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Abstract-Structures of dynamic scenes can only be recovered using a real-time range sensor. Depth from defocus offers an 
effective solution to fast and dense range estimation. However, accurate depth estimation requires theoretical and practical solutions 
to a variety of problems including recovery of textureless surfaces, precise blur estimation, and magnification variations caused by 
defocusing. Both textured and textureless surfaces are recovered using an illumination pattern that is projected via the same optical 
path used to acquire images. The illumination pattern is optimized to maximize accuracy and spatial resolution in computed depth. 
The relative blurring in two images is computed using a narrow-band linear operator that is designed by considering all the optical, 
sensing, and computational elements of the depth from defocus system. Defocus invariant magnification is achieved by the use of 
an additional aperture in the imaging optics. A prototype focus range sensor has been developed that has a workspace of 1 cubic 
foot and produces up to 512 x 480 depth estimates at 30 Hz with an average RMS error of 0.2%. Several experimental results are 
included to demonstrate the performance of the sensor. 

Index Terms-Depth from defocus, constant magnification defocusing, active illumination pattern, optical transfer function, image 
sensing, tuned focus operator, depth estimation, real-time range sensor. 

1 INTRODUCTION 
pertinent problem in computational vision is the re- A covery of three-dimensional scene structure from two- 

dimensional images. Of all problems studied in vision, the 
above has by far attracted the most attention. This has re- 
sulted in a panoply of sensors and algorithms [8], [17] that 
can be broadly classified into two categories; passive and 
active. Passive techniques such as shape from shading and 
shape from texture attempt to extract structure from a sin- 
gle image. These algorithms are still under investigation 
and, given the assumptions they are forced to invoke, it is 
expected that they will prove complementary to other tech- 
niques but not serve as stand-alone strategies. Other pas- 
sive methods such as stereo and structure from motion use 
multiple views to resolve shape ambiguities inherent in a 
single image. The primary bottleneck for these methods has 
proved to be correspondence and feature tracking. Re- 
cently, a large parallel architecture was developed to com- 
pute real-time depth maps using stereo I261. 

The most popular range sensors in use today are based 
on time of flight or light striping [8]. In structured envi- 
ronments, where active radiation of a scene is feasible, light 
stripe methods offer a robust yet inexpensive solution to 
depth estimation. However, they have suffered from one 
inherent drawback, namely, speed. To achieve depth maps 
with sufficient spatial resolution, a large number (say, N) of 
closely spaced stripes are used. If all stripes are projected 
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simultaneously it is impossible to associate a unique stripe 
with any given image point, a process that is necessary to 
compute depth by triangulation. The classical approach is 
to obtain N images, one for each stripe. If Tf is the time re- 
quired to sense and digitize an image, the scanning of N 
stripes takes at least N Ti. Substantial improvements can 
be made by assigning gray codes to the stripes and scan- 
ning the entire collection of stripes in sets [23]. All the in- 
formation needed is then acquired in log,(N)Tp a significant 
improvement. An alternative approach uses color-coded 
stripe patterns [9]; this however is practical only in a gray- 
world that reflects all wavelengths of light. New hope for 
light stripe range finding has been instilled by advances in 
VLSI. Based on the notion of cell parallelism 1251, a com- 
putational sensor has been developed where each sensor 
element records a stripe detection time-stamp as a single 
laser stripe sweeps the scene at high speed. Depth maps are 
produced in as little as one msec, though present day sili- 
con packaging limits the total number of cells, and hence 
spatial depth resolution, to 28 x 32 [24]. Future advances in 
VLSI are expected to yield high-resolution depth maps at 
unprecedented speeds. 

In this paper, we present a range sensor based on focus 
analysis that produces a 512x480 depth map at 30Hz 
(video frame-rate). The sensor uses inexpensive off-the- 
shelf imaging and processing hardware and is shown to 
have an accuracy of approximately 0.2% [19]. Focus analy- 
sis has a major advantage over stereo and structure from 
motion; two or more images of a scene are taken under dif- 
ferent optical settings but from the same viewpoint, as ini- 
tially demonstrated in [lo], [13], [12]. This circumvents the 
need for correspondence or feature tracking. The algorithm 
presented here uses only two scene images. These images 
correspond to different levels of focus and local frequency 
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analysis implemented typically via linear operators yields 
depth estimLates. However, differences between the two 
images tend to be very subtle and we believe that previous 
solutions to depth from defocus have met with limited suc- 
cess as they are based on rough approximations to the opti- 
cal and sensing mechanisms involved in focus analysis. In 
contrast, our approach is based on a detailed physical mod- 
eling of all the optical, sensing, and computational elements 
at work; the optical transfer function, defocus, image sens- 
ing and sampling, and focus measure operators. 

Depth from defocus shares one inherent weakness with 
stereo and motion; it requires that the scene has high fre- 
quency textures. A textureless surface appears the same 
focused or clefocused and resulting images do not contain 
information necessary for depth computation. This has 
prompted us to develop a focus range sensor that uses ac- 
tive illumination. The key idea is to force a texture on the 
scene and then analyze the relative defocus of the texture in 
two images. Illumination projection has been suggested in 
the past [7], [11] for both depth from defocus and depth 
from pattern size distortion under perspective projection. 
However, these projected patterns were selected in an ad 
hoc fashion and do not guarantee high precision in com- 
puted depth. A critical problem therefore is determining an 
illumination pattern that would maximize the accuracy and 
robustness of depth from defocus. In this paper, a solution 
to this problem is arrived at through a detailed Fourier 
analysis of the entire depth from defocus system. First, 
theoretical models developed for each of the optical and 
computational elements of the system are expressed in spa- 
tial and Fourier domains. The derivation of the illumination 
pattern (or fidter) is then posed as an optimization problem 
in Fourier domain. The optimal pattern is one that maxi- 
mizes sensitivity of the focus measure to depth variations 
while minimizing the size of the focus operator to achieve 
high spatial resolution in computed depth. 

