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Abstract

A real-time vision system is described that can recog-
nize 100 complex three-dimensional objects. In contrast
to traditional strategies that rely on object geometry and
local image features, the present system is founded on
the concept of appearance matching. Appearance man-
ifolds of the 100 objects were automatically learned us-
ing a computer-controlled turntable. The entire learning
process was completed in 1 day. A recognition loop has
been implemented that performs scene change detection,
image segmentation, region normalizations, and appear-
ance matching, in less than 1 second. The hardware used
by the recognition system includes no more than a CCD
color camera and a workstation. The real-time capabil-
ity and interactive nature of the system have allowed nu-
merous observers to test its performance. To quantify
performance, we have conducted controlled experiments
on recognition and pose estimation. The recognition rate
was found to be 100 % and object pose was estimated
with a mean absolute error of 2.02 degrees and standard
deviation of 1.67 degrees.

1 Introduction

The problem of 3D object recognition has been in-
tensely studied in the past three decades. A panoply of
theoretical results, algorithms and systems have resulted
from this investigation. Despite this immense effort, we
are yet to see a system that can recognize a large number
of complex objects with robustness and efficiency. The les-
son learned thus far is that the recognition of 3D objects
in entirely unstructured environments is a hard problem.
What can be accomplished in a somewhat structured set-
ting where the problems of segmentation and occlusion
are not as severe? We present in this paper a real-time
system that recognizes any of 100 complex objects in less
than 1 second using no more than a color camera and a
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workstation.

The versatility of a recognition system is determined to
a large extent by the power of the underlying representa-
tions used. Vision research has placed significant empha-
sis on the development of compact and descriptive shape
representations [24, 2, 15]. This has led to the creation of
a variety of novel representations, including, generalized
cylinders [3], superquadrics [1][22], extended gaussian im-
ages [6], parametric bicubic patches [15] and differential
geometric representations [4], only to name a few. While
these representations are all useful in specific application
domains, each has been found to have its drawbacks. This
has kept researchers in search for more powerful represen-
tations.

Will shape representation suffice? After all, vision
deals with brightness images that are functions not only
of shape but also other intrinsic scene properties such
as reflectance and extrinsic factors such as illumination.
This observation has motivated us to take an extreme ap-
proach to visual representation. What we advocate is not
a representation of shape but rather appearance [12], en-
coded in which are brightness variations caused by three-
dimensional shape, surface reflectance properties, sensor
parameters, and illumination conditions. Given the num-
ber of factors at work, it is immediate that an appearance
representation that captures all possible variations is sim-
ply impractical. Fortunately, there exists a wide range
of vision applications where pertinent variables are few
and hence compact appearance representation in a low-
dimensional space is indeed possible.

An added drawback of shape representation emerges
when a vision programmer attempts to develop a practical
recognition system. Techniques for automatically acquir-
ing shape models from sample objects are only being re-
searched. For now, a vision programmer is forced to select
an appropriate shape representation, design object mod-
els using the chosen representation, and then manually
input this information into the system. This procedure is
cumbersome and impractical when dealing with large sets
of objects, or objects with complex shapes. It is clear that
recognition systems of the future must be capable of ac-
quiring object models without human assistance. It turns
out that the appearance representation proposed here is



easier to acquire through an automatic learning phase
than to create manually. The 100 objects in our system’s
database were automatically learned in less than 1 day.
Each object is represented in a low-dimensional subspace
as a continuous appearance manifold that is parametrized
by object pose.

Given an image consisting of objects of interest, we
assume that the objects are not occluded and can be seg-
mented from the remaining scene. Each segmented image
region is normalized in scale and brightness, such that it
has the same size and brightness range as the images used
in the learning stage. This normalized image is projected
to the appearance subspace. The closest manifold reveals
the identity of the object and exact position of the closest
point on the manifold determines its pose in the scene.
Two efficient schemes have been tested for determining
the closest manifold point, one is based on binary search
[19] and other uses an input-output mapping network [9].

