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(a) Acquired photographs (b) Rendering at low concentrations (c) Rendering at natural concentrations

Figure 1: (a) Photographs of our simple setup consisting of a glass tank and a bulb, filled with diluted participating media (from top, MERLOT, CHARDON-
NAY, YUENGLING beer and milk). The colors of the bulb and the glow around it illustrate the scattering and absorption properties in these media. At low
concentrations, single scattering of light is dominant while multiple scattering of light is negligible. From a single HDR photograph, we robustly estimate all
the scattering properties of the medium. Once these properties are estimated, a standard volumetric Monte Carlo technique can be used to create renderings at
any concentration and with multiple scattering, as shown in (b) and (c). While the colors are only slightly visible in the diluted setting in (b), notice the bright
colors of the liquids - deep red and golden-yellow wines, soft white milk, and orange-red beer - in their natural concentrations. Notice, also the differences in
the caustics and the strong interreflections of milk onto other liquids.

Abstract
The visual world around us displays a rich set of volumetric ef-
fects due to participating media. The appearance of these media
is governed by several physical properties such as particle densi-
ties, shapes and sizes, which must be input (directly or indirectly)
to a rendering algorithm to generate realistic images. While there
has been significant progress in developing rendering techniques
(for instance, volumetric Monte Carlo methods and analytic ap-
proximations), there are very few methods that measure or estimate
these properties for media that are of relevance to computer graph-
ics. In this paper, we present a simple device and technique for
robustly estimating the properties of a broad class of participating
media that can be either (a) diluted in water such as juices, bever-
ages, paints and cleaning supplies, or (b) dissolved in water such as
powders and sugar/salt crystals, or (c) suspended in water such as
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impurities. The key idea is to dilute the concentrations of the me-
dia so that single scattering effects dominate and multiple scatter-
ing becomes negligible, leading to a simple and robust estimation
algorithm. Furthermore, unlike previous approaches that require
complicated or separate measurement setups for different types or
properties of media, our method and setup can be used to measure
media with a complete range of absorption and scattering proper-
ties from a single HDR photograph. Once the parameters of the
diluted medium are estimated, a volumetric Monte Carlo technique
may be used to create renderings of any medium concentration and
with multiple scattering. We have measured the scattering param-
eters of forty commonly found materials, that can be immediately
used by the computer graphics community. We can also create re-
alistic images of combinations or mixtures of the original measured
materials, thus giving the user a wide flexibility in making realistic
images of participating media.

1 Introduction
Very often in our daily lives, we see participating media such as
fluids (juices, beverages, milks) and underwater impurities (natu-
ral ocean, river and lake waters). The propagation of light through
these media results in a broad range of effects, including softer ap-
pearance of milk, coloring of wines and juices, the transformation
of appearances when liquids are mixed (coffee with milk, and cock-
tails), the brilliant caustics from glasses containing these liquids,
and low visibility in underwater situations. These effects inher-
ently depend on several physical properties of the media such as



scattering nature, sizes, shapes, and densities of particles [Hulst
1957; Chandrasekhar 1960]. Rendering these effects accurately is
critical to achieving photo-realism in computer graphics.

In the past few years, there has been a considerable effort to-
wards developing efficient and accurate rendering algorithms for
participating media, based on Monte Carlo simulation and analytic
approximations. All these algorithms and models contain parame-
ters (scattering coefficient, absorption coefficient, phase function)
that directly or indirectly represent the physical properties of the
medium. In order to faithfully render the effects of any participat-
ing medium, the right parameters must be input. Given the progress
in developing rendering algorithms, the quality of images is now
often limited by the quality of these input parameters. Since there
has so far been relatively little work in measuring or estimating
scattering properties of media relevant to computer graphics, the
parameters are currently often set in an ad-hoc manner.

