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Abstract

Conventional video cameras have limited fields of
view that make them restrictive in certain vision
applications. A catadioptric sensor uses a combi-
nation of lenses and mirrors placed in a carefully
designed configuration to capture a much wider
field of view. In particular, the shape of the mir-
ror must be selected to ensure that the complete
catadioptric system has a single effective view-
point, which is a requirement for the generation
of pure perspective images from the sensed image.
In this paper, we derive and analyze the complete
class of single-lens single-mirror catadioptric sen-
sors which satisfy the fixed viewpoint constraint.
Some solutions turn out to be degenerate with
no practical value while other solutions lead to
realizable sensors.

1 Introduction

Conventional imaging systems are limited in their
fields of view. An effective way to enhance the
field of view is to use mirrors in conjunction
with lenses. This approach to image formation is
fast gaining in popularity (see [Nayar-1988], [Yagi
and Kawato-1990)], [Hong-1991], [Goshtasby and
Gruver-1993], [Yamazawa et al.-1993], [Nalwa-
1996] [Nayar—1997]). We refer to the general ap-
proach of incorporating mirrors into conventional
imaging systems as catadioptric' image forma-
tion. Our recent work in this context has led to
the development of a truly omnidirectional video

camera with a spherical field of view [Nayar-
1997].
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! Dioptrics is the optics of refracting elements (say,
lenses) whereas catoptrics is the optics of reflecting sur-
faces (mirrors). The combination of refracting and re-
flecting elements is referred to as catadioptrics [Hecht and
Zajac-1974].

As recently noted in [Yamazawa et al.-1993],
[Nalwa-1996] and [Nayar-1997], it is highly desir-
able that the catadioptric system (or any imag-
ing system, for that matter) have a single cen-
ter of projection (viewpoint). A single viewpoint
permits the creation of pure perspective images
from the image sensed by the catadioptric sys-
tem. This is done by mapping sensed brightness
values onto a plane placed at any distance (effec-
tive focal length) from the viewpoint. Any image
computed in this manner preserves linear per-
spective geometry. For instance, straight lines in
the scene produce straight lines in the computed
image. Images that adhere to perspective projec-
tion are desirable from two standpoints; they are
consistent with the way we are used to seeing im-
ages, and they lend themselves to further process-
ing by the large body of work in computational
vision that assumes linear perspective projection.
When the catadioptric system is omnidirectional
in its field of view, the single viewpoint permits
the construction of not only perspective but also
panoramic images.

In this paper, we derive the complete set of
catadioptric systems with a single effective view-
point and which are constructed from a single
conventional lens and a single mirror. As we will
show, the class of mirrors which can be used is ex-
actly the class of rotated (swept) conic sections.
Within this class of solutions, several swept con-
ics prove to be degenerate solutions and hence im-
practical, while others lead to realizable sensors.
During our analysis we will stop at many points
to evaluate the merits of the solutions as well as
the merits of catadioptric sensors proposed in the
literature.

2 General Solution

Let the final (dioptric) stage of our sensor be a
conventional perspective lens. In Figure 1, the ef-
fective pinhole of the lens is p. We formulate the
catadioptic image formation problem as follows:



Find the class of reflecting surfaces that, when
used in conjunction with a perspective lens, pro-
duce an image of the world as seen from a fixed
viewpoint. Let us assume that the fixed view-
point v is at the origin of the coordinate frame
(see Figure 1) and the center p of the perspective
lens is located on the vertical axis at a distance
¢ from v.

image plane

p < center of projection world

c

S(X,y) «— mirror

!

¥ /,/\9

omnidirectional viewpoint —» Y

->

Figure 1: Geometry used to derive the reflecting sur-
face that produces an image of the world as seen from
a fixed viewpoint v. This image is captured using
a conventional perspective camera with an effective
pinhole p.

For the fixed viewpoint constraint to hold, each
world point seen from v must be reflected by a
point on the mirror surface S(z,y) towards p.
Note that since perspective projection is rota-
tionally symmetric about the optical axis z, the
mirror can be assumed to be a surface of rev-
olution around Z. Therefore, it suffices to find
the one-dimensional profile z(r) = S(z,y), where
r=+z2?+ y2.

In fact, the viewpoint v and the determined
profile z(r) are in no way restricted to the op-
tical axis. Since perspective projection is rota-
tionally symmetric with respect to any ray that
passes through the pinhole p, the viewpoint and
the profile could be moved from the optical axis
by keeping the distance ¢ the same and aligning
the symmetry axis of the profile with the ray that
passes through the viewpoint and the pinhole. Of
course, in this case, the image plane shown in Fig-
ure 1 would be non-frontal. This does not pose
any additional ambiguity as the mapping from
any non-frontal image plane to a frontal image

plane is one-to-one.

