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Abstract 
I n  this paper, we propose the use of mirrors and a 

single camera for computational stereo. W h e n  compared 
to  conventional stereo systems that use two cameras, 
our method has a number of significant advantages such 
as wide field of view, single viewpoint projection, iden- 
tical camera parameters and ease of calibration. W e  
propose four stereo systems that use a single camera 
pointed towards planar, ellipsoidal, hyperboloidal, and 
paraboloidal mirrors. In each case, we present a deriva- 
tion of the epipolar constraints. Next, we attempt to  
understand what can be seen by each system and for- 
malize. the notion of field of view. W e  conclude with 
two experiments t o  obtain 3-0 structure. In the first we 
use a pair of planar mirrors, and in the second a pair 
of paraboloidal mirrors. The results of our experiments 
demonstrate the viability of stereo using mirrors. 

1 Introduction 
Researchers have in the past looked at stereo tech- 

niques that attempt to  obtain depth from omnidi- 
rectional data constru‘cted from dioptric (purely lens 
based) imaging systems. Ishiguro et al. [6], and more 
recently Kang and Szeliski [7], have used panoramic 
cylindrical mosaics t9 compute depth and obtain a 3-D 
reconstruction of the scene. An image based render- 
ing technique without explicit 3-D reconstruction uses 
a pair of cylindrical image mosaics [SI. In all these cases, 
omnidirectional data was obtained by first acquiring im- 
ages by rotating or simply moving a conventional cam- 
era, and then projecting and mosaicing these images 
on a cylindrical surface. Such techniques need manual 
intervention, mechanical gadgetry, and a large amount 
of computation. Hence they are slow and cumbersome 
to adopt. However, they do have the advantage that 
the acquired data, and subsequently, the depth that is 
computed is of high resolution. 

Nayar [ll] suggested a wide field of view (FOV) 
stereo system that consisted of a convenGona1 camera 
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pointed at two specular spheres (“Sphereo”). Such an 
optical system, consisting of refracting and reflecting 
elements is called a catadioptric system [5].  He showed 
that establishing correspondence between the images of 
the scene reflected off the two spheres makes it possi- 
ble to  triangulate and compute depth. In [12], Nayar 
further generalizes this idea to include n reflecting el- 
ements of arbitrary shapes. A similar system, using 
cones rather than spheres was proposed by Southwell 
et al. [18]. However, in both these systems [12] the 
projection of the scene produced by the curved mir- 
rors is not from a single point. This turns out to be 
a disadvantage for many vision techniques (including 
computational stereo) [lo] [13] [20]. 

Recently, Nayar and Baker [14] derived the complete 
class of reflecting surfaces that, when imaged by a per- 
spective camera, produce a projection of the scene from 
a single viewpoint. Based on this general solution, we 
propose a variety of catadioptric stereo systems that 
use two or more mirrors and a single lens. Our sys- 
tems acquire two or more projections of the scene in 
the same image, where each projection is from a single 
viewpoint. Mitsumoto et al. [9] have previously de- 
scribed a method for recovering depth by acquiring a 
projection of the scene and its reflection (using a pla- 
nar mirror) in the same image. Goshtasby and Gruver 
[2] use a camera pointed at hinged planar mirrbrs to 
acquire a pair of images from two viewpoints. Both 
these are special cases within our general treatment of 
systems that use multiple planar as well as non-planar 
mirrors. The catadioptric stereo systems that we pro- 
pose offer the following advantages over conventional 
stereo systems that use multiple cameras: 

0 Identical System Parameters: Lens, CCD and 
digitizer parameters such as blurring, lens distor- 
tions, spectral responses, capture synchronization, 
offset, automatic gain control, pixel size, aspect ra- 
tio, etc. are identical for all the views; as if they 
were taken at the same instant by the same camera- 
digitizer system. 

0 Ease of Calibration: Since we use only a single 
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lens, calibration of the system is greatly simplified. 
This is due to the fact that we need to estimate 
only one focal length and one center of projection. 

