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Abstract 
Specular reflections and interreflections produce strong high- 
lights in brightness images. These highlights can cause vi- 
sion algorithms, such as, segmentation, shape from shading, 
binocular stereo, and motion detection to produce erroneous 
results. We present an algorithm for  separating the specu- 
lar and d i f i s e  components of reflection from images. The 
method iises color and polarization, simultaneously, to ob- 
tain strong constraints on the reflection components at each 
image point. Polarization is used to locally determine the 
color oj the specular component, constraining the difSuse 
color at a pixel to a one dimensional linear subspace. This 
subspact> is used to find neighboring pixels whose color is 
consistent with the pixel. Diffuse color information from 
consistent neighbors is used to determine the diffuse color of 
the pixel. In contrast to previous separation algorithms, the 
proposed method can handle highlights that have a varying 
diffuse component as well as highlights that include regions 
with diffkrent reflectance and material properties. We present 
several txperimental results obtained by applying the algo- 
rithm to complex scenes with textured objects and strong 
interrejtrtions. 

1 Introduction 
Reflection of light from surfaces can be classified into two 
broad categories: diffuse and specular. The diffuse compo- 
nent results from light rays penetrating the surface, undergo- 
ing multiple reflections and refractions, and re-emerging at 
the surface. This component is distributed in a wide range 
of directions around the surface normal, giving the surface 
a matte appearance. If the viewing direction of an image 
sensor is varied, diffuse reflections from scene points change 
slowly and in the ideal case of Lambertian surfaces, it does 
not change at all. The specularcomponent, on the other hand, 
is a surface phenomenon. Light rays incident on the surface 
are reflected such that the angle of reflection equals the angle 
of incidence. Even for marginally rough surfaces, the specu- 
lar reflections are concentrated in a compact lobe around the 
speculai direction. This concentration of light energy causes 
strong highlights in  brightness images of scenes. These high- 
lights can cause vision algorithms for scene segmentation 
and shading analysis to produce erroneous results. If the 
sensor direction is varied, highlights shift, diminish rapidly, 
or suddenly appear in other parts of the scene. This strong 
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directional dependence of specular reflection, poses serious 
problems for vision techniques such as binocular stereo and 
motion detection. Hence, specularities are often undesirable 
in images. 

In this paper, we present an algorithm that separates the 
diffuse and specular components of brightness from images. 
Separation of reflection components has been a topic of active 
research in the past few years. Here, we discuss only those ef- 
forts that have resulted in algorithms that have been tested on 
real images. Most of this work is based on the dichromatic 
reflectance model proposed in [Shafer, 851. The dichro- 
matic model suggests that, in the case of dielectrics (non- 
conductors), the diffuse component and the specular compo- 
nent generally have different spectral distributions. Hence, 
the color of an image point can be viewed as the sum of two 
vectors with different directions in color space. Using this 
model, Klinker [Klinker, 881 and Gershon [Gershon, 871 
independently observed that the color histogram of an object 
with uniform diffuse color takes the shape of a skewed T with 
two limbs. One limb corresponds to purely diffuse points on 
the object, which have the same color but differ in magnitude, 
and the second limb represents a highlight region. They pro- 
posed algorithms for automatically identifying the two limbs 
and used the directions of the limbs to separate the diffuse 
and specular components at each object point. Later, Bajcsy 
et al. [Bajcsy et al., 901 showed that the color histogram 
of an object could have additional limbs that correspond to 
highlights caused by interreflections between objects. More 
recently, Lee [Lee, 911 proposed moving a sensor and apply- 
ing spectral differencing to color histograms of consecutive 
images to identify specular points in the image. This method 
however does not compute accurate estimates of the specular 
component at each image point. 

