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Abstract 
A real-time vision system is described that can re- 

cognize 100 complex three-dimensional objects. In con- 
trast to traditional strategies that rely on object geo- 
metry and local image features, the present system is 
founded on the concept of appearance matching. Ap- 
pearance manifolds of the 100 objects were automatic- 
ally learned using a computer-controlled turntable. The 
entire learning process was completed in 1 day. A recog- 
nition loop has been implemented that performs scene 
change detection, image segmentation, region normaliz- 
ations, and appearance matching, in less than 1 second. 
The hardware used by the recognition system includes 
no more than a CCD color camera and a workstation. 
The real-time capability and interactive nature of the 
system have allowed numerous observers to test its per- 
formance. To quantify performance, we have conducted 
controlled experiments on recognition and pose estima- 
tion. The recognition rate was found to be 100 % and 
object pose was estimated with a mean absolute error 
of 2.02 degrees and standard deviation of 1.67 degrees. 

1 Introduction 
The problem of 3D object recognition has been in- 

tensely studied in the past three decades. Despite this 
immense effort, we are yet to see a system that can 
recognize a large number of complex objects with ro- 
bustness and efficiency. The lesson learned thus far is 
that the recognition of 3D objects in entirely unstruc- 
tured environments is a hard problem. What can be 
accomplished in a somewhat structured setting where 
the problems of segmentation and occlusion are not as 
severe? We present in this paper a real-time system 
that recognizes any of 100 complex objects in less than 
1 second using no more than a color camera and a work- 
station. 

The versatility of a recognition system is determined 
to a large extent by the power of the underlying repres- 
entations used. Vision research has placed significant 
emphasis on the development of compact and descriptive 
shape representations [Requicha 80, Besl and Jain 85, 
Nalwa 931. This has led to the creation of a variety of 
novel representations, including, generalized cylinders, 
superquadrics, extended gaussian images, parametric 
bicubic patches, and differential geometric representa- 
tions, only to name a few. While these representations 
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are all useful in specific application domains, each has 
been found to have its drawbacks. This has kept re- 
searchers in search for more powerful representations. 

Will shape representation suffice'? After all, vision 
deals with brightness images that are functions not only 
of shape but also other intrinsic scene properties such 
as reflectance and extrinsic factors such as illumina- 
tion. This observation has motivated us to take an 
extreme approach to visual representation. What we 
advocate is not a representation of shape but rather 
appearance [Murase and Nayar 95b], encoded in which 
are brightness variations caused by three-dimensional 
shape, surface reflectance properties, sensor parameters, 
and illumination conditions. There exist a wide range 
of vision applications where pertinent variables are few 
and hence compact appearance representation in a low- 
dimensional space is possible. 

An added drawback of shape representation emerges 
whed a vision programmer attempts to develop a prac- 
tical recognition system. The programmer is forced to 
select an appropriate shape representation, design ob- 
ject models using the chosen representation, and then 
manually input this information into the system. This 
procedure is cumbersome and impractical when deal- 
ing with large sets of objects, or objects with complex 
shapes. The appearance representation proposed here is 
easier to acquire through an automatic learning phase 
than to create manually. The 100 objects in our sys- 
tem's database were automatically learned in less than 
1 day. Each object is represented in a low-dimensional 
subspace as a continuous appearance manifold that is 
parametrized by object pose. 

Given an image consisting of objects of interest, we 
assume that the objects are not occluded and can be 
segmented from the remaining scene. Each segmented 
image region is normalized in scale and brightness, such 
that it has the same size and brightness range as the im- 
ages used in the learning stage. This normalized image 
is projected to the appearance subspace. The closest 
manifold reveals the identity of the object and exact po- 
sition of the closest point on the manifold determines 
its pose in the scene. The closest point is determined 
using an efficient algorithm based on binary search in 
high dimensions [Nene and Nayar 951. 

d i l l  appearance representation suffice? Our experi- 
ments here and elsewhere show that appearance models 
are in many ways complementary to shape models. Ap- 
pearance representation proves extremely effective when 
the task variables are few; it is efficient and circumvents 
time-consuming and often unreliable operations such as 
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feature detection. On the other hand, when occlusion ef- 
fects are not negligible, shape models offer solutions in 
the form of partial matching that are less efficient in the 
case of appearance matching [Murase and Nayar 95a]. 

2 Appearance Matching: Overview 
Before we describe the recognition system, we briefly 

review the notion of parametric appearance matching as 
introduced in [Murase and Nayar 95b]. The appearance 
of an object is the combined effect of its shape, reflect- 
ance properties, pose in the scene, and the illumination 
conditions. While shape and reflectance are intrinsic 
properties that do not change for any rigid object, pose 
and illumination vary from one scene to the next. The 
visual learning problem is viewed as one of acquiring 
a compact model of the object’s appearance under dif- 
ferent poses and illumination directions. The object is 
“shown” to the image sensor in several orientations and 
lighting conditions. The result is a large set of object 
images. These images could either be used directly or 
after being processed to enhance object characteristics. 
Since all images in the set are of the same object, con- 
secutive images are correlated to a large degree. The 
problem then is to compress this large image set to a 
low-dimensional representation of object appearance. 

