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Abstract
Structures of dynamic scenes can only be re-

covered using a real-time range sensor. Focus
analysis offers a direct solution to fast and dense
range estimation. It is computational efficient as
it circumvents the correspondence problem faced
by stereo and feature tracking in structure from
motion. However, accurate depth estimation re-
quires theoretical and practical solutions to a va-
riety of problems including recovery of textureless
surfaces, precise blur estimation, and magnifica-
tion variations caused by defocusing. Both tex-
tured and textureless surfaces are recovered using
an illumination pattern that is projected via the
same optical path used to acquire images. The
illumination pattern is optimized to ensure maxi-
mum accuracy and spatial resolution in computed
depth. A prototype focus range sensor has been
developed that produces up to 512x480 depth es-
timates at 30 Hz with an accuracy better than
0.3%. In addition, a microscopic shape from fo-
cus sensor is described that uses the derived il-
lumination pattern and a sequence of images to
recover depth with an accuracy of 1 micron. Sev-
eral experimental results are included to demon-
strate the performances of both sensors. We con-
clude with a brief summary of our recent results
on passive focus analysis.

1 Introduction

Of all problems studied in computational vision,
recovery of three-dimensional scene structure has
by far attracted the most attention. This has re-
sulted in a panoply of sensors and algorithms [15]
[2] that can be broadly classified into two cat-
egories; passive and active. Passive techniques
such as shape from shading and shape from tex-
ture attempt to extract structure from a single
image. These algorithms are still under investi-

gation and, given the assumptions they are forced
to invoke, they are expected to prove complemen-
tary to other techniques but not serve as stand-
alone strategies. Other passive methods such as
stereo and structure from motion use multiple
views to resolve shape ambiguities inherent in a
single image. The primary bottleneck for these
methods has proved to be correspondence and
feature tracking. Recently, it was demonstrated
that stereo could achieve real-time performance,
but only with the use of significant customized
hardware [16]. Further, passive algorithms have
yet to demonstrate the accuracy and robustness
required for high-level perception tasks such as
object recognition and pose estimation.

Hitherto, high quality depth maps have re-
sulted only from the use of active sensors based
on time of flight or light striping [15]. From a
practical perspective, light stripe range finding
has emerged as a clear winner. In structured en-
vironments, where active radiation of a scene is
feasible, it offers a robust yet inexpensive solution
to a variety of problems. However, it has suffered
from one inherent drawback, namely, speed. To
achieve depth maps with sufficient spatial reso-
lution, a large number (say, N) of closely spaced
stripes are used. If all stripes are projected simul-
taneously it is impossible to associate a unique
stripe with any given image point, a process that
is necessary to compute depth by triangulation.
The classical approach is to obtain N images, one
for each stripe. If Tf is the time required to sense
and digitize an image, the scanning of N stripes
takes at least N .Tf . Substantial improvements
can be made by assigning gray codes to the stripes
and scanning the entire collection of stripes in sets
[14]. All the information needed is then acquired
in log2(N)Tf , a significant improvement. An al-
ternative approach uses color-coded stripe pat-
terns [5]; this however is practical only in a gray-
world that reflects all wavelengths of light. New



hope for light stripe range finding has been in-
stilled by advances in VLSI. Based on the notion
of cell parallelism [17], a computational sensor is
developed where each sensor element records a
stripe detection time-stamp as a single laser stripe
sweeps the scene at high speed. Depth maps are
produced in as little as 1 msec, though present
day silicon packaging limits the total number of
cells, and hence spatial depth resolution, to 28x32
[12].

Here, we summarize our work on a class of
range sensors that are based on focus analysis. In
particular, we describe a real-time range sensor
that produces high-resolution (512x480) depth
maps at 30 Hz (video rate) [25] [32]. Focus anal-
ysis has a major advantage over stereo and struc-
ture from motion. Two or more images of a scene
are taken under different optical settings but from
the same viewpoint, as initially demonstrated by
[27][29] and subsequently by others1. This cir-
cumvents the need for correspondence or feature
tracking. The real-time sensor mentioned above
here uses only two scene images. These images
correspond to different levels of focus, and local
frequency analysis implemented typically via lin-
ear operators yields depth estimates. However,
differences between the two images tend to be
very subtle and we believe that previous solu-
tions to depth from defocus have met with lim-
ited practical success as they are based on rough
approximations to the optical and sensing mecha-
nisms involved in focus analysis. In contrast, our
approach is based on a careful physical model-
ing of all the optical, sensing, and computational
elements at work; the optical transfer function,
defocus, image sensing and sampling, and focus
measure operators.

