this point identifies the object. The
closest point on the manifold identifies the pose. Note that
the manifold is continuous, so in order to find the closest
point on the manifold, we need to finely sample it to obtain
discrete closely spaced points.

For our benchmark, we used the Columbia Object Image
Library [27] along with the SLAM software package [28] to
compute 100 univariate manifolds in a 35D eigenspace.
These manifolds correspond to appearance models of the
100 objects (20 of the 100 objects shown in Fig. 12a). Each of
the 100 manifolds were sampled at 360 equally spaced
points to obtain 36,000 discrete points in 35D space. It was
impossible to manually capture the large number of object
images that would be needed for a large test set. Hence, we
automatically generated a test set of 100,000 points by sam-
pling the manifolds at random locations. This is roughly
equivalent to capturing actual images, but, without image
sensor noise, lens blurring, and perspective projection ef-
fects. It is important to simulate these effects because they
cause the projected point to shift away from the manifold
and hence, substantially affect the performance of nearest
neighbor search algorithms4.

Unfortunately, it is very difficult to relate image noise,
perspective projection, and other distortion effects to the
location of points in eigenspace. Hence, we used a simple
model where we add uniformly distributed noise with ex-
tent5 .01 to each of the coordinates of points in the test set.
We found that this approximates real-world data. We de-
termined that setting e = 0.1 gave us good recognition accu-
racy. Fig. 12b shows the time taken per search by the differ-
ent algorithms. The search time was calculated by averag-
ing the total time taken to perform 100,000 closest point
searches using points in the test set. It can be seen that the
proposed algorithm outperforms all the other techniques. e
was set to a predetermined value such that a point was
found within the hypersphere all the time. For object rec-
ognition, it is useful to search for the closest point within e
because this provides us with a means to reject points that
are “far” from the manifold (most likely from objects not in
the database).

Next, we examine another case when data is statistically
unstructured. Here, the closest point is required to be found
from points lying on a single smooth multivariate high di-
mensional manifold. Such a manifold appears frequently in
appearance matching problems such as visual tracking [26],
visual inspection [26], and parametric feature detection [25].
As with object recognition, the manifold is a representation
of visual appearance. Given a novel appearance (point),

4. For instance, in the k-d tree, a large query hypersphere would result in
a large increase in the number of adjacent buckets that may have to be
searched.

5. The extent of the eigenspace is from –1.0 to +1.0. The maximum noise
amplitude is hence about 0.5 percent of the extent of eigenspace.

matching involves finding a point on the manifold closest
to that point. Given that the manifold is continuous, to pose
appearance matching as a nearest neighbor problem, as
before, we sample the manifold densely to obtain discrete
closely spaced points.

The trivariate manifold we used in our benchmarks was
obtained from a visual tracking experiment conducted by
Nayar et al. [26]. In the first benchmark, the manifold was
sampled to obtain 31,752 discrete points. In the second
benchmark, it was sampled to obtain 107,163 points. In both
cases, a test set of 10,000 randomly sampled manifold
points was used. As explained previously, noise (with ex-
tent .01) was added to each coordinate in the test set. The
execution time per search was averaged over this test set of
10,000 points. For this point set, it was determined that
e = 0.07 gave good recognition accuracy. Fig. 13a shows the
algorithm to be more than two orders of magnitude faster
than the other algorithms. Notice the exponential behavior
of the R-tree algorithm. Also notice that Yunck’s algorithm
is only slightly faster than Friedman’s; the difference is due
to use of integer operations. We could only benchmark
Yunck’s algorithm till d = 30 due to use of a 32-bit word in
the indicator array. In Fig. 13b, it can be seen that the pro-
posed algorithm is faster than the k-d tree for all d, while in
Fig. 13c, the proposed algorithm is faster for all d > 21.

(a)

Algorithm Time (secs.)
Proposed Algorithm .0025

k-d tree .0045
Exhaustive Search .1533
Projection Search .2924

(b)

Fig. 12 The proposed algorithm was used to recognize and estimate
pose of 100 objects using the Columbia Object Image Library. (a)
Twenty of the 100 objects are shown. The point set consisted of
36,000 points (360 for each object) in 35D eigenspace. (b) The aver-
age execution time per search is compared with other algorithms.

NENE AND NAYAR: A SIMPLE ALGORITHM FOR NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 1001

8 HARDWARE ARCHITECTURE

A major advantage of our algorithm is its simplicity. Recall
that the main computations performed by the algorithm are
simple integer map lookups (backward and forward maps)
and two integer comparisons (to see if a point lies within
hyperplane boundaries). Consequently, it is possible to im-
plement the algorithm in hardware using off-the-shelf, in-
expensive components. This is hard to envision in the case
of any competitive techniques such as k-d trees or R-trees,
given the difficulties involved in constructing parallel stack
machines.

