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ABSTRACT

In contrast to the traditional approach, the recognition problem is formu-
lated as one of matching appearance rather than shape. For any given
vision task, all possible appearance variations define its visual workspace.
A set of images is obtained by coarsely sampling the workspace. The image
set is compressed to obtain a low-dimensional subspace, called the eigen-
space, in which the visual workspace is represented as a continuous ap-
pearance manifold. Given an unknown inpul image, the recognition system
first projects the image to eigenspace. The parameters of the vision task are
recognized based on the exact position of the projection on the appearance
mantfold. The proposed appearance representation has several applications
in visual percepltion. As examples, a real-time recognition system with 20
complex objects, an illumination planning technique for robust object recog-
nition, and a real-time visual positioning and tracking system are described.
The simplicity and generality of the proposed ideas have led to the devel-
opment of a comprehensive software library for appearance modeling and
matching.

INTRODUCTION

Vision research has placed significant emphasis on the development of compact
and descriptive shape representations for object recognition [39, 3, 23]. This has
lead to the creation of a variety of novel representations, including, generalized
cylinders [4], superquadrics [2][33], extended gaussian images [10], parametric
bicubic patches [23] and differential geometric representations [5], only to name
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a few. While these representations are all useful in specific application domains,
each has been found to have its own drawbacks. This has kept researchers in
search for more powerful representations.

Will shape representation suffice? After all, vision deals with brightness im-
ages that are functions not only of shape but also other intrinsic scene properties
such as reflectance and perpetually varying factors such as illumination. This
observation has led to the exploration of view-based approaches to object recog-
nition (see [37][43][14][44][38] for examples). It motivates us to take an extreme
approach to visual representation. What we seek is not a representation of shape
but rather appearance [19], encoded in which are brightness variations caused by
three-dimensional shape, surface reflectance properties, sensor parameters, and
illumination conditions. Given the number of factors at work, it is immediate
that an appearance representation that captures all possible variations is sim-
ply impractical. Fortunately, there exist a wide collection of vision applications
where pertinent variables are few and hence compact appearance representation
in a low-dimensional space is indeed possible.

An added drawback of shape representation emerges when a vision program-
mer attempts to develop a practical recognition system. Techniques for automat-
ically acquiring shape models from sample objects are only being researched. For
now, a vision programmer is forced to select an appropriate shape representation,
design object models using the chosen representation, and then manually input
this information into the system. This procedure is cumbersome and impractical
when dealing with large sets of objects, or objects with complex shapes. It is
clear that recognition systems of the future must be capable of acquiring object
models without human assistance. It turns out that the appearance representa-
tion proposed here is easier to acquire through an automatic learning phase than
to create manually.

The appearance of an object is the combined effect of its shape, reflectance
properties, pose in the scene, and the illumination conditions. While shape and
reflectance are intrinsic properties that do not change for any rigid object, pose
and illumination vary from one scene to the next. We approach the visual learning
problem as one of acquiring a compact model of the object’s appearance under
different poses and illumination directions. The object is “shown” to the image
sensor in several orientations and lighting conditions. This can be accomplished
using, for example, two robot manipulators; one rotates the object while the other
varies the illumination direction. The result is a large set of object images. These
images could either be used directly or after being processed to enhance object
characteristics. Since all images in the set are of the same object, consecutive
images are correlated to a large degree. The problem then is to compress this
large image set to a low-dimensional representation of object appearance.

A well-known image compression or coding technique is based on principal
component analysis, also known as the Karhunen-Loéve transform [32] [9]. It uses
the eigenvectors of an image set as orthogonal bases for representing individual
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images in the set. Though a large number of eigenvectors may be required for
very accurate reconstruction of an object image, only a few are generally suffi-
cient to capture the significant appearance characteristics of an object, as shown
in [42][43]. These eigenvectors constitute the dimensions of what we refer to as
the eigenspace. From the perspective of machine vision, the eigenspace has an
attractive property. If any two images from the set are projected to the eigen-
space, the distance between the corresponding points in eigenspace is the best
approximation to correlation between the images.

We have proposed a continuous and compact representation of object appear-
ance that is parametrized by the variables, namely, object pose and illumination.
This representation is referred to as the parametric eigenspace [18][19]. We have
shown that parametric eigenspaces are useful not only for object recognition but a
variety of other vision tasks. In object recognition, first an image set of the object
is obtained by varying pose and illumination in small increments. The image set
is then normalized in brightness and scale to achieve invariance to sensor magnifi-
cation and illumination intensity. The eigenspace for the image set is constructed
and all object images (learning samples) are projected to it to obtain a set of
points. These points lie on a manifold that is parametrized by pose and illumina-
tion. The manifold is constructed from the discrete points by spline interpolation
[19]. For the class of objects with linear reflectance models, we have analyzed the
effect of illumination on the structure of the manifold [26]. In was shown that,
in the case of an ideal diffuse object with arbitrary texture, three illumination
directions are sufficient to construct the entire illumination manifold. This result
drastically reduces the number of images required in the learning stage.

Recognition and pose estimation can be summarized as follows. Given an im-
age consisting of an object of interest, we assume that the object is not occluded
and can be segmented from the remaining scene. The segmented image region is
normalized in scale and brightness, such that it has the same size and brightness
range as the images used in the learning stage. This normalized image is pro-
jected to eigenspace. The closest manifold reveals the identity of the object and
exact position of the closest point on the manifold determines pose and illumi-
nation direction. Two different techniques have been tested for determining the
closest manifold point, one is based on binary search [30] and other uses an input-
output mapping network [15]. We have achieved further speed-up in recognition
by developing a comprehensive theory and a novel algorithm for pattern rejection
[1].

Will appearance representation suffice? Given the large number of parameters
that affect appearance, it does not suggest itself as a replacement for shape repre-
sentation. In fact, our experiments on recognition and robot tracking show that
appearance models are in many ways complementary to shape models. Appear-
ance representation proves extremely effective when the task variables are few; it
is efficient and circumvents time-consuming and often unreliable operations such
as feature detection. On the other hand, when occlusion effects are not negli-
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gible, shape models offer solutions in the form of partial matching that is more
challenging in the case appearance matching [22].

