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Abstract 
We propose an algorithm to  automatically construct 

feature detectors for arbitrary parametric features. To 
obtain a high level of robustness we advocate the use 
of realistic multi-parameter feature models and incor- 
porate optical and sensing effects. Each feature is rep- 
resented as a densely sampled parametric manifold in a 
low dimensional subspace of a Hilbert space. During de- 
tection, the  brightness distribution around each image 
pixel is projected into the subspace. If the projection 
lies sufficiently close to  the feature manifold, the feature 
is detected and the location of the closest manifold point 
yields the feature parameters. The  concepts of param- 
eter reduction by normalization, dimension reduction, 
pattern rejection, and heuristic search are all employed 
to  achieve the required efficiency. By applying the algo- 
rithm t o  appropriate parametric feature models, detec- 
tors have been constructed for five features, namely, step 
edge, roof edge, line, corner, and circular disc. Detailed 
experiments are reported on the robustness of detection 
and the accuracy of parameter estimation. 

1 Introduction 
Most applications in image processing and compu- 

tational vision rely on robust detection of image fea- 
tures and accurate estimation of their parameters. The  
standard example of a parametrized feature is the step 
edge [Nalwa93]. The  step edge, however, is by no 
means the  only feature of interest in image understand- 
ing. A comprehensive list would also include lines, cor- 
ners, junctions, and roof edges' as well as numerous 
others. Moreover, in any given application, the term 
feature may take on a meaning tha t  is specific t o  tha t  
application. For instance, in the inspection or recogni- 
tion of a manufactured par t ,  a subpart such as bolt may 
be the parametric feature of interest. In short, features 
may be too numerous to  justify the process of deriving 
a new detector for each one. Is i t  possible to  develop 
a single detection mechanism tha t  is applicable t o  any 
parametrized feature? 

'This research was supported in parts by ARPA Contract 
DACA-i6-92-C-007, DOD/ONR MURI Grant N00014-95-1-0601, 
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Research Laboratory. 

Given the extent to which feature detection has been explored, 
a survey of the work in this area is well beyond the scope of this 
paper. In our discussion, we only use examples of previous detec- 
tors without attempting to mention all of them. Further, we will 
be primarily interested in examples that use paramebric feature 
models rather than those based on differential invariants. 

This is exactly the objective of our work. We seek a 
general methodology for detecting parametric features. 
In addition to  feature detection, we also wish to  obtain 
precise estimates of the feature parameters., which if re- 
covered with precision, can be of vital importance to  
higher levels of visual processing. 

To obtain high performance in both detection and 
parameter estimation, it is essential t o  accuirately model 
the features as they appear in the physical world. Hence, 
we choose not to  make any simplifications for analytic 
or efficiency reasons, and instead use realistic multi- 
parameter feature models. Further, we give careful con- 
sideration to  the conversion of the continuous radiance 
function of the feature to  its discrete image produced by 
a sensor. Amongst other effects, we model the blurring 
caused by the optical transfer function of the imaging 
optics, and the spatial averaging which t a k s  places over 
each sensor pixel. 

A parametric model of the feature, together with 
knowledge of the imaging system, allow us t,o accurately 
predict the pixel intensity values in a windo'w about the 
imaged feature. If we regard the pixel values as real 
numbers, we can treat each feature as corresponding to  
a parameterized manifold in %N. Here, N is the num- 
ber of pixels in a fixed window surrounding the feature. 
In this setting, feature detection can be posed as finding 
the closest point on the manifold to  the point in !RN cor- 
responding to  the pixel values in a novel image window. 
If the closest manifold point is near enough to  the novel 
point, we register the presence of the feature. Then,  the 
exact location (parameters) of t,he closest manifold point, 
may be used to  estimate the scene parameters of the fea- 
ture. This statement of the feature detection problem 
was first introduced by Hueckel in [Hueckel 711. and was 
subsequently used by Humrnel [Hummel 791 amongst 
others. 