A prototype real-time focus range sensor has been de- 
veloped. It uses two CCD image detectors that view the 
scene through the same optical elements. The derived illu- 
mination pat tern is fabricated using micro-lithography and 
incorporated into the sensor. The illumination pattern is 
projected onto the scene via the same optical path used to 
image the scene. This results in several advantages. It en- 
ables precise registration of the illumination pattern with 
the sampling grid of the image sensors. Light rays projected 
out through the imaging optics are subjected to similar 
geometric distortions as rays reflected back to the sensors. 
Therefore, despite ever-present lens distortions, the illumi- 
nation pattern and the sensing grid of the detector are well 
registered. The coaxial illumination and imaging also re- 
sults in a shiadowless image; all surface regions that are 
visible to the sensor are also illuminated. Furthermore, 
since both images are acquired from the same viewing di- 
rection, the missing part or occlusion problem m stereo is 
avoided. Fig. 1 shows two brightness images and the com- 
puted depth map of a cup with milk flowing out of it. 
Structures of such dynamic scenes can only be recovered by 
a high-speed sensor. Several experiments have been con- 
ducted to evaluate the accuracy and real-time capability of 
the sensor. 

(b) 
Fig. 1. a. Two images of a scene taken simultaneously using different 
focus settings; b. A depth map of the scene computed in 33 msec by 
the focus range sensor. 

2 DEPTH FROM DEFOCUS 
Fundamental to depth from defocus is the relationship 
between focused and defocused images [l]. Fig.2 shows 
the basic image formation geometry. All light rays that are 
radiated by object point P and pass the aperture A are re- 
fracted by the lens to converge at point Q on the image 
plane. For a thin lens, the relationship between the object 
distance d, focal length of the lens f, and the image distance 
d, is given by the Gaussian lens law: 

1 1 1  I L L  -+-=-- .  
d di f 

Fig. 2. Image formation and depth from defocus. 

Each point on the object plane is projected onto a single 
point on the image plane, causing a clear or focused image Z,, 
to be formed. If, however, the sensor plane does not coin- 
cide with the image plane and is displaced from it, the en- 
ergy received from P by the lens is distributed over a patch 
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on the sensor plane. The result is a blurred image of P.  It is 
clear that a single image does not include sufficient infor- 
mation for depth estimation as two scenes defocused to 
different degrees can produce identical images. A solution 
to depth is achieved by using two images I ,  and I2 sepa- 
rated by a known physical distance p [lo], [151. The prob- 
lem is reduced to analyzing the relative blurring of each 
scene point in the two images and computing the distance 
a of its focused image. Then, using di = y - a, the lens law 
(1) yields depth d of the scene point. Simple as this proce- 
dure may appear, several technical problems emerge when 
implementing an algorithm of practical value. 

Determining Relative Defocus: In frequency domain, 
blurring can be viewed as low-pass filtering of scene 
texture. Relative blurring can thus in principle be es- 
timated by frequency analysis. This problem is non- 
trivial since local scene texture includes frequencies 
with unknown magnitudes and phases. Since the ef- 
fect of blurring is frequency dependent, it is not 
meaningful to investigate the net blurring of the en- 
tire collection of frequencies that constitute scene 
texture. This observation has forced investigators to 
use narrow-band filters that isolate more or less single 
frequencies and estimate their relative attenuation 
due to defocus in two or more images. Given that the 
dominant frequencies of the scene are unknown and 
possibly spatially varying, one is forced to use a large 
bank of tuned filters such as Gabor filters [14], [18] or 
hypergeometric filters 1161. Three problems surface 
with this approach. 

1) While it is rigorous, the necessity to use scores 
(at times, more than 100) filters makes it im- 
practical for any real-time application without 
the use of expensive customized hardware. 

2) The filters are typically chosen by assuming the 
images to be continuous. Filter design for dis- 
crete images requires that the analysis be carried 
further to avoid undesirable artifacts in com- 
puted depth. 

3) Irrespective of the reliability of a filter in ex- 
tracting focus measures, its output can be put to 
good use only if all optical and sensing elements 
of the depth from defocus system are accurately 
modeled. For instance, previous work has relied 
heavily on the Gaussian blur function, an ap- 
proximation that may suffice for depth from fo- 
cus' but limits the accuracy of depth from defo- 

Textureless Surfaces: Depth from defocus shares a 
major weakness with stereo and structure from mo- 
tion. If the imaged surface is textureless (a white sheet 
of paper, for instance) defocus and focus produce 
identical images and any number of filters would 

cus. 