Parametric appearance models have been applied to a variety of problems
besides object recognition, such as, illumination planning for robust recognition
[20] [21], visual positioning and tracking [25], and temporal inspection of complex
parts [27]. These applications have demonstrated that the techniques underlying
appearance modeling and matching are general. This has motivated us to develop
a comprehensive software package [31] for appearance matching that is presently
being used at several research institutions. We conclude with a brief discussion
on the salient features of appearance matching and our most recent results on the
topic.

2. COMPUTING APPEARANCE MODELS

We begin by presenting a general procedure for acquiring appearance models. In
subsequent sections, this procedure is applied to a few vision problems.

2.1. THE VISUAL WORKSPACE

Each appearance model is parametrized by the variables of the vision task at hand.
In the case of object recognition, these could include object pose and illumination
parameters. If the objects are non-rigid, deformation parameters would serve as
additional variables. In the case of visual tracking applications, the coordinates of
a hand-eye system with respect to a moving object would be pertinent variables.
Without loss of generality, we define the variables of a vision task as the visual

degrees of freedom (DOF):

q = [q17qQ7 """ 7qm]T (1)

where m is the total number of DOF at work. For any vector q, the vision sensor
produces an image vector:

1= [i17i27 """ 7iN]T (2)

In a given application, q has lower and upper bounds and its continuous set
of values within these bounds map to a continuous domain of images i(q). This
range of appearances is what we refer to as the visual workspace of the task. Our
approach is to acquire an image set by coarsely sampling the visual workspace
and then produce a compact representation of the image set that can be used not
only to recognize the discrete appearances in the image set but also those that
lie in between the ones in the set, i.e. a continuous representation of the entire
visual workspace.

To achieve scale invariance we force all images in an acquired image set to
be of the same size. For instance, in a recognition task an object region is seg-
mented from the scene and scale normalized [18] to fit a predetermined image
size. This ensures that the recognition system is invariant to magnification, i.e.
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the distance of the object from the image sensor. It is also desirable that appear-
ance representation and recognition be unaffected by variations in the intensity
of illumination or the aperture of the imaging system. This can be achieved by
normalizing each acquired image such that the total energy contained within is
unity: i; = i;/|[ i |].

Let the number of discrete samples obtained for each degree of freedom ¢; be

R;. Then the total number of images is M = H}Zl R;. The complete image set

{iy, oo, bar e, (3)

can be a uniform or non-uniform sampling of the visual workspace.

y ptepmmhmﬂbmmy%dobsiéhtness images (bar-

~and brightness normalizations). Alternatively, processed images

hed images, first derivatives, second derivatives, Laplacian, or even

sctrum of each image may be used instead. In applications that

sensors, the images could be range maps. The image type is se-

on its ability to capture distinct appearance characteristics of the

e. Here, for the purpose of description we use raw brightness im-

in mind that appearance models can in principle be constructed for
e.

'TING EIGENSPACES

set tend to be correlated to a large degree since visual displacements
scutive images are small. The obvious step is to take advantage of
ress the large set to a low-dimensional representation that captures
rance characteristics of the visual workspace. A suitable compression
ased on principal component analysis [32], where the eigenvectors of
are computed and used as orthogonal bases for representing individ-
rincipal component analysis has been previously used in computer
ving basis functions for feature detection [12] [13], representing hu-
ges [42], and recognizing face images [43] [34]. Though, in general,
ctors of an image set are required for perfect reconstruction of any
ge, only a few are sufficient for visual recognition. These eigenvec-
> the dimensions of the eigenspace, or image subspace, in which the
ace is compactly represented.

average ¢ of all images in the set is subtracted from each image.
sure that the eigenvector with the largest eigenvalue represents the
nsion in which the variance of images is maximum in the correlation
r words, it is the most important dimension of the eigenspace. An
is constructed by subtracting ¢ from each image and stacking the
ors column-wise:

pc {il —c, iy — ciM.m.g:} (4)
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P is NxM, where N is the number of pixels in each image and M is the total
number of images in the set. To compute eigenvectors of the image set we define
the covariance matriz:

QsPP! (5)

Qis N X N, clearly a very large matrix since a large number of pixels constitute
an image. The eigenvectors e, and the corresponding eigenvalues Ap of Q are
determined by solving the well-known eigenstructure decomposition problem:

Arer = Qe (6)

Calculation of the eigenvectors of a matrix as large as Q is computationally
intensive. Fast algorithms for solving this problem have been a topic of active
research in the area of image coding/compression and pattern recognition. A
few of the representative algorithms are summarized in Appendix A. In some of
our systems we have used a fast implementation [31] of the algorithm proposed
by Murakami and Kumar [16] and in others the STA algorithm of Murase and
Lindenbaum [17]. On a Sun IPX workstation, for instance, 20 eigenvectors of a
set of 100 images (each 128x128 in size) can be computed in about 3 minutes, and
20 eigenvectors of a 1000 image set in less than 4 hours. Workstations are fast
gaining in performance and these numbers are expected to diminish quickly.

The result of eigenstructure decomposition is a set of eigenvalues { Ay | & =

oK} where { Ay > Ay > ... > Ak }, and a corresponding set of orthonor-
mal eigenvectors {e; | & = 1,2,..., K }. Note that each eigenvector is of size N,
i.e. the size of an image. These K eigenvectors constitute our eigenspace; it is
an approximation to a complete Hilbert space with N dimensions. A variety of
criteria have been suggested for selecting K for any given image set [32]. In most
of our applications, we have found eigenspaces of 20 or less dimensions to be more
than adequate.