Hueckel and Hummel both argued thal. to  achieve 
high efficiency, a closed form solution must be found 
for ( the parameters of) the closest manifold point. To 
make their derivations possible they used siimplified fea- 
ture models. Our view of feature detection is radically 
different. We believe tha t  the features we wish to  detect 
are inherently complex visual entities. Hence, we will- 
ingly forego all hope of finding closed-form :solutions for 
the best-fit parameters. Instead, we discretiee the search 
problem by densely sampling the feature manifold. 

At first glance this may seem inefficient to  the 
point of impracticality. However, we will demon- 
strate tha t  our approach is very practical, through 
a combination of normalization, dimension reduc- 
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tion [Murase and Nayar 951, efficient heuristic search, 
and rejection techniques [Baker and Nayar 96a]. Even 
in the present unoptimized implementation, feature de- 
tection and parameter estimation take only a few sec- 
onds on  a standard single-processor workstation when 
applied t o  a 512x480 image. Given the enormous strides 
being made in memory and multi-processor technology, 
i t  is only a matter  of t ime before real-time performance 
is achieved. 

2 Parametric Feature Representation 
2.1 Parametric Scene Features 

By a scene feature we mean a geometric and/or pho- 
tometric phenomenon tha t  produces spatial radiance 
variations, which, if detectable, can aid in visual per- 
ception. The  continuous radiance function of the scene 
feature can be written as FC(z,y;q) where (x,y) E S 
are points within a feature window, S ,  and q are the 
parameters of the feature. For example, in the case of 
a step edge, q would include edge orientation and the 
brightness values on the two sides of the edge. 

2.2 Image Formation and Sensing 
Previous work on feature detection has implicitly as- 

sumed tha t  artifacts induced by the imaging system are 
negligible and can be ignored. We make our models as 
precise as possible by incorporating these effects. One 
such effect is defocus. Another is that  the finite size 
of the lens aperture causes the optical transfer func- 
tion to be spatially bandlimited. Also, the feature it- 
self, even before imaging, may be somewhat smoothed 
or rounded. T h e  defocus factor can be approximated as 
a pillbox function [Born and Wolf 651, the optical trans- 
fer function by the square of the first-order Bessel func- 
tion of the first kind [Born and Wolf 651, and the blur- 
ring due to imperfections in the feature by a Gaussian 
function [Koenderink 841. We combine all three effects 
into a single blurring factor that  is assumed to be a 2-D 
Gaussian function : 

T h e  continuous image on the sensor plane is con- 
verted t o  a discrete image through two processes. First, 
the light flux falling within each pixel is integrated. 
If the pixels are rectangular in structure [Barbe 801 
[Norton 821, the averaging function is: 

1 1  
w,wy wz wy 

4XlY) = - ”( -2, -y) 

where, wz and wy are the dimensions of the pixel. Next, 
the pixels are sampled, which we model by the rectan- 
gular grid: 

where, p ,  and py are the spacings between samples. The  
final discrete image of a feature may then be written as: 

4 x 1  Y) = 2111(&2, A Y )  (3) 

F(2I Y; 9) = { F C ( z ,  Y; s> * d 2 l  Y) * 42, Y) 1 ‘ 4 X ,  Y) (4) 

where * is the 2-D convolution operator. Since the above 
is a weighted sum of Kronecker delta functions, i t  can 
be rewritten as F ( m , n ; q ) ,  where (m ,n )  E S are the 
(integer valued) pixel coordinates. 

2.3 Parametric Feature Manifolds 
If the total number of pixels in the window is N ,  

each feature instance, F ( m ,  n; q), may be regarded as a 
point in the N-dimensional Hilbert space, %N. Suppose 
the feature has k parameters (dim(q)=k).  Then,  as the 
parameters vary over their ranges, the point traces out 
a C-parameter manifold. Feature detection can then be 
posed as finding the closest point on the feature manifold 
to  each novel candidate window in the image. 