This situation is similar in some ways to that of standard surface
rendering. In that case, global illumination algorithms have pro-
gressed to the point of creating almost photo-realistic images, leav-
ing the realism limited by the quality of the reflectance models, and
leading to much recent effort on measuring BRDFs. [Marschner
1998; Dana et al. 1997; Matusik et al. 2003]. However, exist-
ing methods for directly measuring physical properties for media
usually require very expensive equipment, such as the particle siz-
ing apparatus used in colloidal chemistry [Finsy and Joosten 1991;
Jaeger et al. 1991], resulting in little usable data for graphics.

Earlier efforts to estimate scattering properties from images of
media have often yielded ill-conditioned and non-unique results,
because of the difficulties of solving the inverse light transport
problem. The reasoning for the ill-conditioning of the inverse prob-
lem is mainly due to multiple scattering, which blurs the incident
light field and results in significant loss of information [McCormick
1981; McCormick 1985; Antyufeev 2000]. This is analogous to the
ill-conditioning of BRDF estimation under complex illumination
[Ramamoorthi and Hanrahan 2001]. In this paper, we take a com-
pletely different approach. The key idea is to estimate properties
of media by acquiring the data in a state where multiple scatter-
ing effects are negligible. Instead, the data is acquired when single
scattering (which does not degrade the incident light significantly)
is the dominant effect. This is achieved by diluting the material to
low concentrations.

We present a simple and inexpensive experimental setup, along
with a robust and accurate technique for measuring the scattering
properties of a broad class of participating media that can be either
(a) diluted in water such as juices, beverages, paints and clean-
ing supplies, or (b) suspended in natural waters such as impurities
and organisms, or even (c) dissolved in water such as powders and
sugar or salt crystals. These media collectively have a wide range
of scattering and absorption properties. We first derive a simple
image formation model for single scattering of light in our setup.
Through extensive simulations of both our model and ground truth
(with multiple scattering), we then determine the space of concen-
trations and scattering properties of media for which single scat-
tering is dominant. Within this regime of valid concentrations, we
conduct simulations to demonstrate that our estimation technique
uniquely solves the inverse single scattering light transport prob-
lem. Finally, we present a simple experimental procedure to deter-
mine the best concentration (dilution) for any material despite no
prior knowledge of its scattering properties.

We have used our approach to create a dataset of scattering pa-
rameters for forty commonly found materials, which can be di-
rectly used for computer graphics rendering. Once the scattering
parameters have been estimated, they can be used to render realis-
tic images of arbitrary concentrations of the material with multiple
scattering, using a standard physically based volumetric rendering
algorithm. Figure 1 shows two renderings of a scene with four

Medium Property Notation
Concentration or Volume Fraction C
Scattering Coefficient (mm−1) β
Absorption Coefficient (mm−1) κ
Extinction Coefficient (mm−1) σ = β +κ
Single Scattering Albedo ω = β/σ
Scattering Angle θ
Henyey-Greenstein (H-G) Parameter g

H-G Phase Function P(g,θ ) = 1
4π

1−g2

(1+g2−2gcosθ )3/2

Figure 2: The different scattering properties of a participating medium
and their notations used in this paper. Light transport equations are usu-
ally written in terms of three parameters σ , β and g. We estimate these
parameters for participating media based on single scattering.

liquids in their natural high density states and their diluted states.
The scattering parameters of each material were computed using a
single HDR photograph of our setup. Notice the bright saturated
colors obtained despite the murky appearance of the diluted states.
We can also create realistic images of mixtures of the original mea-
sured materials, thus giving the user a wide flexibility in creating
realistic images of participating media.

2 Related Work
Figure 2 shows the most common properties of participating me-
dia including the scattering and absorption coefficients, and the
phase function (angular scattering distribution represented by the
Henyey-Greenstein (H-G) model [Henyey and Greenstein 1941]).
The scattering and absorption coefficients are proportional to the
concentration or volume fraction of the particulate medium. We
will briefly review some of the representative works on the direct
measurement and indirect estimation of these parameters.