2.3. PARAMETRIC EIGENSPACE REPRESENTATION

Each workspace sample ij in the image set is projected to eigenspace by first
subtracting the average image ¢ from it and finding the inner product of the
result with each of the K eigenvectors. The result is a point f; in eigenspace:

f; = [e1, ez, ....ex ] (i — ¢) (7)

By projecting all images in this manner, a set of discrete points is obtained.
Since consecutive images are strongly correlated, their projections are close to
one another. Hence, the discrete points obtained by projecting all the discrete
samples of the workspace can be assumed to lie on a manifold that represents a
continuous appearance function. The discrete points are interpolated to obtain
this manifold. In our implementation, we have used a standard quadratic B-spline
interpolation algorithm [41]. The resulting manifold can be expressed as:

f(q) = f(q,92, 2 qm) (8)
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It resides in a low-dimensional space and therefore is a compact representation
of appearance as a function of the task DOF q. The exact number of task DOF
is of course application dependent. It is worth pointing out that multiple visual
workspaces (for instance, multiple objects in a recognition task) can be represented
in the same eigenspace as set of manifolds F'={f' £, ..... ,fP}. In this case, the
eigenspace is computed using image sets of all the visual workspaces. The above
representation is called the parametric eigenspace.

2.4. CORRELATION AND DISTANCE IN EIGENSPACE

Before we proceed to describe appearance recognition, it is worthwhile to discuss
some relevant properties of the eigenspace representation. Consider two images
i, and 1, that belong to the image set used to compute an eigenspace. Let the
points f,,, and f,, be the eigenspace projections of the two images. It is well-known
in pattern recognition theory [32] that each of the images can be expressed in
terms of its projection:

N
1, = meiei + c (9)
=1
where ¢ is once again the average of the entire image set. The above expression
simply states that the image i, can be exactly represented as a weighted sum
of all N eigenvectors of the image set. The individual weights f,,; are the co-
ordinates of the point f,,. Note that our eigenspaces are composed of only K
eigenvectors. Since these correspond to the largest eigenvalues, they represent the
most significant variations within the image set. Hence, i, can be approximated
by the first K terms in the above summation:

K

i & Y fmiei + ¢ (10)

=1

As a result of the brightness normalization described in section 2.1, i, and
i, are unit vectors. The similarity between the two images can be determined
by finding the sum-of-squared-difference (SSD) between brightness values in the
images. This measure is extensively used in machine vision for template matching,
establishing correspondence in binocular stereo, and feature tracking in motion

. . . . . ¢ T
estimation. It is known that SSD is related to correlation 1,, 1, between the
images as:

|| im_in ||2 = (im_in)T(im_in) (11)

: Ty
= 2 - 21, 1,

Maximizing correlation, therefore, corresponds to minimizing SSD and thus max-
imizing similarity between the images. Alternatively, the SSD can be expressed



138 NAYAR, MURASE, AND NENE

in terms of the eigenspace points f,, and f,, using (10):

K K
|| i — in ||2 ~ || Z Jmiei — Z Iniei ||2 (12)
=1 1=1

The right-hand side of the above expression can be simplified to obtain:

K K
|| mezez - anzez ||2

K
=1
= || £, — 1, ||2 (13)

The last simplification results from the eigenvectors being orthonormal; e; e; =
1 when ¢ = j, and 0 otherwise. From (12) and (13), we get:

|| im - in ||2 ~ || fm — n ||2 (14)

The above relation implies that the square of the Euclidean distance between
points f,, and f, is an approximation to the SSD between images im and in
In other words, the closer the projections are in eigenspace, the more highly
correlated are the images. This property of the eigenspace makes it appealing
from the perspective of computational vision, where, correlation is frequently
used as a measure of similarity between images.

3. IMAGE RECOGNITION

Our goal here is to develop an efficient method for recognizing an unknown input
image i.. A brute force solution would be to compare the input image with
all images corresponding to discrete workspace samples. Such an approach is
equivalent to exhaustive template matching. Clearly, this is impractical from a
computational perspective given the large number of images we are dealing with.
Further, the input image i may not correspond exactly to any one of the images
obtained by sampling the visual workspace; i may lie in between discrete samples.

The parametric eigenspace representation enables us to accomplish image
matching in a very efficient manner. Since the eigenspace is optimal for computing
correlation between images, we can project the current image to eigenspace and
simply look for closest point on the appearance manifold. Image recognition pro-
ceeds as follows. We will assume that i, has already been normalized in scale and
brightness to suit the invariance requirements of the application. The average c
of the visual workspace is subtracted from i, and the resulting vector is projected
to eigenspace to obtain the point:

f. = [e1, ez .yer ] (i — ©) (15)

The matching problem then is to find the minimum distance d,. between f. and

the manifold f(q):

min

d. ="q [ f. = f(q) || (16)
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If d, is within some pre-determined threshold value (selected based on the noise
characteristics of the image sensor), we conclude that i. does belong to the appear-
ance manifold f. Then, parameter estimation is reduced to finding the coordinate
q. on the manifold corresponding to the minimum distance d,. In practice, the
manifold is stored in memory as a list of K-dimensional points obtained by densely
resampling f(q). Therefore, finding the closest point to f. on f(q) (or even a set
of manifolds, #') is reduced to the classical nearest-neighbor problem.

4. FINDING THE CLOSEST MANIFOLD POINT

Mapping an input image to eigenspace is computationally simple. As mentioned
earlier, the eigenspaces are typically less than 20 in dimensions. The projection
of an input image to a 20-D space requires 20 dot products of the image with
the orthogonal eigenvectors that constitute the space. This procedure can easily
be done in real-time (frame-rate of a typical image digitizer) using simple and
inexpensive hardware. What remains to be addressed is an efficient way of finding
the closest manifold point. One approach is to use an exhaustive search algorithm.
This is clearly inefficient both in memory and time; all the sampled manifold
points need to be stored, and the distance of the input point with respect to each
manifold point must be computed. The computational complexity is O( K n)
where n is the number of manifold points and K is the dimensionality of the
eigenspace.

We have implemented two alternative schemes. The first is an efficient tech-
nique for binary search in multiple dimensions [30]. This algorithm uses a carefully
designed data structure to facilitate quick search through the multi-dimensional ei-
genspace in O( klogz n). This approach is particularly effective when the number
of manifold points is relatively small. The second approach [15] uses three-layered
radial basis function (RBF') networks proposed by Poggio and Girosi [36] to learn
the mapping between input points and manifold parameters (object number and
pose). The complexity of the network approach depends on the number of net-
works used and their sizes. In [15] a new framework is introduced that uses the
wavelet integral transform for finding the smallest RBF network to accomplish
any given input-output mapping. The performance of the network based scheme
is generally comparable to that of the binary search approach. The network im-
plicitly interpolates, or reconstructs, manifolds from the discrete eigenspace points
f; and therefore does not require the use of spline interpolation followed by the
resampling of manifolds. This advantage however comes with a slight sacrifice in
parameter estimation accuracy [15].