2.4 Parameter Reduction 
For each feature instance encountered, we compute 

i ts  mean, p(q)= C(n,m)ES F ( m ,  n; q),  and its  magni- 
tude,  v(q)  = / I  F ( m ,  n; q) - p ( q )  1 1 .  We then apply the 
following brightness normalization: 

In all the  features we have considered, the above normal- 
ization reduces the dimensionality of the feature mani- 
fold by two. This happens because F’(nz ,n;q)  is (ap- 
proximately) independent of two of the (brightness) pa- 
rameters in q. Once a feature has been detected, i ts  
mean, p ,  and magnitude, v ,  can be used t o  recover the 
two parameters eliminated during normalization. See 
[Baker and Nayar 96bJ for more details. 

2.5 Dimension Reduction 
For several reasons, such as feature symmetries and 

high correlation between feature instances with similar 
parameter values, i t  is possible to  represent t>he feature 
manifold in a low-dimensional subspace of gN without, 
significant loss of information’. If correlation between 
feature instances is the preferred measure of similarity, 
the Karhunen-Lodve (E<-L) expansion [Fukunaga 901, 
yields the optimal subspace. To give an idea of the da ta  
compression possible, a step edge manifold in a 49-D 
Hilbert space can be represented in a 3-D subspace with 
only 10% loss of information. 

3 Example Features 
For lack of space, we now illustrate the paramet- 

ric manifold representations of only 3 of the 5 features 
which we constructed detectors for.  The results for the 
roof edge and the circular disc are similar and may be 
found in [Nayar e t  al. 951. 

’This idea was first explored by Hummel [Hummel 791. 
Whereas Hummel derived closed-form solutions based on simplis- 
tic feature models, our approach is to use elaborate feature mod- 
els and numerical methods. This results in higher precision and 
greater generality. A similar approach has been adopted by Nandy 
et al. [Nandy et al. 961. 
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3.1 Step Edge 
Parametric models for edges date  back to  the work 

of Hueckel [Hueckel 711. Since then, the edge has been 
studied in more detail than any other visual feature (see 
[Davis 75][Nalwa 931). Figures l ( a )  and l (b )  show iso- 
metric and plan views of our step edge model. This 
model is a generalization of those used in [Hueckel 711, 
[Hummel 791, and [Lenz 871. I t  is closest t o  the one used 
by Nalwa and Binford [Nalwa and Binford 861, but  dif- 
fers slightly in its treatment of smoothing effects. 

The  basis for the 2-D step edge model is the 1-D unit 
step function: 

1 i f t > O  

0 i f t < O  
u(t)  = 

A step with lower intensity level, A ,  and upper intensity 
level, A+B, can be written as A+B.u(t) .  To extend to  
2-D, we assume that  the step edge is of constant cross 
section, is oriented a t  an angle, 8, and lies a t  a distance, 
p,  from the origin. Then,  the orthogonal distance of an 
arbitrary 2-D point, (2, y), from the step is given by: 

z = y .. cos0 - z . s i n 8  - p 

Therefore, an  ideal step edge of arbitrary orientation and 
displacement from the origin is given by the 2-D func- 
tion, A + B . U(.). For the reasons given in section 2.2, 
we incorporate the Gaussian blurring function, the pixel 
averaging function, and the sampling function. Finally, 
the step edge model is: F s E ( ~ ,  y; A ,  B ,  8 ,  p,  g) = 

(7) 

where z is given by equation (7). 
T h e  step edge model has 5 parameters, namely, orien- 

tation, 0,  localization, p ,  blurring or scaling, 6, and the 
brightness values, A and B.  The orientation parameter, 
0 ,  is drawn from [O", 360"l. We restrict the localization 
parameter, p ,  to  lie in [--1/J2,1/d2], since any edge 
must pass closer than 1/J2 pixels from the center of a t  
least one pixel in the image. The  blurring parameter, 
g E [0.3,1.5]. As described in [Nalwa and Binford 861, 
substantially larger values of could be used, but re- 
ally represent an edge a t  a much higher magnification. 
The  intensity parameters, A and B ,  are free to  take 
any value because of the normalization described in sec- 
tion 2.4. The structure of a normalized step edge is 
independent of A and B and is uniquely determined by 
the parameters, 0 ,  p, and 6. Further, as described in 
[Baker and Nayar 96b], the values of A and B may be 
recovered from the mean, p ,  and the magnitude, v, cal- 
culated during normalization. 