By use of non-planar 
reflecting surfaces such as hyperboloids and 
paraboloids, a wide field of view (while ensuring 
single viewpoint projection) is easily obtained. 

0 Cost: Lastly, but often most importantly, since 
a catadioptric stereo system needs only a single 
camera and a single digitizer, the cost is halved. 

e Wide Field of View: 

2 Catadioptric Image Formation 
' Let us first examine Nayar and Baker's [14] solution 

of reflecting surfaces that produce a single viewpoint 
projection. Figure 1 depicts an arbitrary reflecting sur- 
face S(z, y) that induces an effective viewpoint v. The 
center of projection (or pinhole) is located at p and the 
distance between v and p is c. The coordinate frame is 
assumed to be located at v. Since perspective projec- 
tion is rotationally symmetric around the optical axis 
i, we consider only a profile S(r ) ,  where r = d m .  
With this notation in place, the equations that com- 
prise class of mirrors that guarantee a fixed viewpoint 
are: 

C 

where, k is a constant of integration (see [14] for de- 
tails). Notice that the surfaces described by equations 
(1) and (2) are conic sections where both k and c de- 
termine the type of the conic. Nayar and Baker show 
that the only useful physically realizable surfaces that 
produce a single viewpoint are planar ( k  = a), ellip- 
soidal (c > 0, k > 0), hyperboloidal (c > 0, k > 2), and 
paraboloidal (c  -+ 03, k -+ 03). 

It is worth mentioning that other researchers have 
hit upon some of these surfaces. For instance, Rees 
[17] and Yamazawa et al. [20] used a conventional cam- 
era pointed at a large hyperboloidal mirror. Nalwa [lo] 
used a pyramidal arrangement of four planar mirrors 
and four cameras to obtain a single viewpoint wide FOV 
image mosaic, also at video rates. Nayar used an or- 
thographic camera pointed at a paraboloidal reflecting 
surface to compute multiple perspective streams from a 
single parabolic videostream at video rates [13] [16]. 

3 Catadioptric Stereo Systems 
We saw that it is possible to  setup four kinds cata- 

dioptric systems that see the scene from a single view- 
point. In order to obtain depth by triangulation, we 
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Figure 1: Geometry used to  derive the reflecting surface 
that produces an image of the scene as seen from a fixed 
viewpoint v (adapted from [14]). 

need two or more projections of the scene as seen from 
two or more distinct viewpoints. In this section, we 
shall see that it is possible to setup four kinds of cata- 
dioptric stereo systems that produce single viewpoint 
projections. The configurations that we discuss are: 
a) angled planar mirrors, b) rotated ellipsoidal mir- 
rors, c) rotated hyperboloidal mirrors, d) displaced 
paraboloidal mirrors (see figure 2). Other systems with 
combinations of different mirrors are also possible, for 
instance, planar + hyperboloidal, ellipsoidal + hyper- 
boloidal, etc. We assume that the system is calibrated, 
which means that camera parameters such as focal 
length, center of projection, and the location and di- 
mensions of the mirrors are all known. This can be 
accomplished either by standard techniques such as the 
8-point algorithm [4] or by physical measurements. 
3.1 Angled Planar Mirrors 

Figure 2(a) shows a simple stereo system that uses 
two plane mirrors and a single lens. Such a setup was 
previously described by Goshtasby and Gruver in [a]. 
Before we begin our description of this stereo system, 
let us first gain some insight into catadioptric image for- 
mation using a single mirror and lens'. It can be shown 
that acquiring an image of a planar mirror by a pinhole 
p at a perpendicular distance c/2 is equivalent to look- 
ing at the scene from an effective viewpoint v, also at a 
perpendicular distance c/2, but on the opposite side of 
p [14]. This property serves us well, because by placing 
another mirror at a different orientation (and possibly a 
different distance c'/2), we obtain a new effective view- 
point v' which is distinct from the viewpoint v. Hence, 