The proposed architecture is shown in Fig. 14. A Field
Programmable Gate Array (FPGA) acts as an algorithm
state machine controller and performs I/O with the CPU.
The Dynamic RAMs (DRAMs) hold the forward and back-
ward maps which are downloaded from the CPU during
initialization. The CPU initiates a search by performing a
binary search to obtain the hyperplane boundaries. These
are then passed on to the search engine and held in the
Static RAMs (SRAMs). The FPGA then independently be-
gins the candidate list construction and trimming. A candi-
date is looked up in the backward map and each of the
forward maps. The integer comparator returns a true if the

candidate is within range, otherwise it is discarded. After
trimming all the candidate points by going through the
dimensions, the final point list (in the form of point set in-
dices) is returned to the CPU for exhaustive search and/or
further processing. Note that although we have described
an architecture with a single comparator, any number of
them can be added and run in parallel with a near linear
performance scaling in the number of comparators. While
the search engine is trimming the candidate list, the CPU is
of course free to carry out other tasks in parallel.

We have begun implementation of the proposed archi-
tecture. The result is intended to be a small low-cost SCSI
based module that can be plugged in to any standard work-
station or PC. We estimate the module to result in a 100 fold
speedup over an optimized software implementation.

9 DISCUSSION

9.1 k Nearest Neighbor Search
In Section 5, we saw that it is possible to determine the
minimum value of e necessary to ensure that at least one
point is found within a hypercube or hypersphere with
high probability. It is possible to extend this notion to en-
sure that at least k points are found with high certainty.

(a)

 (b) (c)

Fig. 13. The average execution time of the proposed algorithm is benchmarked for an unstructured problem. The point set is constructed by sam-
pling a high dimensional trivariate manifold. (a) The manifold is sampled to obtain 31,752 points. The proposed algorithm is more than two orders
of magnitude faster than the other algorithms. (b) The manifold is sampled as before to obtain 31,752 points. (c) The manifold is sampled to obtain
107,163 points. The k-d tree algorithm is slightly faster in low dimension but degrades rapidly with increase in dimension.

1002 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

Recall that the probability that there exists at least one point
in a hypersphere of radius e is given by (19). Now define pk
to be the probability that there are at least k points within
the hypersphere. We can then write pk as

p P M k

P M P M P M k

P M i

k

i

k

= ≥

= - = + = + + = -

= - =
=

-

Â

Q

Q Q Q

Q

m r
m r m r m re j

m r

1 0 1 1

1
0

1

. . .

(27)

The above expression can now be substituted in (18) and
given pk, numerically solved for ehs. Similarly, it can be sub-
stituted in (22) to compute the minimum value of ehc for a
hypercube.

9.2 Dynamic Point Insertion and Deletion
Currently, the algorithm uses d floating point arrays to
store the ordered set, and 2d integer arrays to store the
backward and forward maps. As a result, it is not possible
to efficiently insert or delete points in the search space. This
limitation can be easily overcome if the ordered set is not
stored as an array but as a set of d binary search trees (BST)
(each BST corresponds to an array of the ordered set).
Similarly, the d forward maps have to be replaced with a
single linked list. The backward maps can be done away
with completely as the indices can be made to reside within
a node of the BST. Although BSTs would allow efficient in-
sertion and deletion, nearest neighbor searches would no
longer be as efficient as with integer arrays. Also, in order to
get maximum efficiency, the BSTs would have to be well bal-
anced (see [19] for a discussion on balancing techniques).

9.3 Searching With Partial Data
Many times, it is required to search for the nearest neighbor
in the absence of complete data. For instance, consider an
application which requires features to be extracted from an
image and then matched against other features in a feature
space. Now, if it is not possible to extract all features, then
the matching has to be done partially. It is trivial to adapt
our algorithm to such a situation: while trimming the list,

you need to only look at the dimensions for which you
have data. This is hard to envision in the case of k-d trees
for example, because the space has been partitioned by hy-
perplanes in particular dimensions. So, when traversing the
tree to locate the bucket that contains the query point, it is
not possible to choose a traversal direction at a node if data
corresponding to the partitioning dimension at that node is
missing from the query point.

ACKNOWLEDGMENTS

We wish to thank Simon Baker and Dinkar Bhat for their
detailed comments, criticisms and suggestions that have
helped greatly in improving the paper.

This research was conducted at the Center for Research
on Intelligent Systems at the Department of Computer Sci-
ence, Columbia University. It was supported in parts by
ARPA Contract DACA-76-92-C-007, DOD/ONR MURI
Grant N00014-95-1-0601, and a National Science Founda-
tion National Young Investigator Award.