All of the above algorithms rely solely on color informa- 
tion to separate specular and diffuse reflections from images. 
Since the separation is not possible when an image point is 
treated in isolation, these methods analyze the anatomy of 
color histograms. Two major limitations result from the 
above approach. First, real scenes are complex and in- 
clude objects with texture and varying reflectance. Color 
histograms of such scenes are generally unpredictable and a 
set of linear clusters such as the skewed T are unlikely. Sec- 
ond, all points on the highlight region are assumed to have 
the same diffuse component (color and magnitude). Even for 
an object with uniform reflectance, this assumption is valid 
only if the object surface is very smooth. In the case of rough 
surfaces, the highlights spread over a wider range of surface 
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normals and the specular limb of the skewed T does not have 
a well-defined direction. 

Recently, Wolff and Boult [Wolff and Boult, 911 pro- 
posed a polarization based method for separating specular 
and diffuse components from gray-level (black and white) 
images. Details of this method will be discussed later. Their 
polarization-based method assumes that the diffuse compo- 
nent is constant over the entire highlight region. They also 
assume that the material type and surface normal do not vary 
within the highlight region. Using these assumptions, an es- 
timate for a constant diffuse term is obtained. We will show 
later that the assumptions made in [Wolff and Boult, 911 are 
often not practical in the context of real scenes. 

This paper presents a new algorithm for the separation 
of specular and diffuse reflection components from images. 
This algorithm uses color and polarization simultaneously, to 
obtain new constraints on the reflection components. As a 
result, it does not suffer from many of the problems associ- 
ated with previous methods based either color or polarization. 
We assume that the scene consists of dielectric objects. This 
leads to two assumptions: (a) the dichromatic model is ap- 
plicable, and (b) the specular component is polarized while 
the diffuse component is not. The restrictions imposed by 
these assumotions are discussed in subsequent sections. The 

the surface and undergo multiple reflections and refractions. 
The specular component, on the other hand, is a surface phe- 
nomenon and results from single reflection of incident light 
rays. The surface may be assumed to be composed of sev- 
eral planar elements, or facets, where each facets has its own 
orientation. The result is a specular component that spreads 
around the specular direction, the width of the distribution 
depending on the roughness of the surface [Torrance and 
Sparrow, 671. 

Now let us consider the phenomenon of interreflections. 
Points in the scene receive light not only from the light 
sources but also from other scene points. Assume that point 
B reflects, into the sensor, light energy from point A. The 
resulting image brightness value can be viewed as the lin- 
ear combination of four possible interreflection components: 
(a) diffuse-dice; (b) specular-difise; (c) difise-specular; 
and (d) specular-specular. In each case, the first term rep- 
resents the component received from point A and the second 
represents the component reflected by point B. In general, 
point B could reflect light due to both direct illumination 
by light sources as well as interreflections from other scene 
points. Without loss of generality, each brightness value in 

;es;lt not only from direct source illuminationbut also in- 
terreflections between points in the scene. We show that, 
under reasonable assumptions, polarization information can 
be used to obtain the color of the specular component in- 
dependently for each point with a specular component. For 
each such point, the result is a line in color space on which the 
diffuse vector must lie. This line imposes strong constraints 
on the color of the diffuse component of that image point. 
Neighboring diffuse colors that satisfy these constraints are 
used to compute the diffuse component of the image point. 

Since the specular color of each image point is computed in- 
dependently, our approach has the following advantages over 
previous methods: (a) The diffusecomponent is not assumed 
to be constant under the highlight region; (b) The Fresnel 
ratio (which depends on the material properties and the angle 
of incidence) can vary over highlight regions; and (c) the dif- 
fuse component may be textured. The algorithm requires that 
each image point has a few (at least three) neighbors that have 
the same diffuse color (that is, direction in color space but 
not necessarily magnitude). In the experimental section, we 
present several results obtained by applying the algorithm to 
complex scenes with multiple highlights and interreflections. 