1. All work in focus based depth computation can be broadly classified 
into depth from focus and depth from defocus. The former relies on a large 
number of images taken by varying a in Fig. 2 in small increments (or 
through search) and uses a focus operator to detect the image of maximum 
focus for each scene point (see 1161, 1191, 1271, 1281, [291, 1301, 1311, [321). In 
contrast, depth from defocus typically uses two images and estimates rela- 
tive blurring to get depth (see 1101, [121, 1161, [131, [331, 1341,1351, [361). 

prove ineffective in estimating relative blurring. A 
similar situation would arise in stereo or motion; cor- 
respondence and feature tracking would be ill-posed. 
Particularly in structured environments, this problem 
can be obviated by projecting an illumination pattern 
on the scene of interest, i.e., forcing scene texture [7], 
[lo]. However, careful attention must be given to the 
pattern that is used, else the problem is at best re- 
duced to applying depth from defocus to a scene with 
unknown texture. In our work we are interested in 
both textured and textureless scenes and hence adopt 
illumination projection. In contrast to previous work, 
however, we seek an optimal pattern that would en- 
sure that all scene points have the same dominant 
texture, one that maximizes the spatial resolution and 
accuracy of computed depth. Derivation of the opti- 
mal projected pattern is posed as an optimization in 
Fourier domain. 
Varying Magnification: Lastly, the relation between 
magnification and focus is worth mentioning. In the 
imaging system shown in Fig. 2, the effective image 
location of point p moves along ray R as the sensor 
plane is displaced. This causes a shift in image coor- 
dinates of P.  This variation in image magnification 
with defocus manifests as a mild correspondence-like 
problem in depth from defocus as the right set of 
points in images I ,  and I, are needed to estimate blur- 
ring. This problem has been underemphasized in pre- 
vious work with the exception of [37] where a precise 
focus-magnification calibration of motorized zoom 
lenses is suggested and [28] where a registration-like 
correction in image domain is proposed. The calibra- 
tion approach, while effective, is cumbersome and not 
viable for many off-the-shelf lenses. We use a simple 
but effective solution that is based on first principles 
of optics. 

3 CONSTANT MAGNIFICATION DEFOCUS 
We begin with the last of the problems raised in the above 
discussion; the variation of image magnification with defo- 
cus. We approach the problem from an optical perspective 
rather a computational one. Consider the image formation 
model shown in Fig. 3. The only modification made with 
respect to the model in Fig. 2 is the use of the external ap- 
erture A'. The aperture is placed at the fuont-focal plane, i.e., 
a focal length in front of the principal point  0 of the lens. 
This simple addition solves the prevalent problem of mag- 
nification variation with distance aof the sensor plane from 
the lens. Simple geometrical analysis reveals that a ray of 
light R from any scene point that passes through the center 
0' of aperture A' emerges parallel to the optical axis on the 
image side of the lens [2]. Furthermore, this parallel ray is 
the axis of a cone that includes all light rays radiated by the 
scene point, passed through by A', and intercepted by the 
lens. As a result, despite blurring, the effective image coor- 
dinates of point P in both images I ,  and I2 are the same, 
namely, the coordinate of its focused image Q on I f  
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Fig. 3. Constant-magnification imaging system for depth from defocus 
is achieved by simply placing an aperture at the front-focal plane of the 
optics [2], [21]. 

This invariance of magnification to defocus holds true 
for any depth from defocus configuration (all values of a 
and ,@. It can also be shown that the constant-magnification 
property is unaffected by the aperture radius U' used. Fur- 
thermore, the lens law of (1) remains valid. The above opti- 
cal configuration, called telecentric, is feasible not only in 
single lens systems but any compound lens system (see [2], 
[21]). Given an off-the-shelf lens, an aperture can be ap- 
pended to the casing of the lens using the procedure de- 
scribed in [;!1]. While the nominal and effective F-numbers 
of the classical optics in Fig. 2 are f / a  and dJa, respectively, 
they are both equal to f/a' in the telecentric case. 

4 MODELIING 
Effective solutions to both illumination projection and 
depth estim,ation require careful modeling and analysis of 
all physical phenomena involved in depth from defocus. 
The following five components are critical and will be 
modeled in this section: 

illumination pattern, 
optical transfer function, 
defocusing, 
image sensing, and 
focus operator. 

These components, together, determine the relation be- 
tween the depth of a scene point and its two focus meas- 
ures. Since we have used the telecentric lens (Fig. 3)  in our 
implementation, its parameters are used in developing each 
model. However, all of the following expressions can be 
made valid for a conventional lens system (Fig. 2) by sim- 

d ply replacing the factor $ by $. 

4.1 Illumination Pattern 
Before the parameters of the illumination pattern can be 
determined, an illumination model must be defined. Such a 
model must be flexible in that it must subsume a large 
enough variety of possible illumination patterns. In defin- 
ing the modd, it is meaningful to take the characteristics of 
the other components into consideration. As we will de- 
scribe shortly, the image sensor used has rectangular pixels 
arranged on a rectangular spatial grid. With this in mind, 
we define ihe following illumination model. The basic 
building blcck of the model is a rectangular illuminated 
patch, or cell, with uniform intensity: 

2 where, TI() is the two-dimensional Rectangular function [3] .  
The unknown parameters of this illumination cell are b, and 
by, the length and width of the cell. 

This cell is assumed to be repeated on a two-dimensional 
grid to obtain a periodic pattern. This periodicity is essen- 
tial since our goal is to achieve spatial invariance in depth 
accuracy, i.e., all image regions, irrespective of their dis- 
tance from each other, must possess the same textural char- 
acteristics. The periodic grid is defined as: 

i,(x,y) = i,(x,y; t,,tY) = 2111(+(*x+*y), +(*x-*Y)) (3) 

where, '1110 is the two-dimensional Shah function [31, and 
2t, and 2ty determine the periods of the grid in the x and y 
directions. Note that this grid is not rectangular but has 
vertical and horizontal symmetry on the x y  plane. The 
final illumination pattern i (x ,  y) is obtained by convolving 
the cell ic(x, y) with the grid i&, y): 

(4) 

The exact pattern is therefore determined by four parame- 
ters, namely, b,, by, t,, arid t,. The above illumination grid is 
not as restrictive as it may appear upon initial inspection. 
For instance, the parameters b ,  by, 2t,, and 2ty can each be 
stretched to obtain irepeated illumination and non- 
illumination stripes in the horizontal and vertical direc- 
tions, respectively. Alternatively, they can also be adjusted 
to obtain a checkerboard illumination pattern with large or 
small illuminated patches. The exact values for b,, by, t,, and 
ty will be evaluated b y  the optimization procedure de- 
scribed later. In practice, the illumination pattern deter- 
mined by the optimization is used to fabricate a filter with 
the same pattern. 