5. OBJECT RECOGNITION AND POSE ESTIMATION

We have used appearance models for 3-D object recognition and pose estimation
[18] [19]. During model acquisition, each object is placed on a computer-controlled
turntable (see Fig.1) and its pose is varied about a single axis, namely, the axis
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Figure 1: Setup used to automatically acquire object appearance models for recog-
nition and pose estimation. The object is placed on a motorized turntable.

of rotation of the turntable. Most objects have a finite number of stable con-
figurations when placed on a planar surface. For such objects, the turntable is
adequate as it can be used to vary pose for each of the object’s stable config-
urations. The object is illuminated by the ambient lighting of the environment
that is expected to remain more or less unchanged between model acquisition
and recognition stages. This ambient illumination is of relatively low intensity.
The main source of brightness is an additional light source whose direction can
vary. Illumination is varied using a 6 DOF robot manipulator (see Fig.1) with a
light source mounted on its end-effector. Images of the object are sensed using
a 512x480 pixel CCD camera and digitized using an Analogics frame-grabber
board. Fig.2 shows four toys and their respective appearance models. For each
object, 90 poses and 5 source directions were used (a total of 450 images, each
128x128 pixels in size after segmentation and scale normalization). The manifolds
reside in 10-D eigenspaces and are parameterized by a single pose parameter 6;
and a single illumination direction parameter 6.

Several experiments were conducted to verify the accuracy of recognition and
pose estimation [19]. For the four objects in Fig.2. a total of 1080 test images were
used. These images were taken at object poses that lie in between the ones used to
obtain the learning samples. We define recognition rate as the percentage of test
images for which the object in the image is correctly recognized. Figs.3(a) and
(b) summarize the recognition results for the four objects. Fig.3(a) illustrates the
sensitivity of recognition rate to the number of eigenspace dimensions. Clearly,
the discriminating power of the eigenspace is expected to increase with the number
of dimensions. The recognition rate is found to be poor if less than 4 dimensions
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Figure 2: (a) Four objects and (b) their parametric appearance manifolds (from
[19]). The manifolds reside in 10-D eigenspace but are displayed here in 3-D.
They are parametrized by object pose (61) and illumination direction (83).
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are used but approaches unity as the dimensionality is increased to 10.

Fig.3(b) shows the relationship between recognition rate and the number of
poses used for each object. If the pose increments used in the learning stage are
small, we obtain a larger number of learning samples and hence a larger number
of discrete points on the parametric manifold. Since each manifold is obtained by
interpolating these discrete points, the accuracy of the manifold representation
increases with the number of learning poses used. For the four objects, 30 poses
of each object (12 degree increments of the turntable position) are sufficient to
obtain recognition rates close to unity. If a smaller number of learning poses are
used, recognition tends to be unreliable when the test images correspond to poses
that lie in between the learning poses.

The 1080 test images of the four objects were also used to determine the ac-
curacy of pose estimation. Since these images were taken using the controlled
turntable, the actual pose in each image is known. Figs.3(c) and (d) show his-
tograms of pose errors (in degrees) computed for the 1080 test images. In Fig.3(c),
450 learning samples (90 poses and 5 source directions) were used to compute an
8-D eigenspace. In Fig.3(d), 90 learning samples (18 poses and 5 source directions)
were used. The pose estimation results in both cases are found to be very accu-
rate. In the first case, the average absolute pose error computed using all 1080
images is 0.5 degrees, while in the second case the average error is 1.0 degree.
The sensitivity of recognition to image noise and segmentation error is analyzed
in [21].

6. AUTOMATED REAL-TIME RECOGNITION SYSTEM

Based on the above results, we implemented a recognition system with 20 objects
in its database (see Fig.4). These objects vary from smoothly curved shapes
with uniform reflectance, to fairly complex shapes with intricate textures and
specularities. Developing CAD models of such objects could prove extremely
cumbersome and time consuming. Both learning and recognition are done in a
laboratory environment where illumination remains more or less unchanged. As
a result, appearance manifolds are reduced to curves parametrized by just object
pose. Each object image set includes 72 learning images (5 degree increments
in pose), resulting in a set of 1440 images. The object appearance curves were
constructed in a 20-D eigenspace. The entire learning process, including, image
acquisition, computation of eigenvectors, and construction of appearance curves
was completed in less than 12 hours using a Sun SPARC workstation.

The recognition system automatically detects significant changes in the scene,
waits for the scene to stabilize, and then digitizes an image. In the present im-
plementation, objects are presented to the system one at a time and a dark back-
ground is used to alleviate object segmentation. The complete recognition process,
including, segmentation, scale and brightness normalization, image projection in
eigenspace, and search for the closest object and pose is accomplished in less than
1 second on the Sun workstation. The robustness of this system was tested using
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Figure 3: Recognition and pose esltimation resulls for the object sel shown in
Fig.2 (from [19]). (a) Recognition rate plotted as a function of the number of
eigenspace dimensions used. (b) Recognition rate plotted as a function of the
number of discrete poses of each object used in the learning stage. In both cases
recognilion rates were computed using 1080 lest images that differ from the ones
used for learning. Histogram of error in computed object pose when (c) 90 poses
are used for learning and (d) 18 poses used for learning. The average absolute
pose error is 0.5 degrees in the first case and 1.0 degree in the second case.
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320 test images of the 20 objects taken at randomly selected but known poses of
the objects. All test images were correctly identified by the system. A histogram
of the absolute pose error is shown in Fig.4(c); the average and standard devia-
tion of the absolute pose error were found to be 1.59 degrees and 1.53 degrees,
respectively.