* n sensor 
Drowsed algorithm can estimate specular components that 

r" 
diffuse 
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2 Reflection and Interreflection 
We begin by describing the mechanisms involved in the pro- 
cesses of reflection and interreflection. Figure 1 shows two 
points, A and B, in a scene. Reflection from the point A has 
two components, namely, diffuse and specular.' The diffuse 
component arises from the scattering of light rays that enter 

'Recently, [Nayiu et aL. 911 proposed a reflectance framework that in- 
cludes three primary componentsof reflection: the difise lobe; the specular 
lobe; and the specuhrspikc. In this paper, the two specularcomponents are 
combined to yield, the specular component. 

Figure 1 : Components of reflection and interreflection. 

the image can be expressed as the sum of two components, 
diffuse and specular. The specular component can result ei- 
ther from direct illumination by a light source or due to the 
diffuse-specular or specular-specular interreflections. We as- 
sume that the specular reflection received by the sensor from 
any given point is either due to source illumination or due 
to interreflections and not both. In other words, any given 
scene point is positioned and oriented to specularly reflect 
essentially from either a light source or another scene point 
but not both. This assumption holds well except for very 
rough surfaces. 

3 Polarization 
The method presented in this paper uses a polarization fil- 
ter to determine the color of the specular component. In 
this section, we present a brief overview of polarization and 
discuss the type of surfaces for which it provides useful in- 
formation. Detailed discussions on the theory of polariza- 
tion can be found in [Born and Wolf, 651. In the field of 



machine vision, polarization methods were first introduced 
by Koshikawa [Koshikawa, 791 who used ellipsometry for 
shape interpretation and recognition of glossy objects. More 
recently, Wolff and Boult [Wolff and Boult, 911 examined the 
use of linear polarization for highlight removal and material 
classification. 

Figure 2: Surfaceelement illuminated by asource and imaged 
through a polarization filter. 

Figure 2 shows a surface element illuminated by a source 
and imaged by a sensor. A polarization filter is placed in 
front of the sensor. As in the previous section, let the image 
brightness value corresponding to the surface element be: 
I = I d  + I , ,  where, I d  is the diffuse component and I ,  
the specular component. The linear polarization of each 
light wave is determined by the direction of its electric field 
vector. In general, the light energy (due to several light 
waves) reflected by a surface may be partiallypolarized. The 
extent of polarization depends on several factors including 
the material of the reflecting surface element, its orientation 
with respect to the image sensor, and the types of reflection 
mechanisms (specular or diffuse) at work. 

The diffuse component of reflection tends to be 
unpolurized.2 In contrast, the specular component tends to 
be partially polarized; rotation of the polarization filter varies 
the specular component as a cosine function, as shown in 
Figure 3. The specular component can be expressed as the 
sum of a specular constant I,, and a specular varying term 
that is a cosine function with amplitude I,,: 

where, 8 represents the angle of the polarization filter and a 
is the phase angle determined by the projection of the normal 
of the surface element onto the plane of the polarization 
filter. ' f ie exact values of I,, and I,, depend on the material 
properties and the angle of incidence. This dependence is 
determined by the Fresnel rejection coeficients FL (7, $) 
and Fll(q, $) which represent the polarizationof the reflected 
light waves in the directions perpendicular and parallel to the 
plane of incidence, respectively. The relationship between 

2Note that this assumption does not hold near the occluding contour of 
an object, see [Boult and Wolff, 911. That paper addresses the classification 
of scene edges based on their polarization characteristics. 

____ 

Figure 3: Image brightness plotted as a function of polariza- 
tion filter position. 