The  window chosen for our edge model is a 49 pixel 
disc to  avoid unnecessary non-linearities induced by a 
square window. The  results of applying the Karhunen- 
Lodve expansion are displayed in Figures l(c) and l (d ) .  
In Figure l(c) we display the 8 most important eigen- 
vectors, ranked by their eigenvalues. The  similarity be- 
tween the  first 4 eigenvectors and the  ones derived in 

(a) Step edge model (b) Plan view 

(c) First 8 eigenvectors 

0.4 

0.2 

0 0  2 4 6 8 10 12 14 16 18 20 

(d) Decay of the K-L residue 

0.2 - 
0 -  

0.1 - 
-0.1 - 
-0.2 - 
-0.3 - 

(e) Step edge parametric manifold 

Figure 1: The step edge model includes two constant in- 
tensity regions of brightness, A and A + B. Its orientation 
and intrapixel displacement from the origin are given by the 
parameters, 0 and p ,  respectively. The fifth parameter (not 
shown) is the blurring factor, U .  The E<-L residue plot shows 
that 90% of the edge image content is preserved by the first 
3 eigenvectors and 98% by the first 8 eigenvectors. The step 
edge manifold is parameterized by orientation and intrapixel 
localization for a fixed blurring value and is displayed in a 
3-D subspace constructed using the first three eigenvectors. 
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[Hummel 791 is immediate. On closer inspection, how- 
ever, we notice tha t  while Hummel’s eigenvectors are 
radially symmetric, the ones we computed are not. This 
is to  be expected since the introduction of the parame- 
ters, p and CT, breaks the radial symmetry that  Hummel’s 
edge model assumes. While Hummel’s eigenvectors are 
optimal for his continuous 3 parameter edge model, our 
numerically obtained results imply that they are not op- 
timal for our discretely sampled 5 parameter model. 

In Figure l (d) ,  the decay of the Karhunen-Loeve 
residue (sum of eigenvalues discarded) is plotted as a 
function of the number of eigenvectors. To reduce the 
residue to 10% we need to use 3 eigenvectors. To reduce 
i t  further to 2% we need 8 eigenvectors. Figure l ( d )  
illustrates a significant, d a t a  compression factor of 5-15 
times. As a result, feature detection and parameter es- 
timation are made far more efficient. 

The  step edge manifold is displayed in Figure l (e) .  
Naturally, we are only able to display a projection of it. 
int,o a 3-D subspace. This subspace is the one spanned 
by the 3 most important, eigenvectors. For clarity, we 
only display a 2 parameter “slice” through the manifold, 
obtained by keeping CT constant and varying b’ and p .  
As mentioned earlier, the first 3 eigenvectors capture 
more than 90% of the information. This is reflect,ed in 
Figure 1(e)> where most points on the manifold are seen 
to lie at unit distance from the origin. The four apparent 
“singularities” of the manifold are simply artifacts of the 
projection of the manifold into the 3-D subspace. If we 
were able to visualize a higher dimensional projection, 
these would disappear. 