Recently, we have extended the capability of the above system [28]. It now
includes 100 objects in its database and uses as input vectors the three bands
of a color image sensor. This allows the system to distinguish between objects
that are identical in shape but differ in spectral characteristics. In addition,
the segmentation algorithm was modified to ensure that multiple objects (not
occluding one another) can be placed in the scene and recognized simultaneously.
The system is now operational and is being constantly interacted with by passers-

by.

7. STRUCTURAL PROPERTIES OF APPEARANCE MANIFOLDS

In the context of large systems, the primary bottleneck in appearance matching
could turn out to be the learning stage which includes the acquisition of large im-
age sets, the computation of eigenspaces from large covariance matrices, and the
construction of parametric appearance manifolds. As described in the previous
section, each object is represented as a separate manifold in eigenspace that is
parametrized by pose and illumination parameters. The efficiency of the learning
stage is determined by the number of sample images needed to compute an accu-
rate appearance manifold. This brings us to the following question: What is the
smallest number of images needed for constructing the appearance manifold for
any given object?

The answer lies in the structural properties of appearance manifolds. The
structure of an object’s manifold is closely related to its geometric and reflectance
properties. In special cases, such as solids of high symmetry and solids of rev-
olution, one can make concrete statements regarding the dimensionality of the
manifold. For instance, given a fixed illumination direction and viewpoint, the
manifold for a sphere of uniform reflectance is simply a point since the sphere
appears the same in all its poses. This unfortunately is an extreme instance of
little practical value. Under perspective projection, the relation between object
shape and manifold structure is complex to say the least. A general expression
that relates object pose to manifold structure would be much to hope for.

In contrast, the function space associated with object reflectance is more con-
cise and hence conducive to analysis. It is possible to establish, under certain
reflectance assumptions, a closed-form relationship between illumination param-
eters and manifold structure [26]. Given that the eigenspaces we use are linear
subspaces, the class of linear reflectance functions [35][40] is of particular interest
to us. It turns out that for this reflectance class the structure of the illumina-
tion manifold is completely determined from a small number of samples of the
manifold. In particular, for Lambertian surfaces of arbitrary texture, the en-
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Figure 4: A real-time recognition system with 20 objects in the database [19]. A
complete recognilion and pose estimalion cycle takes less than 1 second on a Sun
IPX workstation without the use of any customized hardware.
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tire illumination manifold can be constructed from just three images taken using
known illuminants. Alternatively, the dimensionality of the illumination manifold
is exactly 3. This result is supported by a detailed empirical investigation reported
recently in [8]. In [26] we use the above bound on the manifold dimensionality to
show that novel images of the object can be recognized from just three projections
on the illumination manifold without the explicit construction of the manifold.
In addition, the validity of the above results for illumination by multiple sources
and in the presence of interreflections caused by concave surfaces is demonstrated.
This last property results from the fact that a concave Lambertian surface with
all its interreflections behaves exactly like another Lambertian surface without
interreflections but with a different set of normals and albedo values [24].

For ideal diffuse objects, these results have direct implications on the efficiency
of both learning and recognition, as they dramatically reduce the number of images
needed for appearance representation. These results stem from the observation
that the image of a diffuse object under any illumination can be expressed as
a linear combination of images taken using three independent basis illuminants.
Such a linear combination does not generally exist for objects with nonlinear
reflectance functions. For instance, a pure specular object would produce only
strong highlights for each of the basis illuminants. The highlights produced by a
novel source cannot in general be expressed as a linear combination of basis images.
In fact, it is hard to envision non-trivial upper bounds on the dimensionality of a
vector space containing illumination manifolds for the class of nonlinear reflectance
functions.

8. ILLUMINATION PLANNING FOR OBJECT RECOGNITION

In structured environments, vision systems are used to perform a variety of tasks,
such as, inspect manufactured parts, recognize objects and sort them, or aid a
robot in assembly operations. In each of these cases, the illumination of the
environment can be selected to enhance the reliability and accuracy of the vision
system. For instance, the robustness of the recognition system described in section
5 can be maximized by selecting a source direction that makes the objects of
interest maximally different from each other in the correlation sense [20] [21].
Consider two objects, say p and ¢, from the set used to compute the eigenspace.
For each light source direction [, we compute parametric curves for the two objects:

£,(?) (6 (p) ) and £,(@ ( 9, ) (17)

Here, the parameters 6, (#) and 6,9 represent the poses of p and ¢, respectively.
The shortest Euclidean distance between the two curves in eigenspace is computed
as:

d, (P = 91<51,I§1<q> I £,(?) (01(7“)) . (Ol(q)) I (18)

The 6;®) and 6; (9 values that produce the minimum distance dl(p’q), correspond to
poses of the two objects for which the objects appear most similar (in correlation)
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when illuminated by source [ (see Fig.5). The illumination planning problem is
formulated as follows: Find the source direction [ that maximizes the minimum
distance d;(™? between the object curves. This maz-min strategy yields the safest
illumination direction for the worst case poses that make the two objects appear
most similar.

The above example includes only two objects. The maz-min strategy is easily
extended to a set of P objects. For a given illumination direction I, we now have
P curves in eigenspace. The minimum distance 4,9 is computed for all pairs of
objects, resulting in P? minimum distances. The minimum of all these distances,
say d;, represents the worst case for the entire object set. The source direction
[ that maximizes d; is then the optimal source direction for the object set. Fig.5
shows eigenspace curves of two objects used in our experiments [21], for a particu-
lar illumination direction. The solid line segment illustrates the shortest distance
between the two curves. If in a particular application the poses of the objects
are fixed, the eigenspace representation of each object, for a given illumination, is
reduced from a curve to a point. In that case, the optimal source direction maxi-
mizes the minimum distance between points in eigenspace that represent different
objects. In [20], the above planning strategy was used to optimize the robustness
of a recognition system similar to the one described in section 5.