Estimation based on analytic approximations to light
transport. Surprisingly, little work has been done in computer
graphics on the measurement of scattering properties of media. A
recent work is that of [Jensen et al. 2001], on the diffusion model
for subsurface scattering. They present a measurement of a num-
ber of translucent materials. However, the diffusion approxima-
tion assumes multiple scattering for optically dense media, so that
only a limited amount of information on the scattering parameters
can be estimated. For instance, this approximation is independent
of the phase function of the medium, and therefore this impor-
tant property cannot be estimated. Furthermore, the diffusion is
a poor approximation when scattering is comparable to absorption
[Prahl 1988]. The analytic multiple scattering model presented in
[Narasimhan and Nayar 2003] has also been used to estimate prop-
erties of only purely scattering media (visibility and type of weather
such as fog and mist). Our focus is somewhat different in consider-
ing fluids like juices or beverages, instead of subsurface scattering
in translucent solids like marble and skin, or weather conditions
such as fog. Nevertheless, our approach is valid for media with the
entire range of absorbing and scattering properties, significantly ex-
tending the class of measurable media for graphics.

Most recently, Hawkins et. al., [2005] measure the extinction
coefficient of optically thin smoke from the exponential attenua-
tion of a laser beam in a tank. They also use a separate mirror
setup to directly measure the phase function (see below). In con-
trast, our setup uses divergent beams from a simple bulb to include
more light in the volume (than a single laser beam) for robust mea-
surements, and requires only a single photograph to measure all
scattering properties shown in Figure 2.

Numerical solution to inverse light transport: In cases
where there are no analytic solutions to light transport, several
works have taken a numerical approach to estimate scattering prop-
erties [McCormick 1996; Antyufeev 2000]. However, it is widely



known, that inverse problems in radiative transfer that take into ac-
count multiple scattering are ill-conditioned and require regulariz-
ing assumptions to obtain reliable estimates. See the reports and
critiques by McCormick et al [1981; 1985]. Furthermore, the com-
putational complexity of such inverse estimation techniques make
it hard for measuring large sets of media for computer graphics
or vision applications. Our focus here is on estimating scattering
properties of media that can be measured in a state where multiple
scattering is negligible.

The observation that single scattering is dominant for optically
thin media has been made by [Hawkins et al. 2005; Sun et al. 2005].
We exploit this observation and apply the single scattering model
for the first time to a large class of materials which exhibit signifi-
cant multiple scattering in their natural states of existence. We also
determine the exact range of optical thicknesses for which single
scattering is dominant for media with arbitrary scattering proper-
ties, and propose an experimental procedure to ensure the domi-
nance of single scattering in real data.

Goniophotometry is often used to directly measure the phase
function. Here, several detectors measure radiance in different
directions after being scattered by a very small volume of the
medium. [Fuchs and Jaffe 2002] use thin laser light sheet mi-
croscopy for detecting and localizing microorganisms in ocean wa-
ters. [Boss and Pegau 2001; Oishi 1990] investigate the relation-
ship of light scattering at a single angle and the extinction coef-
ficient using specialized receivers and transmitters. However, all
these techniques assume that there is no attenuation of light through
the sample and require expensive devices with precise alignment of
detectors and transmitters. In contrast, our setup is extremely sim-
ple (consisting of a glass tank and an off the shelf bulb), and our
technique robustly estimates all properties from only a single pho-
tograph, thus making it inexpensive and easy to measure a large
number of participating media.

3 Single Scattering in Dilute Media
Our approach is to measure media in a state where single scattering
is dominant and multiple scattering is negligible. This is achieved
by diluting the otherwise optically thick media, such as fluids, in
water. The process of dilution does not usually corrupt the inher-
ent scattering properties of media1 since the scattering and absorp-
tion of pure water itself is negligible for very small distances (less
than 50 cm) [Sullivan 1963]. We begin by presenting our acquisi-
tion setup and an image formation model for single scattered light
transport within the measurement volume. We will then present
extensive simulations of this model and compare with traditional
Monte-Carlo approaches that include multiple scattering, to derive
a valid space of scattering parameters over which single scattering
is dominant. Based on this simulation, we design a simple experi-
mental procedure to choose the best concentration for any particu-
lar medium. Later, we will describe our algorithm to estimate the
scattering parameters using our image formation model.