Depth from defocus shares one inherent weak-
ness with stereo and motion, in that, it requires
that the scene have high frequency textures. A
textureless surface appears the same focused or
defocused and the resulting images do not con-
tain information necessary for depth computa-
tion. This has prompted us to develop a range
sensor that uses active illumination. The key idea
is to force a texture on the scene and then ana-

1All work in focus based depth computation can be
broadly classified into depth from focus and depth from
defocus. The former relies on a large number of images
taken by displacing the sensor in small increments and
uses a focus operator to detect the image of maximum
focus for each scene point (see [20, 7, 22, 21, 19, 1, 34,
26]). In contrast, depth from defocus typically uses two
images and estimates relative blurring to get depth (see
[27, 29, 11, 28, 4, 8, 34, 10]).

lyze the relative defocus of the texture in two im-
ages. Illumination projection has been suggested
in the past [9][28] for both depth from defocus and
depth from pattern size distortion under perspec-
tive projection. However, these projected pat-
terns were selected in a more or less arbitrary
fashion and do not guarantee desired precision
in computed depth. A critical problem there-
fore is determining an illumination pattern that
would maximize the accuracy and robustness of
depth from defocus. We arrive at a solution to
this problem through a detailed Fourier analysis
of the entire depth from defocus system. First,
theoretical models developed for each of the opti-
cal and computational elements of the system are
expressed in spatial and Fourier domains. The
derivation of the illumination pattern (or filter) is
then posed as an optimization problem in Fourier
domain. The optimal pattern is one that max-
imizes sensitivity of the focus measure to depth
variations while minimizing the size of the focus
operator to achieve high spatial resolution in com-
puted depth.

An implementational problem that has repeat-
edly surfaced in previous work is the variation
in image magnification that occurs when images
are taken under different focus settings [33]. This
manifests into a correspondence-like problem. It
has forced investigators to resort to techniques
varying from image registration and warping [7]
to the use of precise lens calibration for correct-
ing magnification variations [33] [7]. We have a
simple but effective optical solution to this prob-
lem [31]. By appending an additional aperture to
the optics, we show that the focus setting of an
imaging system can be varied substantially with-
out altering magnification.

A prototype real-time focus range sensor has
been developed. It uses two CCD image detectors
that view the scene through the same optical ele-
ments [25][32]. The derived illumination pattern
is fabricated using micro-lithography and incor-
porated into the sensor. The illumination pattern
is projected onto the scene via the same optical
path used to image the scene. This results in sev-
eral advantages. It enables precise registration of
the illumination pattern with the sampling grid
of the image sensors. Light rays projected out
through the imaging optics are subjected to simi-
lar geometric distortions as rays reflected back to
the sensors. Therefore, despite ever-present lens
distortions, the illumination pattern and the sens-
ing grid of the detector are well registered. The
coaxial illumination and imaging also results in



a shadowless image; all surface regions that are
visible to the sensor are also illuminated. Fur-
thermore, since both images are acquired from
the same viewing direction, the missing part or
occlusion problem in stereo is avoided. Several
experiments have been conducted to evaluate the
accuracy and real-time capability of the sensor.
In addition to a quantitative error analysis, real-
time depth map sequences of moving objects are
shown.

Finally, we describe a second system we have
developed that is based on focus analysis [26].
This system is complementary to the first one,
in that, it is based on depth from focus (rather
than defocus) and is capable of reocovering mi-
croscopic objects with an accuracy as good as 1
micron. The starting point for this system is an
algorithm described in [22], where a shape from
focus method was developed for microscopic ob-
jects. The high magnification of a microscope
results in images that capture brightness varia-
tions caused by the micro-structure of the sur-
face. Most surfaces that appear smooth and non-
textured to the naked eye produce highly tex-
tured images under a microscope. Examples of
such surfaces are paper, plastics, ceramics, etc.
Microscopic shape from focus [22] was therefore
demonstrated to be an effective approach, offering
solutions to a variety to challenging shape inspec-
tion problems. However, there exist surfaces that
are smooth at the micro-structure level and con-
sequently do not produce sufficient texture even
under a microscope.

The illumination pattern we used in the real-
time range sensor was initially incorporated into
the microscopic shape from focus system [26].
The illumination pattern is projected onto the
sample via the path of the bright field illumina-
tion of the microscope. As with the depth from
defocus sensor, this enables very precise registra-
tion of the illumination pattern with the sampling
grid of the image sensor; light rays projected out
through the imaging optics are subjected to the
same geometric distortions as rays reflected back
to the image sensor. The motorized stage of the
microscope is used to automatically acquire a set
of images (typically 10-20) by moving the sample
towards the objective lens. The depth from focus
algorithm [22] is then applied to the image set to
obtain a complete depth map of the sample. As
examples, we show accurate and detailed depth
maps of structures on silicon substrates and sol-
der joints. These are samples of significant indus-
trial import that have been found hard to recover

using other vision techniques.
We conclude with a brief discussion on our most

recent result on focus analysis that include a pas-
sive bifocal vision sensor [23] and a novel algo-
rithm for passive depth from defocus [30] that
uses a minimal operator set to recover scenes with
unknown and complex textures.