Will appearance representation suffice? Given the large
number of parameters that affect appearance, it does
not suggest itself as a replacement for shape represen-
tation. In fact, our experiments here and elsewhere show
that appearance models are in many ways complemen-
tary to shape models. Appearance representation proves
extremely effective when the task variables are few; it is
efficient and circumvents time-consuming and often unre-
liable operations such as feature detection. On the other
hand, when occlusion effects are not negligible, shape
models offer solutions in the form of partial matching that
are less efficient in the case of appearance matching [11].

We begin with a brief overview of appearance match-
ing and its use for color object recognition. The algorithm
we have developed for searching for the closest manifold
point in a high-dimensional subspace is described and its
complexity discussed. Next, we detail the structure of our
recognition loop which is fully automated and enables a
user to interact with the system in the laboratory. Finally,
we conclude with experiments that demonstrate the recog-
nition rate and pose estimation accuracy of our system.

2 Appearance Matching: Overview

Before we describe the recognition system, we briefly
review the notion of parametric appearance matching as
introduced in [12]. The appearance of an object is the
combined effect of its shape, reflectance properties, pose
in the scene, and the illumination conditions. While shape
and reflectance are intrinsic properties that do not change
for any rigid object, pose and illumination vary from
one scene to the next. The visual learning problem is
viewed as one of acquiring a compact model of the ob-
ject’s appearance under different poses and illumination
directions. The object is “shown” to the image sensor in
several orientations and lighting conditions. This can be
accomplished using, for example, two robot manipulators;

one rotates the object while the other varies the illumina-
tion direction. The result is a large set of object images.
These images could either be used directly or after be-
ing processed to enhance object characteristics. Since all
images in the set are of the same object, consecutive im-
ages are correlated to a large degree. The problem then
is to compress this large image set to a low-dimensional
representation of object appearance.

A well-known image compression or coding technique
is based on principal component analysis, also known as
the Karhunen-Loeve transform [21] [5] [10]. It uses the
eigenvectors of an image set as orthogonal bases for rep-
resenting individual images in the set. Though a large
number of eigenvectors may be required for very accu-
rate reconstruction of an object image, only a few are
generally sufficient to capture the significant appearance
characteristics of an object, as shown for human faces in
[25][27] and for edges and lines in [7][8]. These eigenvec-
tors constitute the dimensions of what we refer to as the
eigenspace. From the perspective of machine vision, the
eigenspace has an attractive property. If any two images
from the set are projected to the eigenspace, the distance
between the corresponding points in eigenspace is the best
approximation to correlation between the images.

The system described here uses the parametric
eigenspace representation presented in [14][12]. We as-
sume that the illumination conditions remain more or less
constant and hence object pose is the only variable of in-
terest. An analysis of the effect of illumination on the
parametric eigenspace can be found in [17]. An image
set is obtained for each of the 100 objects by varying
pose in small increments. Each image is normalized in
brightness and scale to achieve invariance to sensor mag-
nification and illumination intensity. Images of all ob-
jects (learning samples) are used together to construct an
eigenspace. The images of each object are then projected
to eigenspace to obtain a set of points. These points lie on
a manifold that is parametrized by pose. The manifold
is constructed from the discrete points by spline inter-
polation [12]. Each object is stored in the database as
a collection of eigenspace points obtained by densely re-
sampling its appearance manifold. Recognition and pose
estimation of a novel image is achieved by projecting a
novel object image to eigenspace and finding the closest
manifold (object identity) and the closest point on this
manifold (pose).

3 Learning 100 Colored Objects

We use a color sensor to enhance the discriminatory
power of appearance matching. Color histograms have
been shown to be effective in the recognition of objects
with complex spectral variations [26]. Here, we are in-
terested in pose invariant recognition and hence use color
images in their entirety to exploit not only the color mea-
surements but also their spatial arrangement in the scene.