The optimization procedure requires the analysis of each 
component of the system in spatial domain as well as fre- 
quency domain ( U ,  v). The Fourier transforms of the illumi- 
nation cell, grid, and pattern are denoted as I&, U), I@, U ) ,  

and I(u, v), respectively, and found to be: 

i(x, y) = i(x, y; b,, by, t,, tY) = ic(x, y) * i&, y) 

I ( U ,  v) = I ( U ,  v; t,, ti,) = 2III((t,u + tyv), (txu - t,v)) (6) 
8 g 

4.2 Optical Transfer Function 
Adjacent points on the viewed surface reflect light waves 
that interfere with each other to produce diffraction effects. 
The angle of diffraction increases with the spatial frequency 
of surface texture. Since the lens aperture of the imaging 
system (Fig. 3) is of finite radius a', it does not capture the 
higher order diffractions radiated by the surface (see [ll for 
details). This effect places a limit on the optical resolution of 
the imaging system characterized by the optical transfer 
function (OTF): 
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Spatial domain 

aperture. In Fourier domain, the above defocus function is 
given by: 2a' 

- sin y ) ,  5 - 

2a' H(u,  v) O(U, v; a', f) = 
Af 

0, &57- If = H(u,v; a ,u ' , f )  

Frequency Domain 

where ( U ,  U )  is the spatial frequency of the two-dimensional 
surface texture as seen from the image side of the lens, f is 
the focal length of the lens, and il is the wavelength of inci- 
dent light. It is clear from the above expression that only 
spatial frequencies below the limit % will be imaged by 

the optical system (Fig. 4). This in turn places restrictions on 
the frequency of the illumination pattern. Further, the above 
frequency limit can be used to "cut off" any desired number 
of higher harmonics produced by the illumination pattern. 

sc m 

I I I I 

Fig. 4. Spatial and frequency models for the optical and sensing ele- 
ments of depth from defocus. 

where is the first-order Bessel function 111. As is evident 
from the above expression, defocus serves as a low-pass 
filter. The bandwidth of the filter increases as a! decreases, 
i.e., as the sensor plane gets closer to the plane of focus. In 
the extreme case of a = 0, H(u, U )  passes all frequencies 
without attenuation producing a perfectly focused image. 
Note that in a defocused image, all frequencies are attenu- 
ated at the same time. In the case of passive depth from 
focus or defocus, this poses a serious problem; different 
frequencies in an unknown scene are bound to have differ- 
ent (and unknown) magnitudes and phases. This again in- 
dicates that it would be desirable to have an illumination 
pattern that has a single dominant frequency, enabling ro- 
bust estimation of defocus and hence depth. 

4.4 Image Sensing 
We assume the image sensor to be a typical CCD TV cam- 
era. Such a sensor can be modeled as a rectangular array of 
rectangular sensing elements (pixels). The quantum effi- 
ciency [5] of each pixel is assumed to be uniform over the 
area of the pixel. Let m(x, y) be the continuous image 
formed on the sensor plane. The finite pixel area has the 
effect of averaging the continuous image m(x, y). In spatial 
domain, the averaging function is the rectangular cell: 

s,(x,y) = s,(x,y; wx,wy) = 211(Kx. ,IIy 1 (11) 

where w, and wy are the length and width of the pixel, re- 
spectively. The discrete image is obtained by sampling the 
convolution of m(x, y) with sc(x, y). This sampling function 
is a rectangular grid: 

4.3 Defocusing 
The defocus function is described in detail in previous 
work (see [l], [4], for example). As in Fig. 3, let a! be the 

where px and py are spacings between discrete samples in 
the two spatial dimensions, and ( q,, qy) is phase shift of the 
grid. The final discrete image is therefore: 

distance between the focused image of a surface point and 
its defocused image formed on the sensor plane. The light 
energy radiated by the surface point and collected by the 
imaging optics is uniformly distributed over a circular 
patch on the sensor plane. This patch, also called the pillbox, 
is the defocus function (Fig. 4): 

m&, y) = (s&, y) * m(x, y)) . sg(x, y) (13) 

The parameters w,, wy, px, and py are all determined by the 
particular image sensor used. These parameters are there- 
fore known and their values are substituted after the opti- 
mization is done. On the other hand, the phase shift (px, py) 
of the sampling function is with respect to the illumination - -  
pattern and will also be viewed as illumination parameters 

In Fourier domain, the above averaging and sampling 
k ( x f  Y) = k ( x r  Y; a/ f) = (9) during optimization. 

where, once again, a' is the radius of the telecentric lens functions are: 
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2 -i2z( ‘p,u+pp) 
= I I I ( ~ , ~ ,  pyv) . e (15) 

The final discrete image is: 

Md( U, U) = ( s , ( U ,  U) . M(u,  U)) * s,(u, v) (16) 

4.5 Focus Operator 
Since defocidsing has the effect of suppressing high- 
frequency components in the focused image, it is desirable 
that the focus operator respond to high frequencies in the 
image. For 1 he purpose of illumination optimization, we 
use the Laplacian. However, the derived pattern will re- 
main optimal for a large class of symmetric focus operators. 
In spatial do main, the discrete Laplacian is: 
8% y) = l(x, y; qx, q,,) 