2 Depth from Defocus

Fundamental to depth from defocus is the rela-
tionship between focused and defocused images
[3]. Figure 1 shows the basic image formation ge-
ometry. All light rays that are radiated by object
point P and pass the aperture A are refracted
by the lens to converge at point Q on the image
plane. For a thin lens, the relationship between
the object distance d, focal length of the lens f ,
and the image distance di is given by the Gaus-
sian lens law:
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Figure 1: Image formation and depth from defocus.

Each point on the object plane is projected
onto a single point on the image plane, causing a
clear or focused image If to be formed. If, how-
ever, the sensor plane does not coincide with the
image plane and is displaced from it, the energy
received from P by the lens is distributed over a
patch on the sensor plane. The result is a blurred
image of P . It is clear that a single image does not
include sufficient information for depth estima-
tion as two scenes defocused to different degrees
can produce identical images. A solution to depth
is achieved by using two images, I1 and I2, sepa-
rated by a known physical distance β. The prob-
lem is reduced to analyzing the relative blurring
of each scene point in the two images and com-
puting the distance α of its focused image. Then,



using di= γ- α, the lens law (1) yields depth d of
the scene point. Simple as this procedure may ap-
pear, several technical problems emerge when im-
plementing an algorithm of practical value. These
include (a) accurate estimation of relative defocus
in the two images, (b) recovery of textured and
textureless surfaces, and (c) achieving constant
magnification that is invariant to the degree of
defocus.

3 Constant-Magnification
Defocus

We begin with the last of the problems mentioned
above. In the imaging system shown in Figure
1, the effective image location of point P moves
along ray R as the sensor plane is displaced. This
causes a shift in image coordinates of P that in
turn depends on the unknown scene coordinates
of P . This variation in image magnification with
defocus manifests as a correspondence-like prob-
lem in depth from defocus as the right set of
points in images I1 and I2 are needed to estimate
blurring. We approach this problem from an opti-
cal perspective rather a computational one. Con-
sider the image formation model shown in Figure
2. The only modification made with respect to
the model in Figure 1 is the use of the exter-
nal aperture A′. The aperture is placed at the
front-focal plane, i.e. a focal length in front of
the principal point O of the lens. This simple
addition solves the prevalent problem of magni-
fication variation with distance α of the sensor
plane from the lens. Simple geometrical analysis
reveals that a ray of light R′ from any scene point
that passes through the center O′ of aperture A′

emerges parallel to the optical axis on the image
side of the lens [18]. Furthermore, this parallel
ray is the axis of a cone that includes all light
rays radiated by the scene point, passed through
by A′ and intercepted by the lens. As a result,
despite blurring, the effective image coordinates
of point P in both images I1 and I2 are the same,
namely, the coordinate of its focused image Q on
If .

This invariance of magnification to defocus
holds true for any depth from defocus configura-
tion (all values of α and β). It can also be shown
that the constant-magnification property is unaf-
fected by the aperture radius a′. Furthermore,
the lens law of (1) remains valid. This modifica-
tion is realizable not only in single lens systems
but any compound lens system. Given an off-the-
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Figure 2: A constant-magnification imaging system

for depth from defocus is achieved by simply placing

an aperture at the front-focal plane of the optics.

shelf lens, such an aperture is easily appended to
the casing of the lens. The resulting optical sys-
tem is called a telecentric lens. While the nominal
and effective F-numbers of the classical optics in
Figure 1 are f/a and di/a, respectively, they are
both equal to f/a′ in the telecentric case.

4 Modeling

Effective solutions to both illumination projection
and depth estimation require careful modeling
and analysis of all physical phenomena involved
in depth from defocus. There are five different el-
ements, or components, that play a critical role,
namely, the illumination pattern, optical transfer
function, defocusing, image sensing, and the focus
operator. All of these together determine the the
relation between the depth of a scene point and
its two focus measures. Since we have used the
telecentric lens (Figure 2) in our implementation,
it’s parameters are used in developing each model.
However, all of the following expressions can be
made valid for the classical lens system (Figure 1)
by simply replacing the factor f

a′
by di

a . Though

we use both spatial and Fourier (frequency) mod-
els of the above components, for brevity we will
present Fourier models only when they are needed
to make pertinent observations.