A color image of each of the 100 objects learned by the
system is shown in Figure 3. A variety of strategies can be
used to exploit color information in appearance matching.
One approach is to concatenate the three color bands (red,
green, and blue) of the image into a single appearance vec-
tor prior to brightness normalization. Such a vector would
capture the spectral properties of the object; brightness
normalization preserves the relative contributions of the
different bands. The exact order of concatenation is not
important as long as the same order is used during learn-
ing and recognition. This results from the fact that the
arrangement of pixels and their attributes in the appear-
ance vector only effects the ordering of elements of the
computed eigenvectors but not their values [21].

We have chosen not to concatenate the color bands into
a single vector as it triples the size of the appearance vec-
tors. This, in turn, makes the computation of eigenspaces
both slower and more memory intensive. Instead, we have
chosen to break up the recognition problem and compute
a separate eigenspace and a set object manifolds for each
of the three color bands. While adopting this approach,
care must be taken to ensure that color information is
exploited. If each band is brightness normalized inde-
pendent of others, the relative strengths of the different
colors are lost. To avoid this, we normalize each band of
the color image with the total energy in all three bands.
Though the resulting band vectors are not of unit magni-
tude, they remain invariant to the intensity of illumination
while capturing the object’s spectral properties.

The current implementation assumes that the objects
lie on a planar surface and hence always show up in one of
a finite number of stable configurations. Therefore, pose
variations used for learning correspond to rotations about
a single axis that is normal to the planar surface. The
learning images were obtained by rotating the object on
a computer-controlled turntable. A total of 48 discrete
poses were used for each object, i.e. pose increments of
7.5 degrees. The learning procedure for the 100 objects,
including computation of the three subspaces and con-
struction of object manifolds, took approximately 1 day.

4 Finding the Closest Manifold Point

During recognition, an input color image is segmented
and each object region is normalized in scale and bright-
ness as in the learning stage. Each color band is projected
to its respective eigenspace and an object is recognized
when the projections in all three eigenspaces are close to
the manifolds of the same object and the closest manifold
point in the three spaces all correspond to approximately
the same pose (within 2 pose degrees of each other).

Mapping an input image to eigenspace is computation-
ally simple. The universal eigenspace for each color band
has 30 dimensions. The projection of an input image to a
30D space requires 30 dot products of the image with the

orthogonal eigenvectors that constitute the space. Given
that the normalized images are small (128x128), all 90 dot
products (three color bands) can be computed in approxi-
mately 320 msec on the DEC Alpha 3600 workstation that
is currently being used to demonstrate the system. What
remains to be addressed is an efficient way of finding the
closest manifold point. One approach is to use an exhaus-
tive search algorithm. This is clearly inefficient, both in
memory and time; all the sampled manifold points need
to be stored, and the distance of the input point with
respect to each manifold point must be computed. The
computational complexity is O( kn) where n is the num-
ber of manifold points and k is the dimensionality of the
eigenspace.

We have implemented two alternative schemes. The
first is an efficient technique for binary search in multiple
dimensions [19]. This algorithm uses a carefully designed
data structure to facilitate quick search through the multi-
dimensional eigenspace in approximately O(klogan).
Figure 1 illustrates the data structure, which is created
off-line as follows. Given the set of densely sampled points
in eigenspace, called the point set, the elements of each
dimension of the point set are sorted independently in
ascending order. It is clear that this independent sort-
ing causes the coordinates of any given manifold point to
be scattered in different rows in the ordered set. To pre-
serve connectivity between coordinates, we use two types
of maps. The forward map maintains the mapping be-
tween the original point set and the ordered set and the
backward map facilitates mapping in the opposite direc-
tion (see Figure 1).

Given a novel input point f,, all manifold points within
€ from the novel point are determined using two binary
searches on each dimension of the ordered set. The re-
sult is a range of rows (indices) for each dimension (dark
shaded areas in Figure 1). Next, using the forward and
backward maps, possible candidates are determined as
ones with coordinates that are within ¢ from those of
the novel point. Exhaustive search on this short list of
candidate points reveals the closest manifold point and
the corresponding pose parameter. In [19], code for the
above algorithm is given and the algorithm is demon-
strated to be easier to implement than most existing ones
with similar complexity. In the recognition system, the
above search algorithm is applied independently to the
three color bands. An object is recognized when it is de-
tected in all three color bands. The total search time is
approximately 140 msec on the DEC workstation.