Figure 5: Paramelric eigenspace curves of two different objects oblained for a
given illumination direction [21]. The shortest distance (thick line segment) be-
lween the two curves represents the worst case poses for which the objecls appear
most similar in the correlation sense. The optimal illumination maximizes the
minimum distance between all pairs of object appearance manifolds.
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Though we have posed the planning problem as one of finding the optimal
source direction, several other source characteristics such as size, distance, and
spectral distribution, can be incorporated into the planning process. For instance,
in [20] optimization of illumination color is described and demonstrated. The plan-
ning approach can also be used to simultaneously optimize multiple parameters.
The only requirement is that these parameters be varied during the acquisition
of the planning image set. Clearly, for multiple parameters, acquiring image sets,
computing parametric eigenspaces, and determining the optimal parameter values
can be time consuming. The planning method tends to prove impractical when
more than three illumination parameters need to be jointly optimized. A small
number of parameters, however, can be easily accommodated since illumination
planning is typically done off-line and only once. As a result, it is generally not
subject to severe time constraints.

9. ROBOT POSITIONING AND TRACKING

For a robot to be able to interact in a precise and intelligent manner with its
environment, it must rely on sensory feedback. Vision serves as a powerful com-
ponent of such a feedback system. It can enable a manipulator to handle task
uncertainties, react to a varying environment, and gracefully recover from failures.
A problem of substantial relevance to robotics is visual servoing; the ability of a
robot to either automatically position itself at a desired location with respect to
an object, or accurately follow an object as it moves along an unknown trajectory.

The parametric appearance representation has been used to develop an effec-
tive solution to the visual servoing problem [25]. Our implementation uses the
hand-eye system shown in Fig.6. First, a sizable image window is selected that
represents the appearance of the object when the robot is in the desired posi-
tion. A large set of object images is then obtained by incrementally perturbing
the robot’s end-effector (hand-eye system) with respect to the desired position.
The appearance manifold in this case represents the mapping between camera
image and robot displacement, i.e. it is parametrized by the DOF of the robot
end-effector.

In a positioning or tracking application, each new image is projected to eigen-
space and the location of the projection on the manifold determines the robot
displacement (error) with respect to the desired position. This information is
relayed to the robot controller to drive it to the desired coordinates. In contrast
to most previous visual servoing schemes, positioning and tracking are achieved
without prior knowledge of the object’s shape or reflectance, the robot’s kinematic
parameters, and the vision sensor’s intrinsic and extrinsic parameters.

We have conducted several positioning experiments using the Adept robot and
hand-eye system shown in Fig.6. Fig.7(a) shows a printed circuit board. The box
shown is the image area (128x128 pixels) used for learning and positioning. Note
that the image is rather complex and includes a variety of subtle features. In
this experiment, robot displacements were restricted to two dimensions (z and
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<«—— Sensor

Gripper

A=

Figure 6: The hand-eye system used for visual servoing. The end-effector includes
a gripper, an image sensor, and a light source. Using the paramelric appearance
representation, real-lime servoing is accomplished without the use of CAD models.

y). A total of 256 images were obtained by moving the robot to 16x16 equally
spaced discrete points within a 2cm x 2cm region around the desired position. A
15-D eigenspace was computed using the 256 learning images and each image was
then projected to eigenspace and the resulting points were interpolated to obtain
a manifold with two parameters, namely, z and y (see Fig.7(b)). The complete
learning process including image acquisition, eigenspace computation, and mani-
fold interpolation took approximately 11 minutes on a Sun IPX workstation. The
parametric eigenspace is stored in memory as a set of 251x251 = 63001 points
obtained by resampling the continuous manifold. A robot displacement (z,y) is
stored with each manifold point.

Next, the accuracy of the positioning algorithm was tested. In these exper-
iments, the robot was displaced by a random distance from its desired position.
These random positions were uniformly distributed within the 2cm x 2cm region
used for learning. Note that the random positions are generally not the same as
any of the positions used while learning. The positioning algorithm was then used
to estimate the robot’s displacement from its desired position. This process was
repeated 1000 times, each time computing the distance (error) between the robot
location after positioning and the desired location. A histogram of positioning
errors is shown in Fig.7(c). The average of the absolute positioning error is 0.676
mm and standard deviation is 0.693 mm. The positioning accuracy was further
improved by simply using a larger number of learning images. Fig.7(d) shows the
error histogram for 21x21 (441) learning images obtained within the same 2cm
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x 2cm displacement region. In this case, the learning process was completed in
approximately 30 minutes. The average absolute error was found to be 0.151 mm
and standard deviation 0.107 mm. This reflects very high positioning accuracy,
sufficient for reliable insertion of a circuit chip into its holder. This task was in fact
accomplished with high repeatability using the gripper of the hand-eye system.

Similar experiments were conducted for the object shown in Fig.7(e). In this
case, however, three displacement parameters were used, namely, z, y, and 6
(rotation in the z-y plane). During learning the z and y parameters were each
varied within a +lcm range, and  within a £10 degree range for each (z,y)
displacement. A total of 11x11x11 (1331) learning images were obtained and a 5-
D eigenspace computed. The parametric eigenspace representation in this case is
a three-parameter manifold in 5-D space. In Fig.7(f) a projection of this manifold
is shown as a surface (z and y are the parameters, while § = 0) in 3-D. Again,
this reduced representation is used only for the purpose of display. The actual
manifold is stored in memory as a set of 65x65x65=274625 points.

Once again, 1000 random displacements were used in the positioning experi-
ments. The absolute Fuclidean positioning errors in z-y space are illustrated by
the histogram in Fig.7(g). An average absolute error of 0.291 mm and standard
deviation of 0.119 mm were computed. The absolute errors for # were computed
separately and found to have a mean value of 0.56 degrees and deviation of 0.45
degrees. These results again indicate high positioning accuracy. Fig.7(h) indicates
that positioning accuracy is only marginally improved for this particular object
by doubling the eigenspace dimensionality. Here, 10 eigenvectors were computed
to obtain a more descriptive representation of object appearance at the cost of
additional memory usage. The positioning errors have a mean of 0.271 mm and
deviation of 0.116 mm, and the angular errors a mean of 0.44 degrees and devia-
tion of 0.33 degrees. This accuracy was verified by successful insertions of a peg
in the hole of the object.