4.1 Illumination Pattern

Before the parameters of the illumination pattern
can be determined, an illumination model must
be defined. Such a model must be flexible in that
it must subsume a large enough variety of possible
illumination patterns. As we will describe shortly,
the image sensor used has rectangular pixels ar-
ranged on a rectangular spatial grid. Hence, the
basic building block of the model is a rectangular



illuminated patch, or cell, with uniform intensity:

ic(x, y; bx, by) = 2Π(
1

bx
x,

1

by
y) (2)

where, 2Π() is the two-dimensional Rectangular
function [6]. The unknown parameters of this illu-
mination cell are bx and by, the length and width
of the cell. This cell is assumed to be repeated on
a two-dimensional grid to obtain a periodic pat-
tern. This periodicity is essential since our goal
is to achieve spatial invariance in depth accuracy.
The periodic grid is defined as:

ig(x, y; tx, ty) = 2III( 1
2 ( 1
tx
x+ 1

ty
y), 1

2 ( 1
tx
x− 1

ty
y))

(3)
where, 2III() is the 2-dimensional Shah function
[6], and 2tx and 2ty determine the periods of the
grid in the x and y directions. The final illu-
mination pattern is obtained by convolving the
cell ic(x, y) with the grid ig(x, y), i.e. i(x, y) =
ic(x, y) ∗ ig(x, y). The exact pattern is therefore
determined by four parameters, namely, bx, by,
tx and ty. The above illumination grid is not
as restrictive as it may appear upon initial in-
spection. For instance, the parameters bx, by,
2tx and 2ty can each be stretched to obtain re-
peated illumination and non-illumination stripes
in the horizontal and vertical directions, respec-
tively. Alternatively, they can also be adjusted to
obtain a checkerboard illumination pattern with
large or small illuminated patches. The exact val-
ues for bx, by, tx and ty will be evaluated by the
optimization procedure described later.

The Fourier transforms of the illumination cell,
grid, and pattern are denoted as Ic(u, v), Ig(u, v),
and I(u, v), respectively, and are related as:

I(u, v; bx, by, tx, ty) = Ic(u, v) · Ig(u, v) (4)

4.2 Optical Transfer Function

Adjacent points on the illuminated surface reflect
light waves that interfere with each other to pro-
duce diffraction effects. The angle of diffraction
increases with the spatial frequency of surface
texture. Since the lens aperture of the imaging
system (Figure 2) is of finite radius a′, it does not
capture the higher order diffractions radiated by
the surface (see [3] for details). This effect places
a limit on the optical resolution of the imaging
system characterized by the optical transfer func-
tion (OTF):

O(u, v; a′, f) (5)
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Figure 3: Spatial and frequency models for the opti-

cal and sensing elements of depth from defocus.

=

{
(a
′
f )2(γ − sin γ) ,

√
u2 + v2 ≤ 2a′

λf

0 ,
√
u2 + v2 > 2a′

λf

where γ = 2 cos−1(λf
a′
√
u2+v2

2 ) .

where, (u, v) is the spatial frequency of the two-
dimensional surface texture as seen from the im-
age side of the lens, f is the focal length of the
lens, and λ is the wavelength of incident light.
It is clear from the above expression that only

spatial frequencies below the limit 2a′
λf will be im-

aged by the optical system (Figure 3). This in
turn places restrictions on the frequency of the
illumination pattern.

4.3 Defocusing

The defocus function is described in detail in pre-
vious work (see [3][13] for example). As in Figure
2, let α be the distance between the focused image
of a surface point and its defocused image formed
on the sensor plane. The light energy radiated
by the surface point and collected by the imag-
ing optics is uniformly distributed over a circular
patch on the sensor plane. This patch, also called
the pillbox, is the defocus function (Figure 3):

h(x, y;α, a′, f) =
f2

2πa′2α2
Π(

d

2aα

√
x2 + y2) (6)

where, a′ is the radius of the telecentric lens aper-
ture. The Fourier transform of the defocus func-



tion is:

H(u, v;α, a′, f) (7)

=
f

2πa′α
√
u2 + v2

J1(
2πa′α
f

√
u2 + v2)

where J1 is the first-order Bessel function [3].
As is evident from the above expression, defocus
serves as a low-pass filter. The bandwidth of the
filter increases as α decreases, i.e. as the sensor
plane gets closer to the plane of focus. Note that
in a defocused image, all frequencies are atten-
uated at the same time. In the case of passive
depth from focus or defocus, this poses a seri-
ous problem; different frequencies in an unknown
scene are bound to have different (and unknown)
magnitudes and phases. It is difficult therefore to
estimate the degree of defocus of an image region
without the use of a large set of narrow-band fo-
cus operators that analyze each frequency in iso-
lation. Hence, it would be desirable to have an
illumination pattern that has a single dominant
frequency, enabling robust estimation of defocus
and hence depth.