3.2 Line 
The line consists of a pair of parallel step edges sep- 

arated by a short distance, namely, the width uj of the 
line [Hueckel 731 [Lenz 871. The line is illustrated in  Fig- 
ure ‘L(a). In our definition, we assume that  t.he intensity 
steps are both of the same magnitude. It. is possible to 
generalize this model to  lines with arbitrary brightness 
011 either side with the addition of one extra parameter 
[Hueckel 731. Our symmetric line model has 6 parame- 
ters and is given by: F L ( z ,  y; A ,  B ,  6 , p .  w ,  n)  = 

A + B . U ( =  -t ~ / 2 )  - B . U(= - ~ / 2 )  (9) 

The  discrete line model is then given by equation (4). 
The  ranges of the parameters, p and 0 ,  are p E 

[-1/42, l / JZ] ,  and D E [0.4, 1.01. Given the brightness 
symmetry in our line model, the orientation range can 
be halved to  B E [ O ” ,  180”]. We restrict the line width to 
ui E (1.0,3.5]. Just as for the step edge, the brightness 
paramet,ers, A and B ,  are free and can be eliminated 
by the normalization procedure in sect.ion 2.4 .  Again! 
during detection, A and R can be recovered from the 
normalization coefficients, p and v. 

The window chosen for our line model is an 81 pixel 
disc. The  result of applying the Karhunen-Lobe expan- 
sion is somewhat different from that  for the step edge. 
Most significant is the lower rate of decay in the residue, 

(a) Line model (b) Plan view 

(c) First 8 eigenvectors 

(d) Decay of the K-L residue 

(e)  Line parametric manifold 

Figure 2: T h e  line is of width, w, brightness, A+B, and has 
regions of brightness, A ,  on either side. In addition, it has 
the orientation parameter, 8 ,  the localization parameter, p,  
and the blur parameter, U .  8 eigenvectors are need to capture 
90% of the feature content and 33 eigenvectors for 98%). By 
this measure, the line is a considerably more complex feature 
than an edge. The symmetric line manifold has the structurc 
of a Mobius band. 
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as seen in Figure 2(d). To reduce the residue to  10% we 
require 8 eigenvectors, and to  reduce it to  2% we need 22. 
By this measure the  line is a considerably more complex 
feature than  an edge. However, the da t a  compression 
factor is still large, and  in the range of 3-5 for the 81 
pixel disc. The  symmetric line manifold in Figure 2(e) 
has the  structure of a Mobius band. This results from 
the following symmetry in the line model: 

3.3 Corner 
The  corner is a common and hence important image 

feature [Nobel 881. In our corner model, shown in Figure 
3(a) ,  6'1 is the angle of one of the edges which comprise 
the corner, and 6'2 is the angle subtended by the corner 
itself! as illustrated in Figure 3(b). Mathematically, the 
corner can be expressed as the product of two unit step 
functions: F & ( z ,  y; A,  B, 6'1,6'~), U )  = 

A + B .  u ( z ( Q ~ ) ) .  ~ ( ~ ( 1 8 0 "  + 6'1 + 82)) (11) 

where. ~(8) = y . cos6' - 2 . sinB. Then, F c  is given 
by equation (4) .  The  parameter ranges used are: 01 E 
[0", 360"], 6'2 E [30°, 120'1, and (T E [0.4, 1.01. As above, 
brightness normalization eliminates the parameters, A 
and B .  T h e  window chosen for the corner model is an 
81 pixel disc. The  decay of the I<-L residue is displayed 
in Figure 3(d) and is similar to  that  of the line. Here, 7 
eigenvectors reduce the residue to  1096, and 15 eigenvec- 
tors are needed to reduce i t  t.o 2%. The corner manifold 
has a rather interesting shape, as can be seen in Fig- 
ure 3(e).  

4 Feature Detection 
Given a. point in ?J?N corresponding to the pixel in- 

tensit.y values in a novel feature window, feature detec- 
tion requires finding the closest point. on the parametric 
manifold. If the distance bet.ween the novel point and 
the closest manifold point is sufficiently small, we de- 
clare t,he presence of the feature. The  parameters of the 
closest inanifold point are then used as estimates of the 
scene feature's parameters. If the distance between the 
novel point and the manifold is too large, we assert the 
absence of the fea.ture. 