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[2] S. Arya, “Nearest Neighbor Searching and Applications,” no. CS-
TR-3490, Univ. of Maryland, June 1995.

[3] F. Aurenhammer, “Voronoi Diagrams—A Survey of a Funda-
mental Geometric Data Structure,” ACM Computing Surveys,
vol. 23, no. 3, pp. 345-405, Sept. 1991.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-
Tree: An Efficient and Robust Access Method for Points and Rec-
tangles,” Proc. ACM SIGMOD, pp. 322-331, Atlantic City, NJ, May
1990.

[5] J.L. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509-517,
Sept. 1975.

[6] J.L. Bentley, “Multidimensional Binary Search Trees in Database
Applications,” IEEE Trans. Software Engineering, vol. 5, no. 4,
pp. 333-340, July 1979.

[7] J.L. Bentley and B.W. Weide, “Optimal Expected-Time Algo-
rithms for Closest Point Problems,” ACM Trans. Mathematical
Software, vol. 6, no. 4, pp. 563-580, Dec. 1980.

[8] J.L. Bentley, “Multidimensional Divide-and-Conquer, Comm.
ACM, vol. 23, no. 4, pp. 214-229, Apr. 1980.

[9] A. Califano and R. Mohan, “Multidimensional Indexing for Rec-
ognizing Visual Shapes,” Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition, pp. 28-34, June 1991.

[10] K. L. Clarkson, “A Randomized Algorithm for Closest-Point Que-
ries,” SIAM J. Computing, vol. 17, no. 4, pp. 830-847, Aug. 1988.

[11] D. Dobkin and R.J. Lipton, “Multidimensional Searching Prob-
lems,” SIAM J. Computing, vol. 5, no. 2, pp. 181-186, June 1976.

[12] H. Edelsbrunner, Algorithms in Combinatorial Geometry. Berlin-
Heidelberg: Springer, 1987.

[13] A. Farago, T. Linder, and G. Lubosi, “Fast Nearest-Neighbor
Search in Dissimilarity Spaces,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 15, no. 9, pp. 957-962, Sept. 1993.

[14] J.H. Friedman, F. Baskett, and L.J. Shustek, “An Algorithm for
Finding Nearest Neighbors,” IEEE Trans. Computers, pp. 1,000-
1,006, Oct. 1975.

[15] J.H. Friedman, J.L. Bentley, and R.A. Finkel, “An Algorithm for
Finding Best Matches in Logarithmic Expected Time,” ACM
Trans. Mathematical Software, vol. 3, no. 3, pp. 209-226, Sept. 1977.

[16] K. Fukunaga and P. M. Narendra, “A Branch and Bound Algo-
rithm for Computing k-Nearest Neighbors,” IEEE Trans. Comput-
ers, pp. 750-753, July 1975.

[17] I. Gargantini, “An Effective Way to Represent Quadtrees,” Comm.
ACM, vol. 25, no. 12, pp. 905-910, Dec. 1982.

[18] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD, pp. 47-57, June 1984.

Fig. 14. Architecture for an inexpensive hardware search engine that is
based on the proposed algorithm.

NENE AND NAYAR: A SIMPLE ALGORITHM FOR NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS 1003

[19] E. Horowitz and S. Sahni, Fundamentals of Data Structures, 2nd ed.
Rockville, Md.: Computer Science Press, 1987.

[20] V. Klee, “On the Complexity of d-Dimensional Voronoi Dia-
grams,” Arch. Math, vol. 34, pp. 75-80, 1980.

[21] D.E. Knuth, “Sorting and Searching,” The Art of Computer Pro-
gramming, vol. 3. Reading, Mass.: Addison-Wesley, 1973.

[22] D.B. Lomet and B. Salzberg, “The hb-Tree: A Multiattribute In-
dexing Method With Good Guaranteed Performance,” Proc. ACM
TODS, vol. 15, no. 4, pp. 625-658, Dec. 1990.

[23] M.L. Mico, J. Oncina, and E. Vidal, “A New Version of the Near-
est-Neighbor Approximating and Eliminating Search Algorithm
(AESA) With Linear Preprocessing Time and Memory Require-
ments,” Pattern Recognition Letters, no. 15, pp. 9-17, 1994.

[24] H. Murase and S.K. Nayar, “Visual Learning and Recognition of
3D Objects From Appearance,” Int’l J. Computer Vision, vol. 14,
no. 1, pp. 5-24, Jan. 1995.

[25] S.K. Nayar, S. Baker, and H. Murase, “Parametric Feature Detec-
tion,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition
(CVPR), pp. 471-477, San Francisco, Calif., June 1996.