4.4 Image Sensing

We assume the image sensor to be a typical CCD
TV camera that can be modeled as a rectangu-
lar array of rectangular sensing elements (pixels).
The quantum efficiency [13] of each pixel is as-
sumed to be uniform over the area of the pixel.
Let m(x, y) be the continuous image formed on
the sensor plane. The finite pixel area has the
effect of averaging the continuous image m(x, y).
In spatial domain, the averaging function is the
rectangular cell:

sc(x, y;wx, wy) =2 Π(
1

wx
x,

1

wy
y) (8)

where, wx and wy are the length and width of
the pixel, respectively. The discrete image is ob-
tained by sampling the convolution of m(x, y)
with sc(x, y). This sampling function is a rect-
angular grid:

sg(x, y; px, py, ϕx, ϕy) (9)

=
1

pxpy
2III( 1

px
(x− ϕx), 1

py
(y − ϕy))

where, px and py are spacings between dis-
crete samples in the two spatial dimensions, and
(ϕx, ϕy) is phase shift of the grid. The final dis-
crete image is therefore:

md(x, y) = (sc(x, y) ∗m(x, y)) · sg(x, y) (10)

The parameters wx, wy, px, and py are all deter-
mined by the particular image sensor used. These
parameters are therefore known and their values
are substituted after the optimization is done. On
the other hand, the phases (ϕx, ϕy) of the sam-
pling function is with respect to the illumination
pattern and are also viewed as parameters to be
optimized. In Fourier domain, the final discrete
image is:

Md(u, v) = (Sc(u, v) ·M(u, v)) ∗ Sg(u, v) (11)

4.5 Focus Operator

Since defocusing has the effect of suppressing
high-frequency components in the focused image,
it is desirable that the focus operator respond to
high frequencies in the image. For the purpose of
illumination optimization, we use the Laplacian.
However, the derived pattern will remain optimal
for a large class of symmetric focus operators. In
spatial domain, the 3x3 discrete Laplacian is:

l(x, y; qx, qy)

= 4δ(x) · δ(y)− [δ(x) · δ(y − qy) + δ(x) (12)

·δ(y + qy) + δ(x− qx) · δ(y) + δ(x+ qx) · δ(y)]

Here, qx and qy are the spacings between neigh-
boring elements of the discrete Laplacian kernel
and are given by the image sensor. The Fourier
transform of the Laplacian is:

L(u, v; qx, qy) = 4− 2 cos (2πqxu)− 2 cos (2πqyv)
(13)

The required discrete nature of the focus opera-
tor comes with a price. It tends to broaden the
bandwidth of the operator. Once the illumination
pattern has been determined, the above filter will
be tuned to maximize sensitivity to the funda-
mental illumination frequency while minimizing
the effects of spurious frequencies caused either
by the scene’s inherent texture or image noise.

4.6 Focus Measure

The focus measure is simply the output of the
focus operator. It is related to defocus α (and
hence depth d) via all of the components modeled
above. Note that the illumination pattern (ic ∗
ig) is projected through optics that is similar to
that used for image formation. Consequently, the
pattern is also subjected to the limits imposed by
the optical transfer function o and the defocus
function h. Therefore, the texture projected on



the scene is:

i(x, y; bx, by, tx, ty)∗o(x, y; a′, f)∗h′(x, y;α′, a′, f)
(14)

where, α′ represents defocus of the illumination
itself that depends on the depth of the illumi-
nated point. However, the illumination pattern,
once incident on a surface patch, plays the role of
surface texture and hence defocus α′ of illumina-
tion does not have any significant effect on depth
estimation. The projected texture is reflected by
the scene and projected by the optics back onto
the image plane to produce the discrete image:

{i(x, y; bx, by, tx, ty) ∗ o(x, y; a′, f)∗2

∗h′(x, y;α′, a′, f) ∗ h(x, y;α, a′, f)

∗sc(x, y;wx, wy)} · sg(x, y; px, py, ϕx, ϕy)(15)

where, o∗2 = o ∗ o. The final focus measure func-
tion g(x, y) is the result of applying the discrete
Laplacian to the above discrete image:

g(x, y) = {(i ∗ o∗2 ∗ h∗2 ∗ sc) · sg} ∗ l (16)

Since the distance between adjacent weights of
the Laplacian kernel must be integer multiples of
the period of the image sampling function sg , (16)
can be rearranged as:

g(x, y) = (i ∗ o∗2 ∗h′ ∗h ∗ sc ∗ l) · sg = g0 · sg (17)

where, g0 = i ∗ o∗2 ∗ h′ ∗ h ∗ sc ∗ l. Alternately, in
Fourier domain we have:

G(u, v) = (I ·O2 ·H ′ ·H ·Sc ·L)∗Sg = G0∗Sg (18)

The above expression gives us the final output of
the focus operator for any value of the defocus
parameter α.