We approximatme the closest. manifold point by first 
densely sampling the manifold, and then performing a 
search for the closest sample point. So long as we sam- 
ple densely enough, this yields a sufficiently good esti- 
mate of the  closest manifold point. The search technique 
used is a heuristic coarse-to-fine search which takes ad- 
vantage of the relatively smooth nianifolds. The  details 
of the sampling and search procedures can he found in 
[Nayar et, al. 951. 

As an example of the search complexity for the step 
edge model, if we sample 8 every 1.6'. p every 0.088. and 
c every 0.14? we end up with 46,368 sample points. If the 
manifold is sampled in a 10-D space, the complete time 

mr 

(a) Corner model (b) Plan view 

(c) First 8 eigenvectors 

(d) Decay of the K-L residue 

r 

0 

(e) Corner parametric manifold 

Figure 3 :  The corner is described by t h e  briglit.ness values, 
A and A + B.  inside and oiitside the corner. thLe anglrs, H I  
and c l z ,  made by its edges, and the blur parametkr, U .  Hen:, 
7 eigenvectors are needed to preservc 90% of the informat,ioIi 
and 15 eigenvect.ors for 98%. The corner manifold is S ~ I O W I I  

for a particular value of 0. 
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negatives 
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0.2 O h  * False positives 

Figure 4: A comparison of edge detection rates. The 
Canny (C) ,  Nalwa-Binford (N-B) ,  and parametric manifold 
(PM) detectors are compared for S.N.R. = 1.0 ,  2 .0 ,  and 3.0. 
We plot false positives against false negatives. For each de- 
tector and S.N.R., the result is a curve parameterized by 
the threshold inherent in that detector. The closer a curve 
lies to the origin, the better tlie performance. We see that 
the Canny detector and the parametric manifold technique 
perform similarly, w i t h  the Canny detector doing marginally 
better for low levels of noise. The results for the Nalwa- 
Binford detect,or (which are consistent with the results pre- 
sented in [Nalwa and Binford 861) are completely different. 

to perform nornializat,ion, projection and search takes 
around lnis  on a DEC Alpha 3600. So, for a 512 x 480 
image complete processing would take around 4 min- 
utes. However, by applying rejection techniques such as 
[Baker and Nayar SGa] the overall time was reduced to  
under 30secs. 

5 Experimental Results 
5.1 Feature Detection Rates 

We statistically compare our step edge detec- 
tor with the Canny [Canny 861 and Nalwa-Binford 
[Nalwa and Binford 861 detectors, following t-he ap- 
proach in [Nalwa and Binford 861. Since we t.ook great 
care modeling both the features and the imaging system. 
we used our step edge model t,o generate ideal step edges 
for the comparison. For fairness, however, we changed 
the det,ails slightly. Both the Canny and Nalwa-Binford 
detectors assume a constant, blur/scale, so we fixed the 
value of o- in  tlie step edge model t o  be 0.6 pixels. Sec- 
ondly, the Nalwa-Binford det,ector is based on a square 
5 x 5 window, as is Canny in the impleinentation that, 
we used. Hence, we changed t.Iie window of our detector 
t,o be a square window containing 25 pixels, rather than 
the 49 pixcl disc window used earlier. We generat,? “not 
edges” exactly as in [Nalwa and Binford 861, by taking a 
constant in t,ensi t8y window , and adding \v h i t e zer 0- m ea11 
G uassi an noise, 

In  Figure 4 we compare the detection performance of 
the three edge detectors. For each pair of S.N.R. and 

detection 
I 

0 5 10 15 20 5 S N K  
0.1 

Figure 5: A comparison of edge detector orient,ation esti- 
mation accuracy. We took a synthesized step edge. added 
noise to it,  and then applied the edge detectors. We plot thc 
r.m.s. error of the orientation estimate against the S .X .R .  
,We can see that for high levels of noise (low S.N.R.) the accw 
racy is inherently limited bp the noise. As the noise level dc- 
creases. the parametric manifold approach out performs bot11 
the Nalwa-Binford and Canny detectors. 