10. SLAM: A SOFTWARE LIBRARY FOR APPEARANCE MATCHING

As is evident from the above results, the parametric eigenspace representation
can serve as the basis for solving a variety of real-world vision problems. In
view of this, a software package named SLAM [31] was developed as a general
tool for appearance modeling and recognition problems. The package is coded in
C++ and uses advanced object-oriented programming techniques to achieve high
space/time efficiency. It has four primary modules: image manipulation, sub-
space computation, manifold generation, and recognition. Image manipulation
includes image segmentation, scale and brightness normalization, image-vector
conversions, and tools for maintaining large image databases. Subspace computa-
tion, the second module, computes eigenvectors and eigenvalues of large image sets
using the approach outlined in [16]. The manifold generation module can be used
for projecting image (or feature) sets to subspaces, B-spline interpolation [41] of
subspace projections to produce multivariate manifolds, dense resampling of man-
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Figure 7: Visual positioning experiments (from [25]). (a) Printed circuit board.
The image window (white box) shown was used for learning and positioning. (b)
Paramelric appearance representation of the visual workspace displayed in 3-D.
Robot displacements are in lwo dimensions (z and y). Histograms of absolule
positioning error (in mm) for (c) 256 learning images and (d) 441 learning images.
(e) Object with hole and slot. (f) Parametric appearance representation displayed
in 3-D. Displacements are in three dimensions (z, y, 0). Histograms of absolute
positioning error (in mm) for (g) 5-D eigenspace and (k) 10-D eigenspace.
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ifolds, and orthogonalization [11] of multiple subspaces. Finally, the recognition
module includes efficient search implementations [30] that find manifold points
that lie closest to novel input projections. All four modules can be accessed via
an intuitive graphical interface built on X/Motif. SLAM has been licensed to
several academic and industrial research institutions.

e _xmanifold (]
e Vew Oplions Holp |
Project. ..
vector Set: | obj um
Average Vecto |emie_av  Choose... I
Eigen Veclors: | eigen.evc gﬁmﬂl
Number of Eigen Vectors: | 10 n vI
7 Use Average Vector
Projections in Memory
Selection
0K Cancel
SLAM - Sameer A. Nene, Shree K. Nayar, Hiroshi Murase

Figure 8: The SLAM software package [31] is developed as a general tool for
appearance modeling and recognition problems in vision.

11. DISCUSSION

In this section, we briefly discuss several issues related to the proposed learning
and recognition scheme. Some of these may be viewed as merits while others as
limitations that suggest research problems for the future (also see [19]).

¢ Appearance Based Approach: Both learning as well as recognition are
done using just two-dimensional images. This is in strong contrast to tra-
ditional recognition algorithms that require the extraction of geometric fea-
tures such as edges, lines, or geometric invariants. Such geometric features
are often difficult to compute with robustness, and reliable algorithms for
extracting them from images are still being actively researched. Qur ap-
proach of using raw image data directly, without any significant low-level
or mid-level processing, is a major advantage of the proposed approach. As
stated earlier, this approach itself is not limited to brightness images and
can be directly applied to processed images as well. For that matter, any



6. PARAMETRIC APPEARANCE REPRESENTATION 153

sensing modality (color, infrared, range, etc.) that captures the primary
visual features of a task may be used. The input vectors could even be
locations and properties of features computed in images. The integration of
the present scheme with previously developed geometry based recognition
techniques is an interesting and open problem.

e Shape and Reflectance: An appealing feature of the proposed scheme is
that it does not require any knowledge of the shape and reflectance prop-
erties of objects. By varying object pose and illumination (or end-effector
coordinates in servoing applications), we capture the combined effect of both
shape and reflectance. In addition, the appearance for any given pose and
illumination may include specular highlights and complex interreflections
between points on the object surface. All of these phenomena together pro-
duce the overall appearance of the object. Since it is appearance itself that
we are representing, such phenomena need not be modeled or analyzed in
isolation.

¢ Segmentation and Occlusion: We have seen that applications such as
visual positioning and tracking are often not confronted with the problems
of segmentation and occlusion. In such cases, it is assumed that the manip-
ulator is close to the desired position and hence a fixed image window may
be used that is more or less guaranteed to lie within the confines of the ob-
ject of interest. In object recognition, learning and classification require the
segmentation of object regions. In structured environments, the background
can be controlled, in which case, simple thresholding is sufficient for robust
segmentation. In the case of moving objects, simple background subtraction
algorithms can be effective for segmentation [19]. In the context of general
scenes, however, segmentation poses serious problems. The method, as de-
scribed here, also requires that the objects not be occluded. Since it is based
on direct appearance matching, it cannot handle substantial degrees of oc-
clusion. Segmentation and occlusion therefore present challenging research
directions for appearance based recognition. Our initial investigation of this
topic has resulted in a technique that performs partial matching followed by
appearance voting [22].

¢ Computations for Learning: For problems that involve multiple work-
spaces (as in object recognition) or a large number of workspace parameters,
the appearance manifolds can be expensive to compute both in time and
memory requirements. It is therefore not a viable approach for the general
recognition problem faced in entirely unstructured environments. However,
as we have seen, it can prove as a practical approach for a variety of well-
defined applications that involve a small number of parameters. Using any
popular workstation, problems that involve three or less parameters can be
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handled with ease. Needless to say, the power and versatility of appear-
ance matching is commensurate with the performance of the machine it
is executed on. Its application domain therefore can be safely expected to
broaden with time. Further, when assumptions regarding surface reflectance
are feasible, we have shown that upper bounds on the dimensionality of the
appearance manifold can be derived and the learning samples reduced [26].

Computations for Recognition: Though the learning process poses large
memory requirements and is computationally intensive, it is done off-line.
The time taken to learn a visual workspace is generally not as crucial as
the time needed for image recognition. In contrast to learning, recognition
and parameter estimation are simple and computationally very efficient,
requiring only the projection of the input image to eigenspace and search
for the closest manifold point. Recognition of 100 or more objects can
therefore be accomplished in real-time (frame-rate of 30 Hz) using simple
and inexpensive hardware [28]. In contrast, most 3-D CAD model based
recognition algorithms are too slow for practical applications. The simplicity
and efficiency of appearance matching makes it an attractive approach for
a variety of real-world applications.