I, and I,, and the Fresnel coefficients is: 
I s c  + Isv FL(v,$) - -  - 

I,, FIl(Vl*) 
The parameter 7 is the complex index of refraction of the 
surface medium, and depends on the physical properties of 
the reflecting material. The parameter $ is the angle of 
in~idence.~ 

Note that the terms I d  and I,, in equation 1 are constant and 
can be represented by a single component I, = I d  + I,, to 
obtain: I = I, + I,, cos 2(8 - a). For any given position 
8i of the polarization filter we have: 

This can also be represented as thedot product of two vectors: 
Ii = I, + I,, cos 2(8j - a). (3) 

fi = ( 1 ,  cos 28i, sin 2 8 i )  
v =  

zj = fj . v. (4) 

(I,, I,, cos 2a, I , ,  sin 2 a )  

Let M be the total number of discrete filter positions used to 
obtain the image brightness values { Ii I a' = 1,2, . . . , M}. If 
M = 3, equation 4 yields a linear system of equations that 
can be solved to obtain the parameters I,,  I,", and a. If 
A4 > 3, we have an over-determined linear system that can 
be solved to obtain more robust estimates of l,, I,,, and a, 
in the presence of image noise4 

From I, and I,,, we can obtain the maximum and minimum 
values of image brightness as: 

J m n  = Ic - Is,, I- = /c + Is, ( 5 )  

3For metals, the two Fresnel coefficients are nearly equal except close 
to the grazing angle (when ZC, lies between 70 and 90 degrees). Thus, 
linear polarization based methods are generally not effective for metals. For 
dielectrics (non-conductors), however, the two Fresnel coefficients differ 
substantially except for near-normal angles of incidence (when ZC, is less 
than 10-15 degrees). 

4This formulation of the problem using vectors saves substantial compu- 
tations compared to the non-linear formulation of the type a + b sin2 (0 - CY) 
used in [Boult and Wolff, 91 1 and [Wolff, 901 that requires the use of iterative 
non-linear estimation techniques. 
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The degree of polarization at a scene point can be determined 
as [Born and Wolf, 651: 

The degree of polarizationmares between 0 and 1 and can 
be used during highlight removal to classify points into those 
that are only diffise (p << 1) and those that include a specular 
component. However, this measure must be used withcare as 
both Ih , ,  and I, include the constant specular component 
I ,  as well as the diffuse component I d ;  varying either I,, or 
I d  has the same effect on p. 

We conclude this section with a note on previous work on 
highlight removal using polarization. A method for comput- 
ing I d  and I, by rotating the polarization filter, is presented in 
[Wolff and Boult, 911. From the above discussion, we know 
that I d  and I ,  are both constant. They can be computed 
from I, only if we know the ratio of the Fresnel coefficients, 
q = F l ( q ,  $)/Fll(q, $), for the corresponding scene point. 
The Fresnel coefficients are determined by the material prop- 
erties of the scene point as well as the angle of incidence. 
Neither of these factors are known. To constrain the problem, 
[Wolff and Boult, 911 use all points (pixels) on a segmented 
highlight. They assume that both the diffuse component I d  
as well as the Fresnel ratio q are constant under the high- 
light region, and estimate them using all points within the 
highlight region. This assumption, however, is unrealistic 
for two reasons. First, in real scenes, the diffise component 
I d  within the highlight region may vary due to the curvature 
of the surface or due to texture on the surface. Secondly, the 
Fresnel ratio q cannot be assumed to be constant since the 
angle of incidence can vary substantially over large highlight 
regions resulting from extended sources in the scene. The 
latter of these problems was discussed in [Wolff, 901 but no 
solutions were proposed. 

We now discuss the role of color in the removal of speculari- 
ties. We present an overview of the representation of diffuse 
and specular components in color space and discuss previous 
work on the removal of highlights using color. In contrast 
to gray-level images, color images represent wavelength (A) 
dependence of the light reflected by a scene. Let x(A) be the 
spectral distribution of the light reflected by a scene point, 
and $(A) represent the response of the sensor to wavelength. 

Qpically, color images are obtained by using three filters 
with responses r(A). g(X), and b(A) that have peaks close to 
the wavelengths that humans perceive as “red,” “green,” and 
“blue.” The resulting three brightness values measured by a 
sensor element constitute the color vector I = [ 1‘, Ig, Ib 3 
for the corresponding point in scene. The three brightness 
values in the color vector are related to the spectral distribu- 
tion of the reflected light as: 

( 6 )  
I- - Imin 

+ Imin 
P =  I 

4 Color 

I‘ = J x(A) .(A) .(A) dX 

I g  = x(X) g(X) .(A) dA (7) 

Ib = / x(A)b(A)s(A)dX 

Each brightness value includes a diffuse component and 
a specular component. Hence, in three-dimensional color 
space we have the following decomposition: I = 4 + I,. 