= 4&x) ay) - [ax) ’ a y  - qy) + ax) ay + qy) 
-I- a x  - 9,) ay) + ax + 9,) ay11 (1 7) 

Here, q, and q,, are the spacings between neighboring ele- 
ments of the discrete Laplacian kernel. In the optimization, 
these spacings will be related to the illumination parame- 
ters. The Fourier transform of the discrete Laplacian is: 

U U ,  U) = U U ,  U; q,, q,,) 
= 20 -- COS(2nqxU)) * 424) + 2(1 - COS(2nqyV)) * a v )  
= 4 - 2cos(2qxu) - 2cos(2qyv) 

(18) 

The required discrete nature of the focus operator comes 
with a price. It tends to broaden the bandwidth of the op- 
erator. Once the pattern has been determined, the above 
filter will be tuned to maximize sensitivity to the funda- 
mental illumination frequency while minimizing the effects 
of spurious frequencies caused either by the scene’s inher- 
ent texture o’r image noise. 

4.6 Focus Measure 
The focus measure is simply the output of the focus opera- 
tor. It is related to defocus a (and hence depth d )  via all of 
the components modeled above. Note that the illumination 
pattern (i, * ,iJ is projected through optics that is similar to 
that used for image formation. Consequently, the pattern is 
also subjected to the limits imposed by the optical transfer 
function o and the defocus function k .  Therefore, the texture 
projected on the scene is: 

where d represents defocus of the illumination itself that 
depends on the depth of the illuminated point. However, 
the illumination pattern once incident on a surface patch 
plays the role of surface texture and hence defocus d of 
illumination does not have any significant effect on depth 
estimation. The projected texture is reflected by the scene 

and projected by the optics back onto the image plane to 
produce the discrete image: 

M X ,  y; b,, by, t,, tJ * o b ,  y; a’, p*2 

* s,(x, y; W x r  WY)1 . s,(x, y; px, p,,, p,, pJ 
* k’(x, y; d, a‘,P * k(x, y; qa’ , f )  

(20) 
where o*2 = o * o. Strictly speaking, the above expression is 
valid only when all points in the image have the same 
depth (defocus). In general, depth varies over the scene and 
the resulting system is space-variant and thus cannot be 
expressed as a sequence of convolutions. However, for the 
purpose of discussion, we assume that depth is locally con- 
stant and hence the above expression is a valid local ap- 
proximation for each point in the image. 

The final focus measure function g(x, y) is the result of 
applying the discrete Laplacian to the above discrete image: 

g(x,  y) = { ( i (x ,  y; b,, by, t,, $1 * o(x, y; a‘, p*2 
* V(x,  y; d, a’, p .# V(x, y; a, a’, p 
* s,(x, y; wx, w,)) qx, y; p,, p p,, pJ1 

(21) 

Since the distance between adjacent weights of the Lapla- 
cian kernel must be integer multiples of the period of the 
image sampling function s,, the above expression can be 
rearranged as: 

*2 *s * Z(x, y; qx, q,,) = {(i * o * h * s,) . sg} * I 

g(x, y) = (i * o*’ * k’ * k * s, * I )  . s, 
(22) - go . s>: 

* h’ * k * s, * 1. The same can be expressed 

- 

*2 where go = i * o 
in Fourier domain as: 

G(u, U) = (1. O2 . H’ . H .  S, . L )  * Sg = Go * S, (23) 

The above expression gives us the final output of the focus 
operator for any value of the defocus parameter a: It will be 
used in the following sections to determine the optimal il- 
lumination pattern and to estimate depth. 

5 ILLUMINATION OPTIMIZATION 
In our implementation, the illumination pattern is projected 
on the scene using a high power light source and a telecen- 
tric lens identical to the one used to image the scene. This 
allows us to assume that the projected illumination is the 
primary cause for surface texture and is stronger than the 
natural texture of the surface. Consequently, our results are 
applicable not only to textureless surfaces but also textured 
ones. The illumination optimization problem is formulated 
as follows: Establish closed-form relationships between the 
illumination parameters I@,, by, t ,  t,), sensor parameters (w,, 
w,, p,, py, px, py), and discrete Laplacian parameters (q,, qJ so 
as to maximize the sensitivity, robustness, and spatial 
resolution of the focus measure g(x, y). High sensitivity im- 
plies that a small variation in the degree of focus results in a 
large variation in g(x, y). This would ensure high depth es- 
timation accuracy in the presence of image noise, i.e., high 
signal-to-noise ratio. By robustness we mean that all pixels 
with the same degree of defocus produce the same focus 
measure independent of their location on the image plane. 
This ensures that depth estimation accuracy is invariant to 
location on the image plane. Lastly, high spatial resolution 
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is achieved by minimizing the size of the focus operator. 
This ensures that rapid depth variations (surface disconti- 
nuities) can be detected with high accuracy. 

In order to minimize smoothing effects and maximize 
spatial resolution of computed depth, the support (or span) 
of the discrete Laplacian must be as small as possible. This 
in turn requires the frequency of the illumination pattern be 
as high as possible. However, the optical transfer function 
described in Section 4.2 imposes limits on the highest fre- 
quency that can be imaged by the optical system. This 
maximum allowable frequency is ?$, determined by the 

numerical aperture of the telecentric lens. With this in 
mind, let us examine the Fourier transform of the illumina- 
tion pattern. Since the pattern is periodic, its Fourier trans- 
form must be discrete. It may have a zero-frequency com- 
ponent, but this can be safely ignored since the Laplacian 
operator, being a sum of second-order derivatives, will 
eventually remove any zero-frequency component in the 
final image. Our objective then is to maximize the funda- 
mental spatial frequency (1 / t,, l / - t J  of the illumination 
pattern. In order to maximize this frequency while main- 
taining high detectability, we must have 

close to the optical limit This in turn pushes all higher 

frequencies in the illumination pattern outside the optical 
limit. What we are left with is a surface texture whose im- 
age has only the quadrapole fundamental frequencies 
(+l/t,, +l/t,). As a result, these are the only frequencies we 
need consider in our analysis of the focus measure function 
G(u, V I .  