3.1 Acquisition Setup
The measurement apparatus, shown in Figure 3, consists of a
25 × 30 × 30 cm3 tank that is filled with the diluted scattering
medium. The depth of the tank is large enough to ensure the scat-
tering angles are adequately covered (0 to 175 degrees). The vol-
ume of the tank is designed to be large enough to dilute concen-
trated media such as milk. Two sides of the tank are constructed
using anti-reflection glass and the other sides using diffuse black
coated acrylic. A small frosted (diffuse) glass bulb fixed to a side

1When crystals are dissolved in water, they may exhibit different scat-
tering properties due to ionization.

Frosted Bulb

Anti-reflection glass

Figure 3: Two views of the apparatus used to measure scattering proper-
ties of water-soluble media. A glass tank with rectangular cross-section is
fitted with a small light bulb. The glass is anti-reflection coated. Different
volumes of participating media are diluted with water in the tank, to simu-
late different concentrations. A camera views the front face of the tank at
normal incidence to avoid refractions at the medium-glass-air boundaries.
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Figure 4: A volume filled with a homogeneous participating medium and
illuminated by an isotropic point light source. A camera views the front face
of the volume at normal incidence. The path of one single-scattered ray as it
travels from the source to the camera is shown. This ray is first attenuated
in intensity over a distance d, is then scattered at an angle π − θ , and
finally, is attenuated again over a distance z, before reaching the camera.
The irradiances due to all the rays that scatter into a viewing direction must
be integrated to obtain the final camera irradiance.

of the tank illuminates the medium. A Canon EOS-20D 12-bit
3504x2336 pixel digital camera with a zoom lens is placed five
meters away from the tank and observes a face of the tank at nor-
mal incidence. The field of view occupied by the tank in the im-
age is three degrees and is therefore approximately orthographic.
Orthographic projection avoids the need for modeling refractions
of light rays at the medium-glass-air interfaces. In all our experi-
ments, about 25 different exposures (1/500s to 10s) were used to
acquire HDR images.

3.2 Image Formation Model
Although the basic principles of single scattering are well known,
the exact nature of the image formation model depends on the ge-
ometry of the volume and the locations of the source and the cam-
era. Figure 4 illustrates the illumination and measurement geome-
try based on our acquisition setup. For simplicity, we will assume
that the medium is illuminated by an isotropic point light source
(later we extend the analysis to area sources) of intensity I0 that is
located at the coordinates (0,B,H).

Consider the path of one single-scattered light ray (thick ray in
Figure 4) in the medium as it travels from the source to the camera.
This ray is first exponentially attenuated in intensity for a distance
d. At location U (x,y,z), depending on the phase function P, a
fraction of the light intensity is scattered at an angle π−θ . Finally,
the ray is attenuated again for a distance z, before it reaches the
camera. Mathematically, the irradiance at the camera produced by



this ray is written as [Sun et al. 2005],

E(x,y,z) =
I0
d2 . e−σd . β P(g,π−θ ) . e−σz .

d =
√

x2 +(y−H)2 +(z−B)2 , cosθ=(z−B)/d .(1)

Here, P(g,π−θ ) is the Henyey-Greenstein (H-G) phase function,
and β and σ are the scattering and extinction coefficients (Figure
2). Then, the total irradiance E at pixel (x,y) in the camera is ob-
tained by integrating intensities due to all rays that are scattered at
various angles along the pixel’s line of sight (Z-direction),

E(x,y) =
2B∫
0

E(x,y,z)dz

= β
2B∫
0

I0 e−σ(z+
√

x2+(y−H)2+(z−B)2)

x2 +(y−H)2 +(z−B)2
P(g,π−θ ) dz . (2)

The above equation relates the camera irradiances as a function of
the three medium parameters, σ , β and g. Although obtaining an
analytic (closed-form) solution to the above integral is hard [Sun
et al. 2005], it is straightforward to evaluate it numerically.