The dichromatic mylectance model [Shafer, 851 suggests 
that, for dielectrics, the spectral distribution of the diffuse 
component is determined by the colorant in the surface 
whereas the specular component preserves the spectral dis- 
tribution of the incident light. As a result, the two vectors 
4 and I, generally have different directions in color space. 
The two vectors will however have the same direction if, for 
instance, a gray object is illuminated by white light. 

BA 

Figure 4: Diffuse and specular components in color space. 

As discussed in the introduction, Klinker [Klinker, 881 and 
Gershon [Gershop, 871 independently used the dichromatic 
reflectance model to remove highlights from images using the 
two limbs of the skewed Tin color space. These methods are 
based on two main assumptions: (a) the object is segmented 
away from the scene and has a single uniform diffuse color 
and (b) the diffuse component is near constant within the 
highlight region. These two assumptions must hold for a 
skewed T to be formed in color space. The first assumption 
is often violated in real scenes where objects may be textured 
or have patches with different reflectance properties. The 
second assumption can be valid only if the surface is very 
smooth, thus producing a very compact highlight. Even 
for marginally rough surfaces, the highlight is expected to 
include object points with a range of surface orientations. In 
such cases, the specular limb of the skewed T spreads into a 
wide cluster in color space that is difficult to separate from 
the diffuse limb. This last observation has also been made by 
Novak and Shafer [Novak and Shafer, 921 and Lee [Lee, 9 11. 

5 Removal of Specularities using Color and 
Polarization. 

In this section, we develop a method for removing specu- 
lar reflections from images. The following assumptions are 
made. 
(A) The scene consists of dielectric objects. Hence, the 

dichromatic reflectance model applies at each point, and 
the specular reflections and interreflections are polarized 
while the diffuse reflections are not. Further, the color 
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of the incident light at each scene point is different from 
the color of the material. 

(B) The specular interreflections result from either the 
diffuse-specular mechanism UT the specular-specular 
mechanism and not both. In the first case, the incident 
light is unpolarized and hence the Fresnel ratio is simply 
q = F l ( q ,  +)/qi(q, +). In the second case, the inci- 
dent light is partially polarized and the effective Fresnel 
ratio for the surface point is q = a F l ( g ,  $ ) / b q 1 ( g ,  $). 
The parameters a and b account for the partial polariza- 
tion of the incident light. 

(C) Fresnel coefficients F l ( 7 ,  $) and 41 (7, $) are indepen- 
dent of the wavelength of incident light. This assumption 
is reasonable (see [Driscoll, 781) since we are assuming 
dielectrics and operating in the visible-light spectrum. 
Assumptions (B) and (C) result in the Fresnel ratio q 
being equal for all three color bands. 

The color of the specular component is computed locally 
at each pixel. This places strong constraints on the diffuse 
component Id. Neighboring diffuse points that satisfy these 
constraints are then used to compute the diffuse component. 
This approach has the following advantages over all of the 
previous methods for highlight removal: 

0 In contrast to the previous methods based either on color 
or polarization, we do not assume that the diffuse compo- 
nent Id is constant within each highlight region. In fact, 
the surfaces could be textured with patches of different 
materials underlying the highlights. 

0 The specular color of each point is computed indepen- 
dently. This local approach does not require prior seg- 
mentation of either highlights or objects in the scene. 
Further, the highlights need not be compact; the method 
can handle substantial surface roughness conditions. 