A well-known image compression or coding tech- 
niqiie is based on principal component analysis, also 
known as the Karhunen-Loeve transform [Oja 831 
[Murakami and Kumar 821. It uses the eigenvectors of 
an image set as orthogonal bases for representing in- 
dividual images in the set. Though a large number of 
eigenvectors may be required for very accurate recon- 
struction of an object image, only a few are generally 
sufficient to capture the significant appearance char- 
acteristics of an object, as shown for human faces in 
[Sirovich and Kirby 87][Turk and Pentland 911 and for 
edges and lines in [Hummel79][Lenz 871. These eigen- 
vectors constitute the dimensions of what we refer to as 
the eigenspace. From the perspective of machine vision, 
the eigenspace has an attractive property. If any two 
images from the set are projected to the eigenspace, the 
distance between the corresponding points in eigenspace 
is the best approximation to correlation between the im- 
ages. 

The system described here uses the parametric ei- 
genspace representation presented 
in [Murase and Nayar 93][Murase and Nayar 95b]. We 
assume that the illumination conditions remain more or 
less constant and hence object pose is the only vari- 
able of interest. An analysis of the effect of illumin- 
ation on the parametric eigenspace can be found in 
[Nayar and Murase 941. An image set is obtained for 
each of the 100 objects by varying pose in small in- 
crements. Each image is normalized in brightness and 
scale to achieve invariance to sensor magnification and 
illumination intensity. Images of all objects are used 
together to construct an eigenspace. The images of 
each object are then projected to eigenspace to ob- 
tain a set of points. These points lie on a manifold 
that is parametrized by pose. The manifold is con- 
structed from the discrete points by spline interpolation 

[Murase and Nayar 95b]. Each object is stored in the 
database as a collection of eigenspace points obtained 
by densely resampling its appearance manifold. Recog- 
nition and pose estimation of a novel image is achieved 
by projecting a novel object image to eigenspace and 
finding the closest manifold (object identity) and the 
closest point on this manifold (pose). 

3 Learning 100 Colored Objects 
We use a color sensor to enhance the discrimin- 

atory power of appearance matching. Color histo- 
grams have been shown to be effective in the re- 
cognition of objects with complex spectral variations 
[Swain and Ballard 911. Here, we are interested in pose 
invafiant recognition and hence use color images in their 
entirety to exploit not only the color measurements but 
also their spatial arrangement in the scene. A color im- 
age of each of the 100 objects learned by the system is 
shown in Figure 3. A variety of strategies can be used to 
exploit color information in appearance matching. One 
approach is to concatenate the three color bands (red, 
green, and blue) of the image into a single appearance 
vector prior to brightness normalization. However, we 
chose not to concatenate as it triples the size of the ap- 
pearance vectors. This, in turn, makes the computation 
of eigenspaces both slower and more memory intens- 
ive. Instead, we have chosen to break up the recogni- 
tion problem and compute a separate eigenspace and a 
set object manifolds for each of the three color bands. 
While adopting this approach, care must be taken to 
ensure that color information is exploited. If each band 
is brightness normalized independent of others, the rel- 
ative strengths of the different colors are lost. To avoid 
this, we normalize each band of the color image with 
the total energy in all three bands. Though the result- 
ing band vectors are not of unit magnitude, they remain 
invariant to the intensity of illumination while capturing 
the object’s spectral properties. 

The current implementation assumes that the objects 
lie on a planar surface and hence always show up in one 
of a-finite number of stable configurations. The learn- 
ing images were obtained by rotating the object on a 
computer-controlled turntable. A total of 48 discrete 
poses were used for each object, i.e. pose increments 
of 7.5 degrees. The learning procedure for the 100 ob- 
jects, including computation of the three subspaces and 
construction of object manifolds, took approximately 1 
day. 

4 Finding the Closest Manifold Point 
During recognition, an input color image is segmen- 

ted and each object region is normalized in scale and 
brightness as in the learning stage. Each color band is 
projected to its respective eigenspace and an object is 
recognized when the projections in all three eigenspaces 
are close to the manifolds of the same object, and the 
closest manifold point in the three spaces all correspond 
to approximately the same pose (within 2 pose degrees 
of each other). 
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Mapping an input image to eigenspace involves 
merely dot products and hence is computationally 
simple. What remains to be addressed is an efficient 
way of finding the closest manifold point. One approach 
is to use an exhaustive search algorithm. This is clearly 
inefficient as the distance of the input point with respect 
to each manifold point must be computed. The compu- 
tational complexity is O( k n )  where n is the number 
of manifold points and k is the dimensionality of the 
eigenspace. 