With the above generalizations in place, we
are ready to derive the profile of the reflecting
surface. The relation between the angle 6 of the
incoming ray and the reflecting surface is

z
tanfd = —.
T

(1)

The angle a made by the reflected ray with the
horizontal axis is given by

(c—2)

T
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Let the surface slope at the point of reflection
be defined by the angle 3 made by the surface
normal with the vertical axis:

d
d—i = —tan §. (3)
This allows us to write
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Since the surface is specular, the angles of in-
cidence and reflection are equal. Consequently,

(a—0)

g = 9 s (5)

which gives us

tana — tané
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tan28 = (6)
In the right hand side of the above expression, we
substitute (1) and (2) and equate with the right
hand side of (4) to get
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Thus, we find that the reflecting surface must
satisfy the above quadratic first-order differen-
tial equation. It is straightforward to solve the
quadratic for surface slope:

dz (22 —r? —cz) £ \/r2? + (22 + r?

— cz)?

dr r(2z — ¢)

(8)
Next, we substitute y = z — ¢/2 and set b = ¢/2
which yields

dy _ (% —r? = b*) £ A2+ (g7 + 17 = bP)?

(9)

dr 2ry



Then, substituting 2rz = y? + r? — b?, we get

1 dz :l:l (10)
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Integrating both sides results in
ln(x—l—\/b2—|—$2) = 4+hr+C (11)

where, C' is the constant of integration. Hence,

k
z+ Vb2 +a? = 5#1 (12)
where, k = 2¢¢ > 0 is a constant. By back sub-
stituting and simplifying we arrive at two equa-
tions which comprise the general solution:
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Together, these two expressions represent the en-
tire class of mirrors that satisfy the fixed view-
point constraint. Again, since perspective pro-
jection is symmetric about any ray that passes
through the pinhole, the viewpoint v and the cor-
responding mirror are in no way restricted to the
optical axis.

3 Specific Mirrors

A quick glance at the forms of equations (13)
and (14) reveals that the mirror profiles are conic
sections. However, each conic section must be
placed at a specific distance from the pinhole.
As we shall see, though all our conic sections are
theoretically valid, many prove to be impracti-
cal and only a few lead to useful solutions. We
are now in a position to evaluate several specific
cases.

3.1 Planes

In solution (13), if we set k = 2, we get the cross-
section of a planar mirror:

2= 5 (15)

As shown in Figure 2, the plane bisects the
line segment joining the pinhole and the view-
point. This result is easily generalized to arbi-
trary planes or viewpoints. For any plane with

unit normal n and any point q on it, the view-
point is simply the reflection of the pinhole

(16)

Equivalently, for any desired viewpoint, points x
on the planar mirror are given by

(X_(p—gi\f)) (p-v) = 0.

v =p-2((p-q)-n)n.

(17)

These expressions lead us to a simple but unfor-
tunate theorem: For a single fixed pinhole, no two
planar mirrors can share the same viewpoint, and
equivalently, two different viewpoints cannot be
generated by the same planar mirror. It is clear
from Figure 2 that a single planar mirror does not
enhance the field of view of the imaging system.
At the same time, the above theorem makes it
impossible to increase the field of view by pack-
ing a large number of planar mirrors (pointing
in different directions) in front of a conventional
imaging system. On the brighter side, the two
views of a scene needed for stereo can be cap-
tured by a single lens and two planar mirrors, as
shown in [Goshtasby and Gruver-1993].
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Figure 2: A planar mirror must bisect the segment
joining the pinhole and the desired viewpoint. Since
two planar mirrors cannot generate the same view-
point, multiple planar mirrors cannot be used to en-
hance the field of view of a conventional imaging sys-
tem.

To ensure a single viewpoint while using mul-
tiple planar mirrors, Nalwa [Nalwa-1996] has ar-



rived at a clever design that includes four pla-
nar mirrors that form the faces of a pyramid.
Four separate imaging systems are used, each one
placed above one of the faces of the pyramid. The
optical axes of the imaging systems and the an-
gles made by the four planar faces are adjusted
so that the four viewpoints produced by the pla-
nar mirrors coincide. The result is a sensor that
has a single viewpoint and a panoramic field of
view of approximately 360° x 50°. The panoramic
image is of relatively high resolution as it is a con-
catenation of four images provided by four non-
overlapping imaging systems. Nalwa’s sensor is
easy enough to implement but requires the use
of four of each component (cameras, lenses, and
digitizers).

