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Abstract

We propose an algorithm to automatically con-
struct feature detectors for arbitrary parametric
features. In the algorithm, each feature is repre-
sented as a densely sampled parametric manifold
in a low dimensional subspace of <N . Detection
is performed by projecting the brightness dis-
tribution around each image pixel into the sub-
space. If the projection lies su�ciently close to
the feature manifold, the feature is detected and
the location of the closest point on the mani-
fold is used to estimate the feature parameters.
By applying the algorithm to appropriate fea-
ture models, detectors have been constructed for
�ve parametric features, namely, step edge, roof
edge, line, corner, and circular disc.

1 Introduction

Many applications in computational vision rely
upon robust detection of image features and ac-
curate estimation of their parameters. Although
the standard example of such a feature is the
step edge, it is by no means the only feature of
interest. A comprehensive list would also include
lines, corners, junctions, and roof edges 1 as well
as numerous others. In short, features may be
too numerous to justify the process of deriving a
new detector for each one. Our aim in this pa-
per is to develop a single detection mechanism
that can be applied to any parametric feature.
Moreover, we wish to obtain precise estimates of
feature parameters, which if recovered with pre-
cision can be of vital importance to higher levels
of visual processing.

To obtain high performance in both feature de-
tection and parameter estimation, it is essential

�This research was supported in parts by ARPA
Contract DACA-76-92-C-007, DOD/ONR MURI Grant
N00014-95-1-0601, an NSF National Young Investigator
Award, and the NTT Basic Research Laboratory.

1Given the extent to which feature detection has been
explored, a survey of the work in this area is well be-
yond the scope of this paper. In our discussion, we only
use examples of previous detectors without attempting
to mention all of them. Further, we will primarily be in-
terested in examples that use parametric feature models
rather than those based upon di�erential invariants.

to accurately model the features as they appear
in the physical world. Hence, we choose not to
make any simplifying assumptions for analytic or
e�ciency reasons, and instead use realistic multi-
parameter feature models. Further, we give care-
ful consideration to the conversion of the contin-
uous radiance function of the feature in the world
to its discrete image.

Given a parametric model of a feature and a
model of the imaging system, we can accurately
predict the pixel brightness values in a window
about an imaged feature. If we regard the pixel
brightness values as real numbers, we can treat
each feature as corresponding to a parametric
manifold in <N , where N is the number of pix-
els in the window surrounding the feature. Fea-
ture detection is then posed as �nding the closest
point on the manifold to the point in <N corre-
sponding to the pixel brightness values in a novel
image window. If the closest manifold point is
near enough to the novel point, we detect the fea-
ture and the exact location (parameters) of the
closest manifold point may be used as estimates
of the parameters of the feature. This statement
of the feature detection problem was �rst intro-
duced by Hueckel [1971] and was subsequently
used by Hummel [1979] amongst others.

Hueckel and Hummel both argued that, in order
to achieve high e�ciency, a closed form solution
must be found for (the parameters of) the closest
manifold point. To make their derivations pos-
sible they used simpli�ed feature models. Our
view of feature detection is radically di�erent.
We argue that the features we wish to detect are
inherently complex visual entities and so give up
all hope of �nding closed-form solutions for the
best-�t parameters. Instead, we discretize the
search problem by densely sampling the feature
manifold.

At �rst glance, �nding the closest sample point
may seem ine�cient to the point of impractical-
ity. However, we will demonstrate that our ap-
proach is very practical through a combination
of normalization, dimension reduction [Nayar et
al., 1996], e�cient heuristic search [Baker et al.,
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1998], and rejection techniques [Baker and Na-
yar, 1996b]. Even in the present unoptimized
implementation, feature detection and parame-
ter estimation take only a few seconds on a stan-
dard single-processor workstation when applied
to a 512� 480 image.

2 Parametric Feature Representation

2.1 Parametric Scene Features

By a scene feature we mean a geometric or pho-
tometric phenomenon that produces spatial ra-
diance variations which can aid in visual percep-
tion. The continuous radiance function of the
scene feature can be written as F c(x; y;q) where
(x; y) 2 S are points within a feature window S
and q are the parameters of the feature.