We have used an efficient algorithm for binary search 
in multiple dimensions [Nene and Nayar 951. This al- 
gorithm uses a carefully designed data structure to fa- 
cilitate quick search through the multi-dimensional ei- 
genspace in approximately O( k log2 n ). Figure 1 illus- 
trates the data structure, which is created off-line as 
follows. Given the set of densely sampled points in 
eigenspace, called the point set, the elements of each 
dimension of the point set are sorted independently in 
ascending order. It is clear that this independent sort- 
ing causes the coordinates of any given manifold point 
to be scattered in different rows in the ordered set. To 
preserve connectivity between coordinates, we use two 
types of maps. The forward map maintains the mapping 
between the original point set and the ordered set and 
the backward map facilitates mapping in the opposite 
direction (see Figure 1). 

Given a novel input point, f,, all manifold points 
within E from the novel point are determined using two 
binary searches on each dimension of the ordered set. 
The result is a range of rows (indices) for each di- 
mension (dark shaded areas in Figure 1). Next, us- 
ing the forward and backward maps, possible candid- 
ates are determined as ones with coordinates that are 
within E from those of the novel point. Exhaustive 
search on this short list of candidate points reveals the 
closest manifold point and the corresponding pose para- 
meter. In [Nene and Nayar 951, code for the above al- 
gorithm is given and the algorithm is demonstrated to be 
easier to implement than most existing ones with sim- 
ilar complexity. In our recognition system, the above 
search algorithm is applied independently to the three 
color bands. An object is recognized when it is detec- 
ted in all three color bands. The total search time is 
approximately 140 msec on a DEC workstation. We 
have also tested an alternative approach to finding the 
closest manifold point [Mukherjee and Nayar 951 that 
uses three-layered radial basis function (RBF) networks 
[Poggio and Girosi 901 to learn the mapping between in- 
put points and object parameters. 

5 Real-Time Recognition System 
The structure of the real-time recognition loop is il- 

lustrated in Figure 2. What we have implemented is 
an infinite loop that enables a human to interactively 
test the recognition system in the laboratory. Images 
from the color sensor are continuously checked for scene 
changes. Each new frame is subtracted from the previ- 
ous one and a significant change is declared when the 
number of pixels with significant brightness variation is 
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Figure 1: Data structure used to facilitate binary search 
through high-dimensional eigenspace for the closest 
manifold point. 

large. This triggers a second change detector that does 
exactly the same as the first one but waits for the scene 
to stop changing. Once the scene has stabilized, an im- 
age is digitized and object regions are thresholded away 
from the black background of the scene. A sequential 
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Figure 2: Components of the real-time recognition loop. 

labeling algorithm is applied to the resulting binary im- 
age to obtain a segmented image. The largest labeled 
region is regarded as the object of interest. The region 
is normalized in scale and its color bands are normalized 
in brightness as described in section 3. The normalized 
vectors are projected to the three eigenspaces and re- 
cognition and pose estimation are done using the search 
algorithm described in the previous section. A template 
of the recognized object and its pose in degrees are over- 
laid on the live image of the scene. 
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Pose Estimation Accuracy (Deg.) 

(b) (c) 

Figure 3: (a) 100 objects used to train the recognition system. (b) The system is in an infinite loop that enables a 
user to present different objects to it. (b) Histogram of the absolute pose error (in degrees). The histogram was 
computed using 1000 test images of 20 objects (ones with no pose ambiguities) taken at known poses. 



Table 1 shows the time taken by the DEC worksta- 
tion to execute each component of the recognition loop. 
A complete recognition cycle takes approximately 700 
msec. Note that this performance is obtained without 
the use of any customized image processing hardware. 
We estimate that video-rate recognition can be attained 
using customized hardware built with embedded pro- 
cessors such as the i960. 

PROJECTION 

SEARCH 

TOTAL 

NORMALIZATION 100 
I 

320 

140 

700 

* DEC ALPHA 3600 WORKSTATION 

Table 1: Performances of the individual components of 
the recognition system. 

Figure 3(b) shows the first and last frames of a com- 
plete recognition cycle. The system has been, and con- 
tinues to be, extensively tested by visitors to the labor- 
atory. We conducted a formal set of experiments to 
quantify the robustness and accuracy of the system. 
From the set of 100 objects, we picked 20 that do not 
possess pose ambiguities (multiple poses for which the 
object appears the same). A total of 1000 images of 
these 20 objects were taken at known poses. The re- 
cognition rate for these images turned out to be 100 %. 
The pose estimation accuracy is illustrated by the er- 
ror histogram in Figure 3(c). The mean and standard 
deviation of the absolute pose error were found to be 
2.02 degrees and 1.67 degrees, respectively. Given that 
the learning images were taken 7.5 degrees apart, these 
numbers indicate high performance. 

6 Other Applications 
Parametric appearance models have been applied 

to a variety of problems besides object recognition, 
such as, illumination planning for robust recogni- 
tion [Murase and Nayar 941, visual positioning and 
tracking [Nayar et al. 941, and temporal inspection 
[Nayar et al. 951 of complex parts. The results demon- 
strate that the techniques underlying appearance mod- 
eling and matching are general. This has led to 
the development of a comprehensive software package 
[Nene and Nayar 941 for appearance matching that is 
presently being used at several research institutions. 
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