3.2 Cones

In solution (13), if we set ¢ = 0, the result is a
conical mirror with cross-section
k-2,

Y —
z = T,

2

kE>2. (18)
The angle at the apex of the cone varies with k.
At first glance, this may seem like a reasonable
solution. However, since ¢ = 0, the apex of the
cone must be at the pinhole. This implies that
the rays of light entering the pinhole can only
graze the cone and do not represent reflections
of the world (see Figure 3). Hence, we have a
degenerate solution that is of no practical value.

Indeed, the cone has been used for wide-angle
imaging, in particular, for autonomous naviga-
tion [Yagi and Kawato-1990]. In these implemen-
tations, the apex of the cone was placed at a dis-
tance from the pinhole. In such cases, it is easy
to show that the viewpoint is no longer a single
point but rather a locus [Nalwa-1996). If the axis
of the cone points in the direction of the pinhole,
the locus is a circle that hangs like a halo around
the cone.

3.3 Spheres

In solution (14), if we set ¢ = 0, we get a spherical
mirror with cross-section

9 k

2
= = 1
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Like the cone, this proves to be a solution of lit-
tle value; since the viewpoint and pinhole must

kE>0.
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Figure 3: The conical mirror has its apex at the pin-
hole.

value. If the apex is moved away from the pinhole,

This degenerate solution is of little practical

the viewpoint is no longer single but rather lies on a
circular locus.

coincide, the observer sees itsell and nothing else,
as shown in Figure 4.

Figure 4: A spherical mirror produces a single view-
point only when the pinhole lies at its center. This,

again, is a solution of little use as the observer sees
itself and nothing else.

In [Hong-1991], a wide-angle implementation
with a sphere is described that was used for land-
mark navigation. In this case, the sphere was
placed at a distance from the effective pinhole of
the camera. As with the cone, the result is a lo-
cus of viewpoints rather than a single viewpoint.
The locus in the case of the sphere can turn out
to be a surface of large extent, depending on the
distance between the center of the sphere and the
pinhole. In [Nayar-1988], a stereo system is pro-
posed that uses a single image of two specular
spheres to compute depth. In this case, the sin-



gle viewpoint constraint is not critical as stereo
requires multiple viewpoints.

3.4 Ellipsoids

In solution (14), when ¢ > 0 and k£ > 0, we get
an ellipsoid with cross-section

(20)
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We have now arrived at a solution that can be
used to enhance the field of view. As shown in
Figure 5, the viewpoint v and pinhole p are lo-
cated at the two foci of the ellipse, respectively.
If, for instance, the section of the ellipse that lies
beneath the viewpoint is used, the effective field
of view (ignoring self-occlusion by the lens) cor-
responds to the upper hemisphere. It is easy to
see that terminating the ellipse below the view-
point does not enhance the field of view. Unfor-
tunately, extending the mirror above the view-
point does to help either; in this case, rays of
light entering the pinhole would have undergone
multiple reflections by the mirror. Yet, the el-
lipse does represent our first useful solution. It is
similar in nature to our next solution, the hyper-
boloid. Hence, we shall defer our discussion on
implementation issues related to the ellipsoid.

where

3.5 Hyperboloids

In solution (13), when ¢ > 0 and k£ > 2, we get a
hyperboloid? with cross-section

-5 -
6122 - b_2 = 17 (22)
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As we see in Figure 6, in the limit & — 2, the
hyperboloid flattens to yield the planar solution
of section 3.1. As k increases, the curvature of the
hyperboloid increases, and hence also the field of
view of the catadioptric system. The two foci of

Figure 5: A ellipsoidal mirror is a viable solution
when the pinhole and the viewpoint are located at its
two foci, respectively. If the ellipsoid is terminated
by a plane passing through the viewpoint, the field of
view corresponds a hemisphere.

Figure 6: The hyperboloidal mirror can produce the
desired increase in field of view. The pinhole and the
viewpoint are located at the two hyperboloidal foci.



the hyperboloid remain fixed, one at the pinhole
p and the other at the viewpoint v.

This solution provides a practical approach
to wide-angle imaging. Yamazawa et al. [Ya-
mazawa el al.-1993] recognized that the hyper-
boloid, if chosen and positioned carefully, would
produce a single viewpoint. They implemented
a sensor for autonomous navigation and demon-
strated the construction of perspective images
from hyperboloidal ones.