5 Optimization

The illumination optimization problem is formu-
lated as follows: Establish closed-form relation-
ships between
the illumination parameters (bx, by, tx, ty), sensor
parameters (wx, wy, px, py, ϕx, ϕy), and discrete
Laplacian parameters (qx, qy) so as to maximize
the sensitivity, robustness, and spatial resolution
of the focus measure g(x, y). High sensitivity im-
plies that a small variation in the degree of focus
results in a large variation in g(x, y). By robust-
ness we mean that all pixels with the same de-
gree of defocus produce the same focus measure
independent of their location on the image plane.

This ensures that depth estimation accuracy is
invariant to location on the image plane. Lastly,
high spatial resolution is achieved by minimizing
the size of the focus operator.

The details of the optimization process are
given in [24] and will be omitted in the inter-
est of space. Here, we briefly outline the ar-
guments we have used to arrive at the opti-
mal pattern. In order to minimize smoothing
effects and maximize spatial resolution of com-
puted depth, the support (or span) of the dis-
crete Laplacian must be as small as possible.
This in turn requires the frequency of the illu-
mination pattern be as high as possible. How-
ever, the optical transfer function described in
section 4.2 imposes limits on the highest fre-
quency that can be imaged by the optical sys-

tem. This maximum allowable frequency is 2a′
λf ,

determined by the numerical aperture of the tele-
centric lens. Our objective then is to maximize
the fundamental spatial frequency (1/tx, 1/ty) of
the illumination. In order to maximize this fre-
quency while maintaining high detectability, we
must have

√
(1/tx)2 + (1/ty)2 close to the optical

limit 2a′
λf . This in turn pushes all higher harmon-

ics in the illumination pattern outside the optical
limit. What we are left with is a surface tex-
ture whose image has only the quadrapole fun-
damental frequencies (±1/tx,±1/ty). Using this
observation, the illumination pattern parameters
(bx, by, tx, ty, ) and the illumination phase shift
(ϕx, ϕy) that maximize || G( 1

tx
, 1
ty

) || are deter-

mined in [24]. Two optimal patterns were found
and are shown in Figure 4. Exactly how such
high resolution patterns can be projected and per-
fectly registered with the image detector will be
described in the experimental section.

px

py

2 px

2 py

 (a) (b)

Figure 4: Optimal illumination filter patterns: (a)

tx = 2px, ty = 2py, ϕx = 0, ϕy = 0; and (b)

tx = 4px, ty = 4py, ϕx = 1/8tx, ϕy = 1/8ty . Here,

(tx, ty) is the illumination period, (px, py) is the pixel

size, and (ϕx, ϕy) is the illumination phase shift with

respect to the sensing grid.



6 Tuned Focus Operator

For the purpose of illumination optimization, we
used the Laplacian. The resulting illumination
pattern has only a single dominant absolute fre-
quency, (1/tx, 1/ty). Given this, we are in a po-
sition to further refine our focus operator so as
to minimize the effects of all other frequencies
caused either by the physical texture of the scene
or image noise.

Given that the operator must eventually be dis-
crete and of finite support, there is a limit to the
extent to which it can be tuned. To constrain
the problem, we impose the following conditions.
(a) To maximize spatial resolution in computed
depth, we force the operator kernel to be 3x3. (b)
Since the fundamental frequency of the illumina-
tion pattern has a symmetric quadrapole arrange-
ment, the focus operator must be rotationally
symmetric. (c) The operator must not respond
to any DC component in image brightness. The
above conditions, yield a set of equations with the
operator elements as variables [32]. These equa-
tions were solved to find that the operator with
its symmetric structure has only one variable.
This variable was optimize so as to yield a fre-
quency response with sharpest peaks, i.e. power
spectrum with the lowest second moment around
the illumination frequency (±1/tx,±1/ty). This
tuned focus operator was found to have substan-
tially sharper peaks than the discrete Laplacian.

7 Depth from Two Images

Depth estimation uses two images of the scene,
I1(x, y) and I2(x, y), that correspond to differ-
ent effective focal lengths as shown in Figure 2.
Depth of each scene point is determined by esti-
mating the displacement α of the focused plane
If for the scene point. The tuned focus opera-
tor is applied to both images to get focus mea-
sure images g1(x, y) and g2(x, y, ). Since the im-
age now has a single dominant frequency, namely
(±1/tx,±1/ty), a relation between the focus mea-
sures and defocus α can be derived using (18):

q =
g1 − g2

g1 + g2
=

H( 1
tx
, 1
ty

;α) − H( 1
tx
, 1
ty

;α− β)

H( 1
tx
, 1
ty

;α) + H( 1
tx
, 1
ty

;α− β)

(19)
As shown in Figure 5, q is a monotonic function
of α such that −p ≤ q ≤ p, p ≤ 1. In prac-
tice, the above relation can be pre-computed and
stored as a look-up table that maps q to a unique

α. Since α represents the position of the focused
image, the lens law (1) yields the depth d of the
corresponding scene point. Note that the tuned
focus operator designed in the previous section
is a linear filter, making it feasible to compute
depth maps of scenes in real-time using simple
image processing hardware.
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Figure 5: Relation between focus measures g1 and

g2 and the defocus parameter α.