2.2 Image Formation and Sensing

Previous work on feature detection has implic-
itly assumed that artifacts induced by the imag-
ing system are negligible and can be ignored.
We make our models as precise as possible by
incorporating these e�ects. One such e�ect is
defocus. Another is that the �nite size of the
lens aperture causes the optical transfer func-
tion to be spatially bandlimited. Also, the fea-
ture itself, even before imaging, may be some-
what smoothed or rounded. The defocus factor
can be approximated as a pillbox function [Born
and Wolf, 1965], the optical transfer function by
the square of the �rst-order Bessel function of
the �rst kind [Born and Wolf, 1965], and the
blurring due to imperfections in the feature by a
Gaussian function [Koenderink, 1984]. We com-
bine all three e�ects into a single blurring factor
that is assumed to be a 2-D Gaussian function:

g(x; y; �) =
1

2��2
exp(�1

2
� x

2 + y2

�2
) (1)

The continuous image on the sensor plane is con-
verted to a discrete image through two processes.
First, the light ux falling within each pixel is
integrated. If the pixels are rectangular in struc-
ture [Barbe, 1980] [Norton, 1982], the averaging
function is:

a(x; y) =
1

wxwy

2�(
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wx
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y) (2)

where wx and wy are the dimensions of the pixel.
Next, the pixels are sampled, which we model by
the rectangular grid:

s(x; y) = 2III( 1
px
x; 1

py
y) (3)

where px and py are the spacings between sam-
ples. The �nal discrete image of a feature may
then be written as: F (x; y;q) =

fF c(x; y;q) � g(x; y) � a(x; y) g � s(x; y) (4)

where � is the 2-D convolution operator. Since
the above is a weighted sum of Dirac delta func-
tions, it can be rewritten as F (m;n;q), where
(m;n) 2 S are the (integral) pixel coordinates.

2.3 Parametric Feature Manifolds

If the number of pixels (m;n) in the window S is
N , each feature instance F (m;n;q) may be re-
garded as a point in <N . Suppose the feature has
k parameters: dim(q)=k. Then, as the param-
eters vary over their ranges, F (m;n;q) traces
out a k-parameter manifold. Feature detection
is then posed as �nding the closest point on the
feature manifold to the point in <N correspond-
ing to each window in the image. If the manifold
is near enough, we detect the feature and the lo-
cation (parameters) of the closest manifold point
provides an estimate of the feature parameters.

2.4 Parameter Normalization

For each feature instance F (m;n;q) encoun-
tered, we compute its mean pixel value �(q)=
1
N

P
(n;m)2S F (m;n;q); and its pixel variance

�(q) = jj F (m;n;q) � �(q) jj. We then apply
the following brightness normalization:

F (m;n;q) =
1

�(q)
[F (m;n;q) � �(q)] (5)

For all of the features we have considered, the
above normalization reduces the dimensionality
of the feature manifold by two. This happens be-
cause F (m;n;q) is (approximately) independent
of two of the parameters in q. Once a feature has
been detected, � and � can be used to recover the
two normalized parameters [Baker et al., 1998].

2.5 Dimension Reduction

For several reasons, such as feature symme-
tries and high correlation between feature in-
stances with similar parameter values, it is pos-
sible to represent the feature manifold in a low-
dimensional subspace of <N without signi�cant
loss of information2. If correlation between fea-

2This idea was �rst explored in [Hummel, 1979].
Whereas Hummel derived closed-form solutions based
upon simplistic feature models, our approach is to use
elaborate feature models and numerical methods. This
results in higher precision and greater generality. A sim-
ilar approach has been adopted in [Nandy et al., 1996].
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ture instances is the preferred measure of similar-
ity, the Karhunen-Lo�eve (K-L) expansion [Fuku-
naga, 1990], yields the optimal subspace.

3 Example Features

For lack of space, we now illustrate the paramet-
ric manifold representations for only 1 of the 5
features which we constructed detectors for. The
results for the other features are similar and may
be found in [Baker et al., 1998].

3.1 Step Edge

Figures 1(a) and 1(b) show isometric and plan
views of our step edge model. It is a general-
ization of the models used in [Hueckel, 1971],
[Hummel, 1979], and [Lenz, 1987]. It is particu-
larly similar to the model of [Nalwa and Binford,
1986], di�ering only slightly in its treatment of
smoothing e�ects.