We describe the technique for specularity removal by fo- 
cusing on a single image point x. The same procedure is 
applied independently to all image points. The color vector 
for the image point is: I = Id + I,. Given the above as- 
sumptions, the Fresnel ratio q is the same for all three color 
bands. Hence the cosine term in equation 4 will be in phase 
for the 3 color bands and for the polarization filter position 
8, we have the color vector: I, = I, + I,, COS 2(8, - a). 
In our experiments, we have used 6 or more polarizer po- 
sitions. This gives us an over-determined linear system of 
equations that are solved to obtain robust estimates of I,, I,,, 
and (Y. The color vectors corresponding to maximum and 
minimum polarization (see equation 5) are: I,, = I, + I,, 
and I,, = I, - I,”. 

Two tests are used to determine if the image point x is to 
be processed any further. First, a degree of polarization p 
(expression 6) is computed for each of the three color bands. 
If the largest of three p estimates is less than a threshold value 
T 1 ,  the point is not sufficiently polarized and is assumed to be 
purely diffuse. In this case, the next image point is examined. 

If the degree of polarization of the point x is greater than 
TI ,  the angle p subtended by the vector k = I,, - I,, 
from the origin 0 is computed (see Figure 5 ) .  If p is less 

than a threshold T2, the color of the specular component 
is very similar to that of the diffuse component Id, and the 
dichromatic model cannot be used with confidence. 

On the other hand, if the point x is polarized and its /I value 
is not small, we proceed to compute its diffuse component 
Id. If we can determine I,,, then the diffuse component can 
be computed as I d  = I, - Is,. Recall that the specular com- 
ponents I,, and I,, satisfy I,, + I,, = I, q. Unfortunately, 
the Fresnel coefficient q is not known as it depends on the 
material properties and the angle of incidence. Though we 
have estimates of I, and I,,, we do not have a simple way 
of determining b. The color measurements Ii obtained by 
rotating the polarization filter lie on a straight line L (see Fig- 
ure 5 )  in Color space. The diffuse component Id is unaffected 
by rotations of the polarizer; only the specular component 
I, varies. The specular component varies along a straight 
line since the cosine functions in the three color bands are in 
phase (assumptions B and C). 

”$ 
I L  

I 

Figure 5 :  Using neighboring points and specular line con- 
straint to compute the diffuse component &. 

Though we are unable to compute the diffuse component 
locally, the specular line gives useful constraints on the 
diffuse component. Assume that the diffuse component of x 
corresponds to the point P. The position of P on the specular 
line L can be parametrized as follows: P = Ifin - pk 
where p (0 5 p 5 j )  is the distance of P from I ~ , ,  as shown 
in Figure 5 and @ is defined as: 

jj determines the point P that is the intersection ofthe specular 
line L with one of the three planes of the color space. In the 
example shown in Figure 5 ,  the specular line intersects with 
the R - G plane. In general, however, L could intersect any 
one of the three planes that constitute the color space. Define 
PI to be the plane that passes through the points (0, h,,, 
1”). The expression for P ,  is: A I‘ + B I P  + C I ~  = 0, 
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where: 
A = kgIdnb - kbIming 
B = kb IA,,' - krI,,,inb (9) 
C = k'IMng - kgInli:. 

Since we do not have sufficient constrants to compute the 
diffuse component b of the point x from the color measure- 
ments &, we use neighboring image points that satisfy the 
following conditions: 
(1) A neighboring image point y can be used if we know 

its the diffuse component Q. This occurs if y has a low 
degree of polarization p and hence can be assumed to 
be purely diffuse, or if its diffuse component has already 
been computed. 

(2) In color space, the vector Q must lie on the pl-ane Pt.  
Further, it must lie between the vectors Idn and P, since 
the diffuse vector I d  of the point x lies on the line L 
between the points Idn and P. Note, however, that Q 
need not iie on line L; it can lie inside or outside the 
triangle (0, Id,,, P). 

If these conditions are satisfied, the neighboring point y is 
assumed to have the same diffuse color as the point x. Then, 
the line passing through Q and the specular line L intersect 
to give P, an estimate of the diffuse component of x. 