Before we consider the final measure G(u, v), we exam- 
ine G o b ,  U) the focus measure prior to image sampling. For 
the reasons given above, the two-dimensional G,(u, v) is 
reduced to four discrete spikes at (l/t,/ l / ty) ,  (l/-t,, -l/ty), 
(-l/tx, l/-t,), and (-l/&, -l/ tJ .  Since all components ( I ,  0, 
H, S,, and L )  of Go are reflection symmetric about U = 0 and 
v = 0, we have: 

Af ' 

where: 

Therefore, in frequency domain the focus measure function 
prior to image sampling reduces to: 

The function go(", y) in image domain, is simply the in- 
verse Fourier transform of Go(u, v): 

Note that go(xl y) is the product of cosine functions 
weighted by the coefficient Go(l / t,, 1 /t,). The defocus 
function h has the effect of reducing the coefficient 
Go(l/f,/ l / t y )  in the focus measure go(", y). Clearly, the 
sensitivity of the focus measure to depth (or defocus) is 
optimized by maximizing the coefficient Go(l /t,, 1 /t,) 
with respect to the unknown parameters of the system. 
This optimization procedure can be summarized as: 

Since t, and t, show up in all the components in (251, the 
first two partial derivatives (28) are difficult to evaluate. 
Fortunately, the derivatives in (29) and (30) are sufficient to 
obtain relations between the system parameters. For details 
of the optimization procedure, we refer the reader to [20]. 
Maximum sensitivity and spatial resolution of the focus 
measure g(x, y) are achieved for the following illumination 
parameter values: 

Next, we examine the spatial robustness of g(x, y). Imagine 
the imaged surface to be planar and parallel to the image 
sensor. Then, we would like the image sampling to produce 
the same absolute value of g(x, y) at all discrete sampling 
points on the image. This entails relating the illumination 
and sensing parameters so as to facilitate careful sampling 
of the product of cosine functions in (27). Note that the final 
focus measure is: 

1 (r: PY 
. 2111 -(x - q,), -(Y 1 - 9,) (33) 
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All samples of g(x, y) have the same absolute value when the 
two cosines in the above expression are sampled at their 
peak values. Such a sampling is possible when: 

1 1 
p =- t " ,  py = - t  (34) " 2  2 y  

and: 

9" = 0, q y  = 0 (35) 
Alternatively, the cosines can be sampled with a period of 
n/2  and phase shift of n/4.  This yields the second solution: 

1 1 
x 4 Y 4 Y .  p =-t,, p = - t  (36) 

(37) 

The above equations give two solutions, both are check- 
erboard illumination patterns but differ in their funda- 
mental frequencies, size of the illumination cell, and the 
phase shift with respect to the image sensor. Equations (311, 
(32), (34), and (35) yield the filter pattern shown in Fig. 5a. 
In this case the filter and detector are registered with zero 
phase shift, and the illumination cell has the same size and 
shape as the sensor elements (pixels). The second solution, 
shown in Fig. 5b, is obtained using the sampling solutions 
(36) and (37), yielding a filter pattern with illumination cell 
two times the size of the sensor element and phase shift of 
half the sensor element size. Exactly how such patterns can 
be projected and perfectly registered with the image detec- 
tor will be described in the experimental section. 

narrow-band operator with sharp peaks at the above four 
coordinates in frequency space. 

Given that the operator must eventually be discrete and 
of finite support, there is a limit to the extent to which it can 
be tuned. To constrain the problem, we impose the follow- 
ing conditions: 

1) To maximize spatial resolution in computed depth we 
force the operator kernel to be 3 x 3. 

2) Since the fundamiental frequency of the illumination 
pattern has a syminetric quadrapole arrangement, the 
focus operator must be rotationally symmetric. These 
two conditions force the operator to have the struc- 
ture shown in Fig. 6c. 

3) The operator must not respond to any DC component 
in image brightnes. 

This last condition is satisfied if the sum of all elements (see 
Fig. 6c) of the operator equals zero: 

a + 4b + 4 c  = 0 (38) 

-1 

(4 
V 

5. Optimal illumination filter patterns: a. f, = 20, t,, = 210,~ ov = 0, Fig. " "  I "  

q,=0;andb.fx=4px, f -4p  bx=1/8fx, ~ ~ = l / 8 f ~ ~ e n c e ~ ( f x , f ~ ) i s  
the illumination period, [pi, p s i s  the pixel size, and (px, q,) is the IIIu- 
mination phase shift with respect to the image sensing grid. 