[26] S.K. Nayar, H. Murase, and S.A. Nene, “Learning, Positioning,
and Tracking Visual Appearance,” Proc. IEEE Int’l Conf. Robotics
and Automation, San Diego, Calif., May 1994.

[27] S.K. Nayar, S.A. Nene, and H. Murase, “Real-Time 100 Object
Recognition System,” Proc. IEEE Int’l Conf. Robotics and Automa-
tion, Twin Cities, May 1996.

[28] S.A. Nene and S.K. Nayar, “SLAM: A Software Library for Ap-
pearance Matching,” Proc. ARPA Image Understanding Workshop,
Monterey, Calif., Nov. 1994. Also Technical Report CUCS-019-94.

[29] A.N. Netravali, Digital Pictures: Representation, Compression, and
Standards, 2nd ed. New York: Plenum Press, 1995.

[30] E.G.M. Petrakis and C. Faloutsos, “Similarity Searching in Large
Image Databases,” Technical Report CS-TR-3388, Dept. Computer
Science, Univ. of Maryland, Dec. 1994.

[31] F.P. Preparata and M.I. Shamos, Computational Geometry: An Intro-
duction. New York: Springer, 1985.

[32] W.H. Press, S. A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C, 2nd ed. Cambridge Univ. Press, 1992.

[33] T. Robinson, “The K-D-B-Tree: A Search Structure for Large Mul-
tidimensional Dynamic Indexes,” Proc. ACM SIGMOD, pp. 10-18,
1981.

[34] N. Roussopoulos and D. Leifker, “Direct Spatial Search on Picto-
rial Databases Using Packed R-Trees,” Proc. ACM SIGMOD, May
1985.

[35] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A
Dynamic Index for Multidimensional Objects, Proc. 13th Int’l Conf.
VLDB, pp. 507-518, Sept. 1987.

[36] R.F. Sproull, “Refinements to Nearest-Neighbor Searching in k-
Dimensional Trees,” Algorithmica, vol. 6, pp. 579-589, 1991.

[37] J.M. Vilar, “Reducing the Overhead of the AESA Metric-Space
Nearest Neighbour Searching Algorithm,” Information Processing
Letters, 1996.

[38] H. Wolfson, “Model-Based Object Recognition by Geometric
Hashing,” Proc. First European Conf. Comp. Vision, pp. 526-536,
Apr. 1990.

[39] P.N. Yianilos, “Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces,” Proc. ACM-SIAM
Symp. Discrete Algorithms, pp. 311-321, 1993.

[40] T.P. Yunck, “A Technique to Identify Nearest Neighbors,” IEEE
Trans. Systems, Man, and Cybernetics, vol. 6, no. 10, pp. 678-683,
Oct. 1976.

Sameer A. Nene received the BE degree in
computer engineering from the University of
Pune, Pune, India, in 1992 and the MS degree in
electrical engineering from Columbia University,
New York, in 1994. He is currently pursuing the
PhD in electrical engineering at Columbia Uni-
versity, New York.

His research interests include appearance
matching, nearest neighbor search and its appli-
cations to computer vision, image processing
and computer graphics, uncalibrated stereo,

stereo using mirrors, image-based rendering, and high-performance
computer graphics.

Shree K. Nayar is a professor at the Department
of Computer Science, Columbia University. He
received his PhD degree in electrical and com-
puter engineering from the Robotics Institute at
Carnegie-Mellon University in 1990.

His primary research interests are in compu-
tational vision and robotics, with emphasis on
physical models for early visual processing, sen-
sors, and algorithms for shape recovery, pattern
learning and recognition, vision-based manipula-
tion and tracking, and the use of machine vision

for computer graphics and virtual reality.
Dr. Nayar has authored and coauthored papers that have received

the David Marr Prize at the 1995 International Conference on Com-
puter Vision (ICCV'95) held in Boston, Mass., Siemens Outstanding
Paper Award at the 1994 IEEE Computer Vision and Pattern Recogni-
tion Conference (CVPR'94) held in Seattle, 1994 Annual Pattern Rec-
ognition Award from the Pattern Recognition Society, Best Industry
Related Paper Award at the 1994 International Conference on Pattern
Recognition (ICPR'94) held in Jerusalem, and the David Marr Prize at
the 1990 International Conference on Computer Vision (ICCV'90) held
in Osaka. He holds several U.S. and international patents for inven-
tions related to computer vision and robotics. Dr. Nayar was the recipi-
ent of the David and Lucile Packard Fellowship for Science and Engi-
neering in 1992 and the National Young Investigator Award from the
National Science Foundation in 1993.