Due to noise in the color and polarization measurements, 
the diffuse component Q of a neighboring point is not ex- 
pected to exactly satisfy the above conditions. To accom- 
modate for such discrepancies, we compute the angle 7 sub- 
tended by Q with respect to P I  (see Figure 5): 

AQ' + B Q g  + CQb sin y = 
If -y is larger than a 

if y is small (7 5 T3), the point P is computed 
by extending the vector S to intersect the line L as shown in 
Figure 5. This can be done without computing the projection 
S of Q on the plane Pt. Consider the plane PZ that passes 
through the points (0, Q. P). It can be expressed as D I' + 
E l g  + F I b  = 0 ,  where: 

D = QgPb - QbPg 
E = QbP' - Q'pb (1 1) 
F = QrPg - 8 P r  

Since the planes PI  and P2 are perpen rcular, we have: A D + 
B E  + C F = 0 ,which can be expanded using equations 
9 and 11. By substituting the expression for P given by 
equation 8 in the expansion, a solution for the line parameter 

+B ( QbIdnr - G 
+C (Q'Imin' 

+B ( Qbk' -'Qr6") 
+C ( Qrkg - Qgk') 

5N0te that we have used the angle 7 rather than the distance of Q from 
PI. This is because a neighboring point may have a very small diffuse 
component that lies close to the origin 0 and as a result is also close to Pi. 
Such a point could have relatively large errors due to image noise and must 
not be used in the computation of h. 

The above process is repeated for all neighboring diffuse 
components Qj that satisfy conditions (1) and (2). The result 
is a set of estimates {pj I j = 1,2 ,...., N}. If N < T4 
(we use Td = 3 in our implementation) there are not enough 
neighboring diffuse components to compute a robust estimate 
of 4 for the point x. If N 2 T4, the mean and standard 
deviation of pj are computed as: 

,N 

W j  

where the weight w, given to each pj equals the magnitude 
of the corresponding diffuse component, I I Qj 11. The mean 
value J is accepted if the standard deviation cp is less than 
a threshold T5, i.e. the estimates pj form a compact cluster 
on the line L. This constraint is used to ensure that different 
diffuse colors in the neighborhood of x that happen to lie 
close to the plane PI, are not used together to obtain an 
erroneous estimate of b. Once J has been determined, the 
diffuse component l;d = P of the image point x is obtained 
using equation 8. 

The algorithm proposed in this section is applied to all 
points in the image. Not all image points end up with an I d  
estimate. An image point may lie in the middle of a very large 
highlight, in which case, it may not have a sufficient number 
of neighbors with diffuse colors that satisfy conditions (1) 
and (2) or produce a compact cluster of intersection points 
on the line L. Hence, we apply the algorithm repeatedly to 
the image points. This iterative approach is effective in the 
case of complex scenes; each iteration provides a new set 
of computed diffuse colors thus increasing the likelihood of 
finding neighboring diffuse colors in the next iteration. The 
iterations are discontinued when no new diffuse estimates are 
obtained. 

6 Experimentation 
This section presents experimental results obtained using the 
proposed algorithm. Details of our experimental setup, im- 
plementational problems, and calibration procedures can be 
found in [Nayar et al., 931. Here, we discuss some details 
of the algorithm implementation. This is followed by results 
obtained by applying the algorithm to scenes with textured 
objects, primary (source) specularities, and secondary (inter- 
reflection) specularities. 
6.1 Implementation Details 
For each scene, a set of color images are obtained by rotat- 
ing the polarization filter. The polarization parameters Idn, 
I-, and a are computed for each color channel. These 
parameters are computed using the linear least squares (LS) 
fitting method. The results of the polarization fitting are 6 
images for each color channel, IAn. I-, Iavg (= -), p 
(percent polarization), phase (the angle a), and RMSE (root 
mean square error in fitting). Of these, only the I- and 
Id,, images are directly used by the specularity removal al- 
gorithm. The others are used only to debug the algorithm 
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and analyze the results. The Iavg image is what would be 
obtained without a polarizer but with a 50% neutral density 
filter instead. 