IWe use the terminology lens, pinhole, and perspective camera 
interchangebly. A lens has an effective pinhole at it's focus. 
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Figure 2: Four different configurations of catadioptric stereo systems are shown. (a) Two planar mirrors at an angle 
produce two effective viewpoints v and v' when imaged by a perspective (pinhole) camera p. (b) Ellipsoidal mirrors are 
placed such that one focus of each of the mirrors coincides with the pinhole. The effective viewpoints are located at the 
other foci. (c) Hyperboloidal mirrors are placed such that the exterior focus of each of the mirrors coincides with the 
pinhole. The effective viewpoints are located at the other foci. (d) Paraboloidal mirrors placed such that their axes are 
parallel to  each other. When imaged orthographically, the effective viewpoints are located at the interior foci. 

by acquiring an image of two or more mirrors at dif- 
fering orientations from a single lens, it is possible to 
obtain two or more distinct projections of the scene in 
the same image. 

P 

V 

Figure 3: When two planar mirrors are seen from a pinhole 
p, they produce two effective viewpoints v and v'. The pro- 
jection of the intersection of the epipolar plane wkth mirror 
M onto the image plane gives the epipolar line for point mk. 

Figure 3 shows an arrangement of two planar mir- 
rors and a lens. Let p be a pinhole at a distance c / 2  
from the planar mirror M .  Let the image plane be at 
distance f from p. Let v be the effective viewpoint in- 
duced by the mirror M and pinhole p. We assume the 
coordinate system to be conveniently located at v. Let 
v' ( V I ,  U;, U : )  be the virtual viewpoint induced by the 
second mirror M'.  If q is a scene point, it's projections 

on the image plane are points mp and mh. The rays 
corresponding to these points intersect the mirrors at 
m and m' respectively. 

Given any image point, we can derive an expres- 
sion for the corresponding epipolar line as follows. 
The epipolar line corresponding to the image point 
ma(z',y') is the projection of the line of intersection 
of the plane passing through points v, v' and m' and 
the mirror M ,  onto the image plane. As the system 
is calibrated, the coordinates of v' are known and the 
coordinates of point m' can be computed from m;. Let 
s'(l',m',n') be the direction vector of the line joining 
v' and m'. Then, the equation of the plane, which we 
shall call the epipolar plane, can be expressed as: 

az + py + yz = 0, (3) 
' I  where cy = n'v& - m vz, ,8 = l'v; - n'v;, and y = 

m'v; - l'v&. The surface of the planar mirror M is 
given by: 

(4) 
C 

z = 2 '  
Eliminating z from equations (3) and (4) we get an 
expression that relates the x and 9 coordinates of any 
point m on the line of intersection: 

2 x a  + 2yp + cy = 0. ( 5 )  

The perspective projection of a line point m(z, y, z )  
onto the image plane to obtain mp(z', y') is given by: 

Now, the equation of the epipolar line is obtained by 
simply substituting equations (6) in equation (5) and 
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simplifying: 
a d  + py’ + f -y  = 0. (7)  

The epipolar lines generated by equation (7) corre- 
spond to the projections of the lines of intersection of 
the family of planes passing through line t with the mir- 
ror M .  It is easy to see that these lines of intersection 
converge at the point of intersection of line t and the 
mirror M .  The projection of this point onto the im- 
age plane gives us the epipolar point e ( d ,  y’). Thus, 
to derive the expressions for the coordinates of e,  we 
proceed as follows. Let t (A,  p ,  U) be a unit vector in the 
direction of t. The equation of a line passing through 
v in the direction i’ is  given by: 

The perspective projection of this line onto the image 
plane is: 

By substituting in equation (9) the expression for the 
surface of mirror M (equation (4)), we immediately get 
the coordinates of the epipolar point: 

2‘ = x (L) , y‘ = p (L) . 