8 Real Time Range Sensor

Based on the above results, we have implemented
[25][32] the real-time focus range sensor shown in
Figure 6. The scene is imaged using a standard
12.5 mm Fujinon lens with an additional aper-
ture added to convert it to telecentric. Light rays
passing through the lens are split in two direc-
tions using a beam-splitting prism. This produces
two images that are simultaneously detected us-
ing two Sony XC-77RR 8-bit CCD cameras. The
positions of the two cameras are precisely fixed
such that one obtains a near-focus image while
the other a far-focus image. In this setup, a phys-
ical displacement of 0.25mm between the effective
focal lengths of the two CCD cameras translates
to a sensor depth of field of approximately 30 cms.
This detectable range of the sensor can be varied
either by changing the sensor displacement or the
focal length of the imaging optics.

The illumination pattern shown in Figure 4(b)
was etched on a glass plate using microlithogra-
phy, a process widely used in VLSI. The filter was
then placed in the path of a 300 W Xenon arc
lamp. The illumination pattern generated is pro-
jected using a telecentric lens identical to the one
used for image formation. A half-mirror is used
to ensure that the illumination pattern projects
onto the scene via the same optical path used to
acquire images. As a result, the pattern is al-
most perfectly registered with respect to the pix-
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Figure 6: (a) The real-time focus range sensor and its

key components. (b) The sensor can produce depth

maps up to 512x480 in resolution at 30 Hz.

els of the two CCD cameras. If objects in the
scene have a strong specular reflection compo-
nent, cross-polarized filters can be attached to the
illumination and imaging lens to filter out specu-
larities.

Images from the two CCD cameras are digitized
and processed using MV200 Datacube image pro-
cessing hardware. The present configuration in-
cludes the equivalent of two 8-bit digitizers, two
A/D convertors, and one 12-bit convolver. This
hardware enables simultaneous digitization of the
two images, convolution of both images with the
tuned focus operator, and the computation of a
depth map, all within a single frametime of 33
msec with a lag of 33 msec. A look-up table
is used to map each pair of focus measures to
a unique depth estimate (see [32] for details).

Several experiments were conducted on both
textured and textureless surfaces to test the per-
formance of the sensor [25] [32]. The performance
evaluation results are summarized in Table 1 and
discussed in detail in [32].

   Depth Accuracy (rms)

   Repeatability (rms)

   Spatial  Resolution

   Speed

   Delay

Simulatneous
 Image Grab

 Successive
Image Grab

   256 x 240    512 x 480

 30 Hz 30 Hz

33 msec 33 msec

0.24 % 0.34 %

0.23 % 0.29 %

Table 1: Performance characteristics of the sensor.

As stated earlier, structures of dynamic scenes
can only be recovered using a real-time sensor
such as the one we have developed. Figure 7 il-
lustrates the power of such a high-speed, high-
resolution sensor. The figure shows two bright-
ness images and the computed depth map of a
cup with milk flowing out of it.

(a)

(b)

Figure 7: (a) Two images of a scene taken using

different focus settings. (b) A depth map of the scene

computed in 33 msec by the focus range sensor.

Figure 8 shows a scene with polyhedral objects.
The computed depth map in Figure 8(b) is fairly
accurate despite the complex textural properties
of the objects. All surface discontinuities and ori-
entation discontinuities are well preserved. Fig-
ure 9 shows an object’s depth map computed as
it rotates on a motorized turntable. Such depth
map sequences are valuable for automatic CAD
model generation from sample objects.

9 Microscopic Shape from
Focus

The optimal illumination filter shown in Figure
4(b) was also incorporated into the shape from
focus system developed in [22]. A set of sample
images are obtained by automatically moving the
microscope stage in increments of ∆z = zi−zi−1.
The Laplacian focus operator is applied to each
image to obtain a set of focus measure values at
each image point (x, y); the number of focus mea-
sures equals the number of images taken. The dis-



(a)

(b)

Figure 8: (a) Near and far focused images of a set of

polyhedral objects. (b) Computed depth map.