The algorithm requires labeling of points as purely diffuse 
or partially specular, which is done by using the degree of 
polarization p. Since p depends on Imin, the noise level in p 
varies with I~,,. Rather than using a fixed threshold TI on p 
to identify partially specular points, our implementation uses 
a threshold that varies with &,,io. TI varies from around 5% 
for points with I,,,j,, > 200 to around 10% for points when 
Ifi” % 20. 

The algorithm has three other thresholds that affect its per- 
formance; the threshold T2 for the angle /3, the threshold T3 
for the angle y, and T4 for the standard deviation cp. The al- 
gorithm is not too sensitive to Tz and T4, which have been set 
at 0.08 and arccos(0.99), respectively. The angle threshold 
T3, which determines if points lie close to the plane P I ,  has a 
strong affect on the quality of computed results as well as the 
computation time. The current implementation starts with 
a relatively small threshold value (T3=0.02), and doubles it 
after every 10 iterations. 

6.2 Experimental Results 
In the each of the following examples, the images obtained 
after fitting the polarization parameters are used to computed 
the diffuse color image 4. This image is then subtracted 
from the average color image I,, to obtain the specular 
color image I,. I,, is the image we would obtain if the 
polarization filter were not used. All the results discussed 
here are presented in color in [Nayar et al., 931. The first 
example is shown in Figure 6(a). It is the Iavg image of a cup 
with a flowered pattern on it. The petals of the flower are 
of different colors and within each petal there is a moderate 
amount of diffuse color variation. Along the middle of the 
cup is a large highlight. Figure 6(b) shows the diffuse image 
Id computed using the proposed algorithm. The algorithm 
was clearly successful in removing the highlight despite the 
texture underlying the highlight. 

The second example includes strong interreflection effects. 
Figure 6(c) shows the original image (Iavg) of a scene in- 
cluding a blue plastic plate and a part of the McBeth color 
chart. Color patches on the chart are reflected by the plate. 
There are pieces of plastic tape (some dark reddish and others 
black) on the plate. Also visible is a film canister, which inter- 
reflects portions of the color chart as well as the surrounding 
environment. Figure 6(d) and Figure 6(e) show the diffuse 
and specular components computed by the algorithm. We 
see that, despite the strong interreflections, these images are 
quite accurate. We do, however, see that a primary highlight 
on the left side of plate has not been completely removed. 
This may have been caused by very high brightness values 
in  the highlightregion for which the sensor calibration is not 
reliable. 

The final example is shown in Figure 6(f)-(h). Several 
objects with different colors are placed close to one another 
in a large red box. Figure 6(f) shows the I,, image of this 
complex scene. Figure 6 (8) and (h) show the diffuse and 
specular components computed by the algorithm. The pri- 

mary highlights on the blue torus (in front) and red torus 
(top left corner) are accurately removed. Errors in the sep- 
aration are however seen on the occluding boundary of the 
torus. This results from the strong polarization of the diffuse 
component on the occluding boundary; the assumption that 
the diffuse component is unpolarized is violated. Also note 
that the results are not as good for the interreflections of the 
blue (front) torus and the marker pen. This is due to inter- 
reflections between the two walls of the red box that cause 
the dichromatic reflectahce assumption to be violated (see, 
[Nayar et ai., 931 for details). 
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IC) I,,, foYDiate scene fdl I d  (diffuse image) (el I. (specular image) 

(f) Iavs for complex scene (9 )  I d  (diffuse image) (h) I, (specular image) 

Figure 6: Experimental results: (a)-(b) textured cup; (c)-(e) scene with plastic plate and color chart; (f)-(h) 
complex scene with multiple highlights and strong interreflections. 
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