The basis for the 2-D step edge model is the 1-D
unit step function:

u(t) =

8<
:

1 if t � 0

0 if t < 0
(6)

A step with lower intensity level A and upper
intensity level A+B can be written asA+B�u(t).
To extend to 2-D, we assume that the step edge is
of constant cross section, is oriented at angle � to
the x-axis, and lies at distance � from the origin.
Then, the perpendicular distance of an arbitrary
2-D point (x; y) from the step is given by:

z = y � cos � � x � sin � � � (7)

Therefore, an ideal step edge of arbitrary orien-
tation and displacement from the origin is given
by the 2-D function A+B �u(z). For the reasons
given in Section 2.2 we incorporate the Gaussian
blurring function, the pixel averaging function,
and the sampling function. Finally, the step edge
model is: F SE(x; y;A;B; �; �; �) =

f (A+B �u(z))�g(x; y;�)� a(x; y) g : s(x; y) (8)

where z is given by Equation (7).

The step edge model has 5 parameters, namely,
orientation �, localization �, blurring or scal-
ing �, and the brightness values A and B. The
orientation parameter � is drawn from [0o; 360o].
We restrict the localization parameter � to lie in
[�1=p2; 1=p2], since any edge must pass closer
than 1=

p
2 pixels from the center of at least
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Figure 1: The step edge model includes two con-
stant intensity regions of brightness A

and A+B. Its orientation and intrapixel
displacement from the origin are given
by the parameters � and � respectively.
The �fth parameter (not shown) is the
blurring factor �. The K-L residue plot
shows that 90% of the edge image con-
tent is preserved by the �rst 3 eigenvec-
tors. The step edge manifold is parame-
terized by orientation and intrapixel lo-
calization for a �xed blurring value and
is displayed in a 3-D subspace.
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one pixel in the image. The blurring parameter
� 2 [0:3; 1:5]. The intensity parameters A and B
are free to take any value because of the normal-
ization described in Section 2.4. The structure of
a normalized step edge is independent of A & B
and is uniquely determined by the parameters �;
�, and �. Further, the values of A and B may be
recovered from the values of � and � calculated
during normalization [Baker et al., 1998].

The window chosen for our edge model is a 49
pixel disc to avoid unnecessary non-linearities in-
duced by a square window. The results of apply-
ing the Karhunen-Lo�eve expansion are displayed
in Figures 1(c) and 1(d). In Figure 1(c) we dis-
play the 8 most important eigenvectors, ranked
by their eigenvalues. The similarity between the
�rst 4 eigenvectors and the ones derived in [Hum-
mel, 1979] is immediate. On closer inspection,
however, we notice that while Hummel's eigen-
vectors are radially symmetric, the ones we com-
puted are not. This is to be expected since the
introduction of the parameters � and � breaks
the radial symmetry in Hummel's edge model.

In Figure 1(d), the decay of the Karhunen-Lo�eve
residue (sum of eigenvalues discarded) is plotted
as a function of the number of eigenvectors. To
reduce the residue to 10% we need to use 3 eigen-
vectors. To reduce it further to 2% we need 8
eigenvectors. Figure 1(d) illustrates a signi�cant
data compression factor of 5-15 times. As a re-
sult, feature detection is made far more e�cient.

The step edge manifold is displayed in Fig-
ure 1(e). Naturally, we are only able to display
a projection of it into a 3-D subspace. This sub-
space is the one spanned by the 3 most important
eigenvectors. For clarity, we only display a 2 pa-
rameter slice through the manifold, obtained by
keeping � constant while varying � and �.

4 Feature Detection

Given a point in <N corresponding to the pixel
intensity values in a novel feature window, fea-
ture detection requires �nding the closest point
on the parametric manifold. If the distance be-
tween the novel point and the closest manifold
point is su�ciently small, we declare the pres-
ence of the feature. The parameters of the clos-
est manifold point are then used as estimates of
the scene feature's parameters. If the distance
between the novel point and the manifold is too
large, we assert the absence of the feature.

We approximate the closest manifold point by
densely sampling the manifold and then per-

forming a search for the closest sample point. So
long as we sample densely enough, this yields a
su�ciently good estimate of the closest manifold
point. We search using a heuristic coarse-to-�ne
search which takes advantage of the relatively
smooth manifolds [Baker et al., 1998].

As an example of the search complexity for the
step edge model, if we sample � every 1:6�, �
every 0:088 pixel, and � every 0:14 pixel, we
have 46,368 sample points. Then, in a 10-D sub-
space, the complete time to perform normaliza-
tion, projection, and search is around 1ms per
image window on a DEC Alpha 3600. For a 512
� 480 image complete processing takes around 4
minutes. However, by applying rejection tech-
niques such as [Baker and Nayar, 1996a] the
overall time can be reduced to under 30secs.