3.2 Rotated Ellipsoidal Mirrors 
We now look at a more interesting catadioptric stereo 

system, one that uses a pair of ellipsoidal mirrors and 
a single lens (see figure 2(b)). Use of such a system 
gives a wider FOV than can be obtained from a planar 
mirror system. Figure 4 shows an ellipsoidal mirror 
M and a single lens, positioned such that the effective 
pinhole p is located precisely at the exterior focus. The 
mirror reflects light rays passing through the interior 
focus v through p [14]. The image acquired by the lens 
is a projection of the scene as seen from the viewpoint 
v. Another ellipsoidal mirror M’ is placed so that one 
of its foci lies precisely at p. Such a mirror will give 
us another projection, acquired from the viewpoint v’ 
located at it’s interior focus. The ellipsoidal mirrors can 
be of arbitrary sizes provided they all have their distant 
foci located at p, which results in a system with the axes 
of the mirrors rotated with respect to one another. 

Unlike the planar mirror system, the epipolar con- 
straints are curves rather than straight lines. The 
derivation for their expressions, however, proceeds as 
before. In this case, we wish to  find the intersection 
of the epipolar pla9e with the surface of the ellipsoid 
M and then project this curve of intersection onto the 

Figure 4: Two ellipsoidal mirrors are precisely positioned 
such that their distant foci coincide at p. The viewpoints are 
located at the closer foci. The projection of the intersection 
of the epipolar plane with mirror M ,  onto the image plane 
gives the epipolar curve for point mb. 

image plane (see figure 4). As before, we assume the 
coordinate system to be conveniently located at v and 
the image plane located at  distance f from pinhole p 
perpendicular to the axis 2 of ellipsoid M. If q is a 
scene point that projects to an image point mp(x’, y’), 
the epipolar plane is given by equation (3). Let the 
surface of the ellipsoid M be given by: 

( z  - 2 ) 2  x2 + y2 
f ,  +-= 

a2 b2 

First, we eliminate z from equations (3) and (11) to get 
the orthographic projection of the curve of intersection 
of the epipolar plane and the ellipsoid M .  The per- 
spective projection of this curve onto the image plane 
using equation (6) yields the epipolar curve (see [15] for 
details) : 

(c4y4 + 2 1 ~ ~ 2 ~ 4  - 1 ~ 2 ~ 2 ~ 2 ) ~ ‘ 2  

+(C4y4 + 2kCzy4 - 1 c 2 4 2 ~ 2 ) p  

+ ( 2 f 1 ~ 2 ~ ~ 3  + 2jkc2cry3)2‘ 

+ ( a f 1 ~ ~ 0 ~ 3  + 2fkC2py3)y’ 
-(2k2a/3y2)s‘y’ - f z k 2 y 4  = 0.  (13) 

Observe that equation (13) is a conic section which can 
be a straight line, circle, ellipse, hyperbola or a parabola 
depending on the size and position of the ellipsoid M‘ 
and the coordinate of point mp. 

The expressions for the coordinates of e are found as 
in the previous section. We first find the points of inter- 
section of line t with the ellipsoid M and then perform 
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a perspective projection of these points onto the image 
plane to obtain the coordinates of the epipolar points: 

) 2’ = A (  f lc  (cv @-T%) 
(1 - 4 c 3  + (2 - v2)clc f l cv&qzz  

’ 

As before, we eliminate z from equations (3) and (15) 
and perform a perspective projection of the resulting 
curve of intersection to  obtain the epipolar curve: 

3.3 Rotated Hyperboloidal Mirrors (17) 
A hyperboloidal surface acts much like an ellipsoidal 

surface, in that it reflects light rays going towards the 
interior focus v through the exterior focus p. An im- 
age of the mirror acquired by a lens that is positioned 
precisely such that the effective pinhole lies at p is a 

As before, the intersection of line t with the hyper- 
boloid M gives us the coordinates of two points, whose 
perspective projection onto the image plane yields the 
coordinates of the epipolar points: 

f ( v *  Jq) projection of the scene as seen from the viewpoint v. 
Also like the ellipsoidal system, distinct viewpoints are 

that it’s exterior focus is precisely at  p (see figure 2(c)). 