detector. we plot a curve of false positives a.gainst, f a h  
negatives obtained by varying the threshold inherent ii i  

each detection algorithm. T h e  Canny operat,or thresli- 
olds on the gradient magnitude, the Nalwa-Biiiford de- 
tector thresholds on the estimated step size, and our ai’- 
proacli thresholds on tlie distance from the parametric 
manifold. The  rate of false positives was est.iinated 
applying each detector to  a constant intensit,y window 
with noise added. The  rate of false nega. t iv~s is obt.aincti 
t y  applying the detectors to  noisy ideal st,cp edges. 

The closer a curve lies to the origin in  Figure ‘1 ~ t.lw 
l)et,tcr the performance. Hence, we can scc t, l iat  I)ot,li 
the Canny det,ect,or arid our  detector do increasingl!. 
well as thc S.N.Ii.. increases. T h e  results for t,lip N a i w \ -  
Binford det,ector are consist.ent3 with t.liosc descrilwtl 
in [Nalwa and Uinfortl 8G]. Applied t,o real iinages. i.lir. 
Nalwa-Binford detector does not perform as poorlj. 2s 
Figure 4 might indicate. T h e  poor Nalwa-Binford I‘C- 
sult,s are probably due t o  thresholding on t,hc stcp-six 
and may well be completely different if we fix the s t e p  
size threshold, and vary the tarih-fit thresliold. 

5.2 Parameter  Estimation Accuracy 

Again following [Nalwa and Binford 861, wc anal\..ze 
p a r ani e t er es ti in at i on acc ti r ac y by ran d o m  I  y gen cr a 1 - 
ing a set of feature parameters, synthesizing a fcnt lire 
with these parameters, adding noise, applying tlie dr- 
tector, and then measurings the accuracy of t.lic e- 
timated parameters. In Figure 5,  wr coinparc’ tlic 
performance of our step edge detector with that of 
the Canny detector [Canny 861 arid the Nalwa-Binford 

‘We did use st.cp 2 ) ’  of the  Nalwa-Binford algorit.lim. 11o\vrvcr 
the inclusion of this step does not. radically alt.er bile perforniancc,. 
Sce [ N a l w a  and Binford 861 for more details. 
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(c )  Roof edges 

(d) Lines (e) Comers 
Figure 6: The application of our  5 feature detectors to a syn- 
thetic image with noise. It is possible to completely detect 
and discriminate all 5 example features in the same image 
using t h e  same technique. 

[Nalwa and Binford 861 detector. In the figure, we plot. 
the R.M.S. error in the estimat,e of the  orientation, 8, 
against. the S.N.R. We see tha t  for low S.N.R. the per- 
formance of all detectors is limited by the noise. For 
lower noise levels, our detector out performs both of the 
other detectors. 

5.3 Application to Images 
In Figures C(b)-(f) we display the results of applying 

the 5 example feature detectors to  the synthetic image 
in Figure G(a). The  synthetic image is of size 128 x 128 
pixels and contains a pentagonal region (intensity 175), 
a circular disc (radius 8.5 pixels, inteiisit,y 206), a line 
(width 2.3 pixcls, intensity 153), and a roof edge (slope 
4 intensity levels per pixel). The  background iiitensit,y is 
110. The  image was first blurred with Guassian sinootli- 
ing ( U  = 0.6 pixels) and then white zero-mean Gaussiaii 
( U  = 4.0 grey-levels) noise was added. At pixels where 
two feature detectors both register the presence of a fea- 
ture, we choose the one with the closer distance to the 
manifold. To our knowledge, this is first t ime these 5 
different fea.tures have been detected and discriminated 
in the sanie image. Further, the proposed t,echnique can 
easily be generalized to  other user-defined parametric 
features [Nayar et al. 951. 
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