Efficient Pattern Rejection: Despite the inherent efficiency of appear-
ance matching, the present approach has complexity that at times is linear
in the number of manifolds stored in the database. Recently, it was shown
that the notion of pattern rejection [1] can be used to very quickly eliminate
a large fraction of classes (manifolds) stored in the database. The result
is a small set of candidates that can be viewed as a substantially reduced
database for the input vector (pattern) in question. This theory of pat-
tern rejection is applicable to not only appearance matching but in fact a
large variety of well-known classification problems. It can be viewed as a
complementary precursor to pattern recognition.

Generalized Feature Detection: A large number of local visual features
are parametric in nature, including, edges, lines, corners, and junctions. The
concept of appearance matching can be used as a general framework for the
design and implementation of detectors for parametrized features [29]. For
robustness, the features are modeled in detail to precisely capture their ap-
pearances in the physical world. In addition, optical and sensing artifacts
are incorporated to achieve realistic feature models in image domain. Each
feature is then represented as a densely sampled parameterized manifold
in Hilbert space. The concepts of parameter reduction by normalization,
dimension reduction, pattern rejection, and efficient search are employed to
achieve compact feature manifolds and efficient detection. Detectors have
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been implemented [29] for five specific features, namely, step edge, roof edge,
line, corner, and circular disc. The tools discussed in this chapter have al-
lowed us to generate all five of these detectors using the same procedure by
simply inputing different feature models. Detailed experiments on the ro-
bustness of detection and the accuracy of parameter estimation are reported
in [29].

APPENDIX

A. COMPUTING EIGENVECTORS OF LARGE IMAGE SETS

Let P be an N x M image matrix, where M is the total number of images and N
the number of pixels in each image. We are interested in finding the eigenvectors
of the covariance matrix Q = PPT, an NxN matrix. The calculation of the
eigenvectors of such a large matrix is computationally intensive. Fast algorithms
for solving this problem have been a topic of active research in the area of image
coding and compression. Here, we briefly describe three algorithms. We refer
to these as the conjugate gradient, singular value decomposition, and spatial
temporal adaptive algorithms. Each algorithm may be viewed as a modification
of the previous one. The first two of these algorithms are described in detail in

[32].
Conjugate Gradient:

A practical approach to computing the eigenvectors of large matrices is to use
iterative methods. A reasonably efficient iterative scheme that suggests itselfis the
conjugate gradient method. There are several variations to the conjugate gradient
approach [45]. The problem is formulated as one of finding the eigenvalues and
eigenvectors that maximize a scalar function. A function that is often used is the
Raleigh quotient F'(e):

(e'Qe)

F(e) = Ty (19)

Conjugate gradient is used to find the vector e; that maximizes F. The cor-
responding value of the Raleigh quotient, F(ey), is the largest eigenvalue A; of
the covariance matrix Q. Once the largest eigenvalue and the corresponding
eigenvector are computed in this manner, Q is modified to remove the dimension
associated with the computed eigenvector. The Raleigh quotient is then used
with the modified covariance matrix to determine the next largest eigenvalue and
corresponding eigenvector. The iterative modification of Q can be summarized
as:

Q = Q
QS = Qs—l — As—1€5_1 es—lT (20)

The above procedure can be repeated until a desired number of eigenvectors of Q
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are computed. Since in our case Q is a very large matrix (N X N), each iteration
of the conjugate gradient algorithm can prove expensive.

Singular Value Decomposition:

If the number of images M is much smaller than the number of pixels N in each
image, a much more efficient algorithm may be used. This algorithm, described
by Murakami and Kumar [16], uses the implicit covariance matrix Q, where:

Q = PP (21)

Note that Q is an M x M matrix and therefore much smaller than Q when the
number of images in P is smaller than the number of pixels in each image. Using
the conjugate gradient algorithm described above, the M eigenvectors of Q can
be computed. These can be computed much faster than the first M eigenvectors
of Q due to the disparity in the sizes of the two matrices. Using singular value
decomposition (SVD), Murakami and Kumar [16] show that the M largest eigen-
values and the corresponding eigenvectors of Q can be determined from the M
eigenvalues and eigenvectors of Q as:

p ot

A=

7
o1

e, = A\ *Pe; (22)

Here, A; and e; are the ith eigenvalue and eigenvector of Q, while ;\Z and €; are

the ¥ eigenvalue and eigenvector of Q. Since we are only interested in the first &

eigenvectors of Q, where £ < M, the SVD algorithm can be used. It is not viable,

however, when more than M eigenvectors are needed.

Spatial Temporal Adaptive:

Murase and Lindenbaum [17] have proposed the spatial temporal adaptive
(STA) algorithm that takes the above SVD algorithm one step further to achieve
substantial improvements in computational efficiency. They observe that the com-
putation of Q from the image matrix P is itsell expensive. Therefore, each image
in P is divided into “blocks” and image data in each block is compressed using the
discrete cosine transform (DCT) [6]. Due to spatial correlation within an image,
each image block is typically represented by a small number of DCT coeflicients.
Further, blocks at the same location in consecutive images are often highly cor-
related and have the same DCT coefficients. A set of such blocks are referred to
as a “superblock” and is represented by the DCT coeflicients of a single block.
In this manner, the image matrix P is compressed to obtain a small number of
DCT coefficients. Individual elements of Q can then be computed from the DCT
coeflicients of the blocks and superblocks of P. This procedure of computing Q
saves substantial computations. Next, the conjugate gradient algorithm is used
to compute the eigenvalues and eigenvectors of Q. These eigenvalues and eigen-
vectors are used to compute the eigenvectors e; and eigenvalues A; of the original
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covariance matrix Q by applying the SVD technique (equation 22). This step
also requires the use of P which is now compressed using the DCT. Computations
are once again saved by determining e; in DCT domain and then transforming it
back to spatial domain using the inverse DCT.

Murase and Lindenbaum have compared the performance of the STA algo-
rithm with the conjugate gradient and SVD algorithms described previously.
Their results show the STA algorithm to be superior in performance to both
algorithms, often 10 or more times faster than the SVD algorithm.
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