obtained by placing another hyperboloidal mirror such 2) = .(- 
(1 - v2)lc - (2 - 9) f v 

f ( l J f J13)  
Such a system can have an arbitrary number of hyper- 
boloidal mirrors at  arbitrary positions provided they all 
have their exterior foci at the pinhole p. (1 - $ ) I C  - (2 - 9) f v 

U’ = .(- 
P 

3.4 Displaced Paraboloidal Mirrors 
A paraboloidal surface reflects light rays going to- 

wards the interior focus v such that they are all par- 
allel to  it’s axis. This requires use of an orthographic 
camera [19] or as a first approximation, a conventional 
camera kept at a distance from the mirror. This com- 
bination of an orthographic camera and a paraboloid 
produce a projection of the scene from the viewpoint v 
located at the focus. To obtain additional viewpoints, 
we use additional paraboloidal mirrors which are simply 
displaced with respect to  each other (see figure 2(d)). 

The derivation for epipolar curves is now a lot sim- Figure 5 :  Two hyperboloidal mirrors are precisely posi- 
tioned such that their exterior foci coincide at p. The view- 
points =e located at the interior foci. The projection of the 

pler, since there is no,need for perspective projection 
(see figure If the surface Of the paraboloid is given 

intersection of the epipolar plane with mirror M onto the by: 

image plane gives the epipolar curve for point mk. Z =  7 (19) 
h2 - ( x 2  + y2) 

2h 
To derive expressions of epipolar curves, as before, 

we find the intersection of the epipolar plane with the 
surface of the hyperboloid M and then project this 
curve of intersection onto the image plane (see figure 
5). Let the surface of the hyperboloid M be given by: 

eliminating z from equations (3) and (19) and replacing 
x by x’ and y by y’ gives us the epipolar curve: 

Notice that equation (20) is a circle. This implies that 
straight lines in the scene map to  circles2, and line seg- 
ments map to circular arcs. Following the prior proce- 
dure, we find the coordinates of the epipolar points by 

2This observation was first made by Swami Manohar at the 
Indian Institute of Sciences. 
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Figure 6: Two paraboloidal mirrors are placed with their 
axes are parallel to  each other. The image of these mirrors 
is acquired by an orthographic camera. The viewpoints are 
located at the foci of the respective paraboloids. The pro- 
jection of the intersection of the epipolar plane with mirror 
A4 onto the image plane gives the epipolar curve for point 
ml, . 

intersecting the line t with the paraboloid M and pro- 
jecting the points of intersection onto the image plane 
to obtain the image coordinates of the epipolar points 
(details in [15]): 

4 Field of View 
Let us now take a closer look at the field of view 

(FOV) of catadioptric stereo systems. Figure 7 shows 
the four systems that we have discussed so far. The 
thick dotted line is the optical axis of the lens whose ef- 
fective pinhole is p. The mirrors induce effective view- 
points v and v'. The thin dotted lines correspond to the 
field of view of each mirror and lens (camera) system 
taken individually. This also means that the camera will 
see itself and will not see the scene behind it. To keep 
the illustration clear, we have not shown this self occlu- 
sion. The gray areas correspond to regions of mutual 
occlusion due to one mirror blocking the other's view. 
The FOV of the complete system is the region (marked 
in bold) common to the individual FOVs minus the re- 
gions of mutual and self occlusion. We formalize this as 
follows. 

Let VI E R3 represent the set of all scene points 
visible from the viewpoint v of a single lens and mirror 
catadioptric system. Let C* E R3 represent the set of 
all scene points occluded by the camera as seen from 

the viewpoint v. Then, the FOV .F of this system is 
simply: 

Let us now consider a catadioptric stereo system with a 
pair of mirrors and a single lens. In this case, we need 
to consider M2,1,M1,2 E R3, the sets of scene points 
occluded by mirrors M' and M from viewpoints v and 
v', respectively. If C1 and Cz are the regions of self 
occlusion of the cameras from the viewpoints v and v', 
respectively, then the FOV of the system can be written 
as : 

F=V1 -C1. (22) 

F = (VI - Ci - M2,i) n (V2 - C2 - Mi,2). (23) 

Generalizing this to IC mirrors, we get: 

Equations (23) and (24) am in general non-trivial to 
evaluate analytically. A numerical solution is possible 
using visibility estimation techniques such as [l]. 