While this solution is both interesting and fea-
sible, it must be implemented with care. As can
be seen from Figure 6, for any chosen value of
k, if the viewpoint is distant from the pinhole,
the mirror must be large. As the viewpoint ap-
proaches the pinhole, the mirror reduces in size
but the curvatures at all points on the mirror in-
crease. This increases the optical effects of coma
and astigmatism that are known to produce blur-
ring [Hecht and Zajac-1974]. Furthermore, it
is hard to configure an imaging system with a
large enough depth of field close to the pinhole
that would allow the hyperboloidal mirror to be
placed in close proximity. These trade-offs imply
that the distance of the viewpoint must be cho-
sen with care. Also, the axis of the hyperboloid
must pass through the pinhole. For these reasons,
careful implementation is required to achieve the
desired optical properties and precise calibration
is needed to establish the mapping between an in-
coming principle ray and its image coordinates.
It is easy to see that all of the above implementa-
tional issues also apply to the ellipsoidal solution.

3.6 Paraboloids

If image projection is orthographic rather than
perspective, the geometrical mappings between
the image, the mirror and the world are invari-
ant to translations of the mirror with respect to
the imaging system. Consequently, both calibra-
tion as well as the computation of perspective
images are greatly simplified. There are simple
ways to achieve pure orthographic projection, as
described in [Nayar-1997].

The shape of the mirror in this case can be de-
rived by assuming orthographic projection rather
than perspective projection in the dioptric stage
of image formation. This derivation is given
in [Nayar-1997] and the mirror is shown to be

®Note that k < 2 is not possible in solution (13) since
this yields an imaginary surface.
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Figure 7: For orthographic projection, the solution is
a paraboloid with the viewpoint located at the focus.
Orthographic projection makes the geometric map-
pings between the image, the paraboloidal mirror and
the world invariant to translations of the mirror. This
greatly simplifies calibration and the computation of
perspective images from paraboloidal ones.

paraboloidal (see Figure 7). Paraboloidal mir-
rors are frequently used to converge an incoming
set of parallel rays at a single point (the focus),
or to generate a collimated light source from a
point source (placed at the focus). In both these
cases, the paraboloid is a concave mirror that is
reflective on its inner surface. In our case, the
paraboloid is reflective on its outer surface (con-
vex mirror); all incoming principle rays are or-
thographically reflected by the mirror. Further,
the incoming rays can be extended to intersect at
the focus of the paraboloid, which serves as the
viewpoint.

Alternatively, the same solution can be derived
from our general solution for catadioptric imag-
ing. We know that orthographic projection is a
limiting case of perspective, where the distance
between the pinhole and viewpoint approaches
infinity. Equation (13) can be rewritten as:

S s 1, @
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Then, in the limit ¢ — oo, & — oo, while keeping
¢/k = h a constant, we have
h2 _ T2
2h

(25)
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The parameter h of the paraboloid is its radius at
z = 0. The distance between the vertex and the
focus is h/2. Therefore, h determines the size of
the paraboloid that, for any given orthographic
lens system, can be chosen to maximize resolu-
tion. If the paraboloid is terminated at its focus,
the imaging system yields a hemispherical field of
view. As shown in [Nayar-1997], two such imag-
ing systems can be placed back-to-back to achieve
a spherical field of view.

4 Resolution

Here, we define resolution as the solid angle sub-
tended from the viewpoint by a pixel in the
sensed image. Let us assume that the area pro-
jected by a pixel along its line of sight is da, as
shown in Figure 8. Note that for orthographic
projection da is a constant, while for perspective
projection it is easily computed from the distance
of the corresponding point on the mirror and the
focal length of the imaging system. Given that
all reflections are specular, the reflecting surface
area occupied by da is ds = da/cos¢. The
foreshortened surface area as seen by the view-
point v is (da/ cos ¢)cos¢ = da. The solid an-
gle subtended by the reflecting surface element is
dw = da/t*, where t is the distance of the surface
element from the viewpoint. Hence, the spatial
resolution for any catadioptric sensor can be writ-
ten as

da
dw

= 2 =22 + 12,

(26)

For instance, in the case of a paraboloidal mir-
ror [Nayar-1997], the resolution increases by a
factor of 4 from the vertex (¢ = h/2) of the
paraboloid to the fringe (¢ = h). With (26), it
is easy to see that a variation in spatial resolu-
tion occurs not only in the case of curved mirrors
but also planar ones. In principle, it is of course
possible to use image detectors with non-uniform
resolution to compensate for the above variation.
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