6 TUNED FOCUS OPERATOR 
For the purpose of illumination optimization, we used the 
Laplacian operator. The resulting illumination pattern has 
only a single dominant absolute frequency, (l /tx,  1 /ty). 
Given this, we are in a position to further refine our focus 
operator so as to minimize the effects of all other frequen- 
cies caused either by the physical texture of the scene or 
image noise. To this end, let us consider the properties of 
the 3 x 3 discrete Laplacian (see Figs. 6a and 6b). We see 
that though the Laplacian does have peaks exactly at (l/t,, 
l / tJ ,  (l/fx, -l/ty), ( - l / t x ,  l / ty),  and (-l/t,, -l/ty), it has a 
fairly broad bandwidth allowing other spurious frequencies 
to contribute to the focus measure G in (23). Here, we seek a 

M A ,  A 

Fig. 6. a. The 3 x 3 Laplaciari and its b. Fourier transform; c. The kernel 
structure for a 3x3 operator 'that is symmetric; d. The kernel of a 3 x 3 
operator that is insensitive tal the zero frequency component (see text); 
e. The second moment M of each of the four operator peaks is mini- 
mized when c = 0.658; f. Response of the tuned focus operator 
( c =  0.658) has sharper peaks than the Laplacian. 

It is also imperative that the response L(m, U) of the operator 
to the fundamental frequency not be zero: 
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1 

1 1 
(39) + 4 c c o s 2 q  -+cos27u7 - # O  

t ,  tY 

Given (32), the above reduces to: 
a - 4 b  +4c #O (40) 

Expressions (38) and (40) imply that b t 0. Without loss of 
generality, we set b = -1. Hence, (38) gives a = 4(1 - c). 
Therefore, the tuned operator is determined by a single 
unknown parameter c, as shown in Fig. 6d. The problem 
then is to find c such that the operator’s Fourier transform 
has a sharp peak at (l / tx,  l / ty) .  A rough measure of sharp- 
ness is given by the second-order moment of the power 
11 L(u, U) 112 with respect to (l / ty,  l / tv):  

2 

ilL[u - t, U - dv du 

The above measure is minimized when 9 = 0, i.e., when 
c = 0.658 as shown in Fig. 6e. The resulting tuned focus op- 
erator has the response shown in Fig. 6f, it has substantially 
sharper peaks than the discrete Laplacian. Given that the 
operator is 3 x 3 and discrete, the sharpness of the peaks is 
limited. The above derivation brings to light the funda- 
mental difference between designing tuned operators in 
continuous and discrete domains. In general, an operator 
that is deemed optimal in continuous domain is most likely 
suboptimal for discrete images. A quantitative comparison 
between the performance of the tuned and Laplacian op- 
erators will be presented in the section on experiments. A 
further refinement of the above tuned operator to make it 
insensitive to phase shifts in illumination is presented in 1201. 

7 DEPTH FROM Two IMAGES 
Depth estimation uses two images of the scene I,(x, y) and 
12(x, y) that correspond to different effective focal lengths as 
shown in Fig. 3. Depth of each scene point is determined by 
estimating the displacement a of the focused plane If for the 
scene point. The tuned focus operator is applied to both 
images to get focus measure images gl(x, y) and g2(x, y). 
From (33) we see that: 

i l  1 

From (23) we see that the only factor in Go affected by pa- 
rameter a i s  defocus function H. Therefore: 

Note that the above measure is not bounded. This poses a 
problem from a computational viewpoint which is easily 
remedied by using the following normalization: 

As shown in Fig. 7, q is a monotonic function of a such that 
-p < q 5 p ,  p 1. In practice, the above relation can be pre- 
computed and stored as a look-up table that maps q com- 
puted at each image point to a unique a. Since a represents 
the position of the focused image, the lens law (1) yields the 
depth d of the corresponding scene point. Note that the tuned 
focus operator designed in the previous section is a linear 
filter, making it feasible to compute depth maps of scenes in 
real-time using off-the-shelf image processing hardware. 

0.5 

-1.0 I 

Fig. 7. Relation between focus measures gl and g, and the defocus pa- 
rameter a. 

8 REAL TIME RANGE SENSOR 
We have implemented the real-time focus range sensor 
shown in Fig. 8. The scene is imaged using a standard 
12.5 mm Fujinon lens with an additional aperture added to 
convert it to telecentric (see [211 for details). Light rays 
passing through the lens are split in two directions using a 
beam-splitting prism. This produces two images that are 
simultaneously detected using two Sony XC-77RR eight bit 
CCD cameras. The positions of the two cameras are pre- 
cisely fixed such that one obtains a near-focus image while 
the other a far-focus image. In this setup a physical dis- 
placement of 0.25 mm between the effective focal lengths of 
the two CCD cameras translates to a working range on the 
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object side of approximately 30 cm. This detectable range of 
the sensor can be varied either by changing the sensor dis- 
placement or the focal length of the imaging optics. 

9 EXPERIMENTS 
Numerous experiments have been conducted to test the 
performance of the sensor. Here, we brieflv summarize 
ihese results. Fig.9a shows the near focused image of a 
planar surface, half of the surface is textureless while the 
other half has strong random texture. A computed depth 
map of the surface is shown in Fig. 9b. As expected the 
textureless area is estimated almost free of errors while the 
textured area has small errors due to texture frequencies 
that lie close to the illumination frequency. It may be noted 
that the texture used ini this experiment includes a wide 
spectrum of frequencies. Most scenes have weaker textures 
and can be expected to produce even more accurate results. 
Several depth maps of t’he plane in Fig. 9a were computed 
by varying its position in the 30 cm workspace of the sensor 
and the average accuracy and repeatability of the sensor 

grabbing configurations (see Table 9c). These results clearly 
demonstrate the superior performance of the sensor over 
previous implementations of depth from defocus. This im- 

(a)  (b) 
Fig, 8, a, The real-time focus range Sensor and its key components. were estimated for both Simultaneous and successive image 
b. The sensor can produce depth maps up to 512 x 480 in resolution at 
30 Hz. 

provement results from several factors including accurate 
modeling of sensor optics, the use of an optimized illumi- 
nation pattern, and careful implementation of the sensor. 