5 Experiments 
The goal of our first experiment was to obtain a dense 

depth map using a CCD camera pointed at two planar 
mirrors. The camera and mirrors were freely positioned 
to obtain two views (in the same image) of a candy 
box, shown in figure 8(a). A black background was 
used to avoid segmentation related issues. The 8-point 
algorithm of Hartley [4] was used to compute the fun- 
damental matrix for the two views of the candy box 
after manually corresponding 20 features. Figure 8(a) 
shows epipolar lines corresponding to few randomly se- 
lected features marked in the view on the left. Estima- 
tion of correspondence by normalized correlation and 
back-matching followed by 3x3 median filtering gave us 
disparity along epipolar lines. Next, the factorization 
technique of Hartley [3] was used to obtain the focal 
length and the rotation and translation of coordinate 
frames centered at the effective viewpoints correspond- 
ing to the two views. This enabled us to compute the 
3-D structure of the candy box. A gray-coded image of 
depth obtained for every pixel in the left view is shown 
figure 8(b). Figure 8(c) shows a texture mapped ren- 
dering of a novel view of the candy box obtained from 
a virtual camera situated a little to the left, above and 
closer (and hence the enhanced perspective effect) to 
our orginal camera. 

In the second experiment, our goal was to demon- 
strate that depth can be computed using curved mir- 
rors. We used two paraboloidal mirrors and a 35" 
SLR camera, since this setup gives us the most freedom 
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Figure 7 :  Four stereo systems are illustrated: (a) planar, (b) ellipsoidal, (c) hyperboloidal, and (d) paraboloidal. In each 
case, the FOV from each effective viewpoint is shown by thin dotted lines. The position of the pinhole camera is marked 
by p. The thick dotted line indicates the optical axis of the camera. The areas marked faint gray are regions of mutual 
occlusion. For each system, the FOV is determined by intersecting the individual FOVs from each effective viewpoint and 
subtracting the areas of mutual occlusion. The resulting FOV is marked in each case by the solid thick lines. 

and convenience in positioning the mirrors and the cam- 
era. The mirrors were fixed to  a base kept on the floor. 
The camera was suspended 6 feet above using a tripod. 
At this distance, zooming-in close to  the mirrors gave us 
the desired orthographic projection. Figure 8(d) shows 
an image acquired by this setup. It wa5 scanned in a t  
a resolution of 1068x750 using a Nikon slide scanner. 
The objects used in our experiment were a box and a 
cylinder placed about 180" apart. Calibration was per- 
formed by noting the pixel coordinates of the centers 
of the paraboloidal mirrors and measuring their radi h, 
also in pixel units. Notice in figure 8(d) that the cen- 
ters etched on the paraboloidal mirrors are visible as 
small white dots. Next, we used equation (20) to com- 
pute epipolar curves. Epipolar curves corresponding to 
sample scene features are illustrated in figure 8(d). Be- 
fore estimating correspondence, we cut out the objects 
manually from the background. Normalized correlation 
using a 9x9 window was performed to obtain disparity 
for each point on the lower right paraboloidal image. 
This allowed us to triangulate and compute depth for 
each point. A gray-coded depth image thus obtained 
is shown in figure 8(e). The experiment thus demon- 
strates that it is indeed practical to obtain wide FOV 
depth images by use of paraboloidal mirrors and a sin- 
gle camera. In the future, we plan to  refine our current 
implementation and develop compact and easy to  use 
systems in various configurations that utilize the four 
types of reflecting surfaces that we discussed. 
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