(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 9: Depth maps generated by the sensor at 30

Hz while an object rotates on a motorized turntable.

crete stage position zj that yields the maximum
focus measure value at an image point, can be
used as an approximation of the depth of the cor-
responding surface point. A more accurate depth
estimate z is obtained by applying Gaussian in-
terpolation [22] to the three focus measures cor-
responding to zj−1, zj , and zj+1.

It was shown in [22] that at least 3 focus
measures are needed for depth estimation by
Gaussian interpolation. In the active illumi-
nation system proposed here, the fundamental
frequency of the surface texture is determined
by the illumination filter used and is simply√

( 1
tx

)2 + ( 1
ty

)2. For this frequency the defocus

measure has a zero-crossing at defocus value α′

such that 2πaα′

d

√
( 1
tx

)2 + ( 1
ty

)2 = 3.83. This gives

us an upper limit on the usable defocus range for
any point on the surface, which is, −α′ ≤ α ≤ α′.
Therefore, on the image side of the microscope
optics, we need to obtain (for any surface point)
at least 3 images within the above defocus range.
This gives us the following maximum distance be-
tween consecutive focused images on the image
side of the optics:

∆z′ ≤ 2α′

4
=

1

2
· 3.83 · d

2πa
√

( 1
tx

)2 + ( 1
ty

)2
(20)

This distance on the image side is related to the
maximum allowable microscope stage displace-
ment (between consecutive images) on the sample
side of the optics by the magnification M of the
objective lens used:

∆z ' ∆z′
1

M2
(21)

In our experiments, the magnification of the ob-
jective lens is M = 20, the ratio a/d = 0.025, and
illumination parameters are tx = 44 µm, ty =
52 µm. Using these values in eqs.(20) and (21) we
get the maximum allowable stage displacement
∆z ≤ 0.5 µm. Experiments reported in [26] il-
lustrate that ∆z = 0.5 µm does in fact produce
the best results. Further decreasing ∆z does not
significantly improve the accuracy of the depth
maps.

The sample in Figure 10 has rectangular struc-
tures fabricated on a smooth silicon wafer. Silicon
wafer inspection is of great relevance in a variety
of chip manufacturing processes. The surface of
the wafer is very smooth, resulting in images (see
Figure 10(a)) that are more or less textureless.
This renders the original shape from focus system



[22] ineffective. A total of 16 images were taken
for this sample. The derived illumination pattern
produces very accurate shape information that is
far superior to that produced by the bright field il-
lumination of the microscope [26]. Similar results
were obtained for the solder joint sample shown in
Figure 11. For this sample, an objective lens with
M = 10 was used and a total of 23 sample im-
ages were taken. This sample exhibits noticeable
texture under a microscope. However, the tex-
ture is not consistent over the entire surface. As
a result, the illumination pattern is necessary to
get an accurate depth map. Solder shape inspec-
tion has remained a challenging and unresolved
industrial problem. These results indicate that
microscopic shape from focus may provide an ef-
fective solution to this important problem.

(a) Camera image (b) Depth Map

Figure 10: Image and depth map of rectangular
structures on a smooth silicon substrate. The struc-
tures are approximately 13µm tall.

(a) Camera image (b) Depth Map

Figure 11: Image and depth map of a solder joint
on a circuit board. The solder joint is approximately
150µm high and 100µm wide.

10 Summary

We have summarized our results on a variety of
issues related to depth estimation by focus analy-
sis. Accurate modeling of optics and sensing were
shown to be essential for precise depth estimation.
Both textured and textureless surfaces are recov-
ered by using an optimized illumination pattern
that is registered with the image sensor. We also
presented an optical solution to constant magnifi-
cation defocusing, a problem that has limited the
precision of depth from defocus algorithms. All of
these results were used to implement a real-time
focus range sensor that produces high resolution
depth maps at frame rate. This sensor is unique
in its ability to produce fast, dense, and precise
depth information at a very low cost. With time
we expect the sensor to find applications ranging
from visual recognition and robot control to au-
tomatic CAD model generation for visualization
and virtual reality.

The second system we described targets a dif-
ferent class of objects, namely, microscopic struc-
tures. Using the derived illumination pattern,
we have demonstrated a fully automated micro-
scopic shape from focus system that can recover
depth with an accuracy within 1 micron. This
system has well-defined applications in the indus-
trial arena, where a depth sensor for samples such
as silicon wafers and solder joints is much sought
after.

The obvious extension to this work is the de-
velopment of passive focus range finders for both
indoor as well as outdoor scenes. We have al-
ready implemented a passive bifocal vision sensor
and are in the process of evaluating its capabil-
ities [23]. Such a sensor cannot afford the lux-
ury of projected illumination. It must rely on
complex scene textures for depth estimation. In
this regard, we have recently developed an effi-
cient depth from defocus algorithm [30] that uses
a minimal set of operators to recover structures
of scenes with unknwown textures.
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