5 Experimental Results

5.1 Feature Detection Rates

We statistically compare our step edge detector
with the Canny [1986] and Nalwa-Binford [1986]
detectors, following the approach in [Nalwa and
Binford, 1986]. (See [Baker et al., 1998] for
more details.) Since we took great care mod-
eling both the features and the imaging system,
we used our step edge model to generate ideal
step edges. For fairness, however, we changed
the details slightly. Both the Canny and Nalwa-
Binford detectors assume a constant blur/scale,
so we �xed the value of � in the step edge model
to be 0:6 pixels. Secondly, the Nalwa-Binford
detector is based on a square 5 � 5 window, as
is Canny in the implementation that we used.
Hence, we changed the window of our detector to
be a square window containing 25 pixels, rather
than the 49 pixel disc window used earlier. We
generate \not edges" exactly as in [Nalwa and
Binford, 1986], by taking a constant intensity
window, and adding zero-mean Guassian noise.

In Figure 2 we compare the detection perfor-
mance of the three edge detectors. For each
pair of S.N.R. and detector, we plot a curve of
false positives against false negatives obtained by
varying the threshold inherent in each detection
algorithm. The Canny operator thresholds on
the gradient magnitude, the Nalwa-Binford de-
tector thresholds on the estimated step size, and
our approach thresholds on the distance from
the parametric manifold. The rate of false posi-
tives was estimated by applying each detector to
a constant intensity window with noise added.
The rate of false negatives is obtained by apply-
ing the detectors to noisy ideal step edges.
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Figure 2: A comparison of edge detection rates.
The Canny (C), Nalwa-Binford (N-B),
and parametric manifold (PM) detectors
are compared for S.N.R. = 1.0 and 2.0.
We plot false positives against false neg-
atives. For each detector and S.N.R.,
the result is a curve parameterized by
the threshold inherent in that detector.
The closer a curve lies to the origin, the
better the performance. We see that the
Canny detector and the parametric man-
ifold technique perform comparably.

The closer a curve lies to the origin in Fig-
ure 2, the better the performance. Hence, we
can see that both the Canny detector and our
detector do increasingly well as the S.N.R. in-
creases. The results for the Nalwa-Binford de-
tector are consistent3 with those described in
[Nalwa and Binford, 1986]. Applied to real im-
ages, the Nalwa-Binford detector does not per-
form as poorly as Figure 2 might indicate. The
poor Nalwa-Binford results are probably due to
thresholding on the step-size and may well be
completely di�erent if we �x the step-size thresh-
old, and vary the tanh-�t threshold.

5.2 Parameter Estimation Accuracy

Again following [Nalwa and Binford, 1986], we
analyze parameter estimation accuracy by ran-
domly generating a set of feature parameters,
synthesizing a feature with these parameters,
adding noise, applying the detector, and then
measurings the accuracy of the estimated param-
eters. In Figure 3, we compare the performance
of our step edge detector with that of the Canny
detector [1986] and the Nalwa-Binford [1986] de-
tector. In the �gure, we plot the R.M.S. error
in the estimate of the orientation � against the
S.N.R. We see that for low S.N.R. the perfor-

3We did not use step 2)0 of the Nalwa-Binford algo-
rithm, however the inclusion of this step does not radi-
cally alter the performance [Nalwa and Binford, 1986].
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Figure 3: A comparison of the orientation estima-
tion accuracy for the three step edge de-
tectors. We took synthesized step edges,
added noise to them, and then applied
the edge detectors. We plot the R.M.S.
error of the orientation estimate against
the S.N.R. At all noise levels, the para-
metric manifold approach slightly out-
performs both the Nalwa-Binford and
Canny detectors.

mance of all detectors is limited by the noise.
For lower noise levels, our detector marginally
out-performs both of the other detectors.

5.3 Application to Images

In Figures 4(b) and (c) we present the results
of applying our step edge and corner detectors
to the image in Figure 4(a). The original image
is taken from [MOMA, 1984] and was digitized
using an Envisions 6600S scanner at 200dpi. We
present the outputs of the detectors as grey-
coded distance to the feature manifold (on a non-
linear scale) so that the structure of the object
can be seen clearly. It is immediate that the
features detected are consistent with the orig-
inal image. Thresholding on the distance to
the feature manifold to �nally detect features is
straightforward as is demonstrated in [Baker et
al., 1998] where we superimpose thresholded fea-
ture maps on the original images.
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(a) Original image (711� 661 pixels)

(b) Grey-coded distance to step edge manifold

(c) Grey-coded distance to corner manifold
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