The illumination pattern shown in Fig. 5b was etched on 
a glass plate using microlithography, a process widely used 
in VLSI. The filter was then placed in the path of a 300 W 
Xenon arc lamp. The illumination pattern generated is pro- 
jected using a telecentric lens identical to the one used for 
image capture. A half-mirror is used to ensure that the il- 
lumination pattern projects onto the scene via the same op- 
tical path used to acquire images. As a result, the pattern is 
almost perfelctly registered with respect to the pixels of the 
two CCD cameras. Furthermore, a modification to the 
tuned focus operator of Section 6 is presented in [201 that 
makes it insensitive to slight misregistrations between the 
illumination pattern and image pixels. The above arrange- 
ment ensures that every scene point that is visible to the 
sensor is also illuminated by it, avoiding shadows and thus 
undetectable regions. If objects in the scene have a strong 
specular reflection component, cross-polarized filters can be 
attached to the illumination and imaging lens to filter out 
specularities and produce images that mainly include the 
diffuse reflection component. 

Images from the two CCD cameras are digitized and 
processed using MV200 Datacube image processing hard- 
ware. The present configuration includes the equivalent of 
two eight bit digitizers, two A/D convertors, and one 12-bit 
convolver. This hardware enables simultaneous digitization 
of the two images, convolution of both images with the 
tuned focus operator, and the computation of a 256 x 240 
depth map, all within a single frametime of 33 msec with a 
lag of 33 msec. A look-up table is used to map each pair of 
focus measures (gl and 82) to a unique depth estimate d (see 
1201 for implementation details). Alternatively, a 512 x 480 
depth map c m  be computed at the same rate if the two im- 
ages are taken in succession. Simultaneous image acquisi- 
tion is clearly advantageous since it makes the sensor less 
sensitive to variations in both illumination and scene 
structure between frames. With minor additions to the pre- 
sent processing hardware, it is easy to obtain 512 x 480 
depth maps at 30 Hz using simultaneous image grabbing. 
Depth maps produced by the sensor are visualized as wire- 
frames at framerate using a DEC Alpha workstation. 

Simulatneous Successive 1 ~ ~ 1  
I Repeatability (rms) I 0.23 % I 0.29 % I 

Spatial Resoluhon 

Delay 33 msec 33 m e c  

(C> 

Fig. 9. a. Near focused image of a planar surface that includes highly 
textured and textureless areas; b. Depth of the surface computed using 
the focus range sensor; c. Performance characteristics of the sensor. 

In Fig. 10, a simple example is shown to demonstrate 
that the tuned focus operator of Section 6 does outperform 
the Laplacian operator. Fig. 10a shows a planar surface 
with patches of different textures. Fig. 10b shows its depth 
map computed by the sensor when the focus operator used 
is a 3 x 3  Laplacian. The broad frequency bands of the 
Laplacian allow some of the textures of the planar surface 
to induce large errors in computed depth. In contrast, the 
narrowband 3 x 3 tuned operator produces a significantly 
improved depth map, as shown in Fig. 1Oc. 
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(a) (G) 

Fig. 10. a. Planar surface with textured patches; b. Depth map com- 
puted using a 3 x 3 Laplacian focus operator; c. Depth map computed 
using the tuned focus operator. As expected, the broad frequency 
bands of the Laplacian make it more susceptible to depth errors in- 
duced by surface texture. 

io 

U; 

(3) 

Fig. 11, a. Near and far focused images of a set of polyhedral objects; 
b. Computed depth map. 

Fig. 11 shows a scene with polyhedral objects. The com- 
puted depth map in Fig. l l b  is fairly accurate despite the 
complex textural properties of the objects. The only filtering 
that is applied to the depth map is a 5 x 5 smoothing func- 
tion to reduce high frequency noise in computed depth that 
results from the low signal-to-noise ratio of the CCD cam- 
eras and spurious frequencies caused by surface texture. All 
surface discontinuities and orientation discontinuities are 
well preserved. The recovered shapes are precise enough 
for a variety of visual tasks including recognition and in- 
spection. In the case of dynamic scenes, structure can be 
estimated only by using a real-time sensor. Fig. 12 shows an 
object’s depth map computed as it rotates on a motorized 
turntable. Such depth map sequences are useful in auto- 
matic CAD model generation from sample objects. Fur- 
thermore, real-time depth computation clearly enhances the 
capability of any vision system as it enables recovery of a 
deforming shape, precise tracking of moving objects, and 
robust navigation in dynamic scenes. 

Fig. 12. Depth maps generated by the sensor at 30 Hz while an object 
rotates on a motorized turntable. 

10 SUMMARY 
We have reported theoretical results on a variety of issues 
related to depth estimation by focus analysis. Accurate 
modeling of optics and sensing were shown to be essential 
to precise depth estimation. Both textured and textureless 
surfaces are recovered by using an optimized illumination 
pattern that is registered with the image sensor. A telecen- 
tric optical configuration was used to acheive constant- 
magnification defocusing. All of these results were used to 
implement a real-time focus range sensor that produces 
high resolution depth maps at frame rate. This sensor is 
unique in its ability to produce fast, dense, and precise 
depth information at a very low cost. With time we expect 
the sensor to find applications ranging from visual recogni- 
tion and robot control to automatic CAD model generation 
for vision and graphics. The obvious extension to this work 
is the development of a passive focus range finder for out- 
door scenes. Such a sensor cannot afford the luxury of pro- 
jected illumination. It must remain efficient while relying 
on the natural textures of scenes for depth estimation. Some 
progress in this regard has already been made [221. 
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