The second approach [9] uses three-layered radial basis
function (RBF) networks [23] to learn the mapping be-
tween input points and task parameters. The complexity
of the network approach depends on the number of net-
works used and their sizes. In [9] a novel framework is
introduced that uses the wavelet integral transform for
finding the smallest RBF network to accomplish a given
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Figure 1: Data structure used to facilitate binary search
through high-dimensional eigenspace for the closest man-
ifold point.

input-output mapping. The performance of the network-
based scheme is often comparable to that of the binary
search approach. The network implicitly interpolates, or
reconstructs, manifolds from the discrete points f; and
therefore does not require the use of spline interpolation
followed by resampling. This advantage however comes
with a slight sacrifice in parameter estimation accuracy.

5 Real-Time Recognition System

The structure of the real-time recognition loop is il-
lustrated in Figure 2. What we have implemented is an
infinite loop that enables a human to interactively test
the recognition system in the laboratory. Images from the
color sensor are continuously checked for scene changes.
Each new frame is subtracted from the previous one and
a significant change is declared when the number of pixels
with significant brightness variation is large. This triggers
asecond change detector that does exactly the same as the
first one but waits for the scene to stop changing. Once
the scene has stabilized, an image is digitized and object
regions are thresholded away from the black background
of the scene. A sequential labeling algorithm is applied
to the resulting binary image to obtain a segmented im-
age. The largest labeled region is regarded as the object
of interest. The region is normalized in scale and its color
bands are normalized in brightness as described in sec-
tion 3. The normalized vectors are projected to the three
eigenspaces and recognition and pose estimation are done
using the search algorithm described in the previous sec-
tion. A template of the recognized object and its pose in
degrees are overlaid on the live image of the scene.

If input projections in eigenspace are distant from all
100 manifoldsin at least one of the three bands, a question
mark is displayed to indicate that the object in the scene
is not one of those in the database. Table 1 shows the
time taken by the DEC workstation to execute each com-
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Figure 2: Components of the real-time recognition loop.

ponent of the recognition loop. A complete recognition
cycle takes approximately 700 msec. Note that this per-
formance is obtained without the use of any customized
image processing hardware. We estimate that video-rate
recognition can be attained using customized hardware
built with embedded processors such as the 1960.

OPERATION TIME* (msec)
SEGMENTATION 140
NORMALIZATION 100

PROJECTION 320

SEARCH 140
TOTAL 700

* DEC ALPHA 3600 WORKSTATION

Table 1: Performances of the individual components of
the recognition system.

Figure 3(b) shows the first and last frames of a com-
plete recognition cycle. The system has been, and contin-
ues to be, extensively tested by visitors to the laboratory.
We conducted a formal set of experiments to quantify the
robustness and accuracy of the system. From the set of
100 objects, we picked 20 that do not possess pose ambi-
guities (multiple poses for which the object appears the
same). A total of 1000 images of these 20 objects were
taken at known poses. The recognition rate for these im-
ages turned out to be 100 %. The pose estimation accu-
racy is illustrated by the error histogram in Figure 3(c).
The mean and standard deviation of the absolute pose
error were found to be 2.02 degrees and 1.67 degrees, re-
spectively. Given that the learning images were taken 7.5
degrees apart, these numbers indicate high performance.
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6 Applications of Appearance Matching

Parametric appearance models have been applied to a
variety of problems besides object recognition, such as, il-
lumination planning for robust recognition [13], visual po-
sitioning and tracking [18], and temporal inspection [16]
of complex parts. The results demonstrate that the tech-
niques underlying appearance modeling and matching are
general. This has led to the development of a comprehen-
sive software package [20] for appearance matching that
is presently being used at several research institutions.
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