3.3 Space of valid medium parameters
Different materials have their own natural densities and scattering
properties, which are all unknown before experimentation. So, how
do we know if single scattering is dominant at a particular concen-
tration for a given material? Note that the scattering β , absorption
κ and extinction σ , coefficients are proportional to the concentra-
tion (fraction of volume diluted in water) of the medium. Thus,
we performed exhaustive simulations to derive the complete space
of parameters for which the above image formation model is ac-
curate2. For ground truth, we simulated the irradiances obtained
using multiple scattering for the same set of parameter values, us-
ing a standard volumetric Monte Carlo technique. Figure 5 shows
a plot of the differences between energies captured by the single
scattering and multiple scattering simulations for a set of parame-
ter values. From the RMS errors in the plot, we can define the up-
per bounds on the parameters κ and σ = β +κ as those for which
the energy differences between our model and the ground truth are
less than five percent. For example, the valid domain where single
scattering is dominant, is approximately σ < 0.04 for κ < 0.004 .

3.4 How to choose the best concentration?
Based on the simulations, we present an experimental method to
determine the best concentration for our measurements. Figure
6 shows images acquired of different concentrations of milk and
MERLOT. Which among these images should we use to measure
the scattering properties? Several heuristics may be used to decide
on a particular concentration. For instance, the extent of blurring of
the light source provides us a good clue to determine whether multi-
ple scattering is significant (rightmost image in Figure 6). A better
heuristic is to compute an approximation to the extinction coeffi-
cient σ from the attenuated brightness of the light source. Under
single scattering, the radiance in the direction of the source (dis-
tance d) can be approximated using exponential attenuation as:

E(0) ≈
(

I0
d2

)
e−σ̂ d , (3)

2This extends the simulations in [Sun et al. 2005], where a small part of
the possible parameter space (pure isotropic scattering) was considered.
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Figure 5: Plot showing the differences between irradiances obtained by
simulating single scattering and multiple scattering (ground truth) models,
for a large space of parameter values σ and κ = σ−β . An upper bound on
the differences of, say, 5%, can be used to define the range of parameters for
which single scattering is a valid approximation. From the plot, the valid
range is approximately σ < 0.04 for κ < 0.004 .

where σ̂ is an estimate of the extinction coefficient σ . In the ab-
sence of multiple scattering, this estimate is closer to the true value
of σ (and varies linearly with concentration), whereas, in the pres-
ence of multiple scattering, this estimate is called diffuse or reduced
attenuation coefficient [Ishimaru 1978] and is usually much lesser
than σ . Thus, we can determine whether the concentration can be
used for measurement by observing the plot (Figure 7 of σ̂ versus
the volume fraction of the medium diluted with water). Figure 7
shows that after a certain amount of milk is added to water, the
σ̂ no longer remains linear with concentration (dashed line), and
must not be used for measurements. For a purely absorbing liquid
like wine (MERLOT), the plot is completely linear and any image
that has the best signal-to-noise ratio may be used. Similarly, the
plot shows that coke scatters, albeit weakly, and ESPRESSO coffee
scatters light strongly. We use this simple procedure to try several
concentrations and observe where the linearity in the plot fails to
determine the best concentration. As a further test, we check if the
estimated parameters from this concentration lie within the valid
space of parameters simulated above.

9ml 15ml 20ml

900ml 1500ml 16250ml

Figure 6: Images illustrating different degrees of scattering and absorp-
tion. [Top row] Images of milk at various concentrations. Since milk is a
highly scattering liquid, we observe an increase in blurring with increasing
concentration. [Bottom Row] Images of red wine at various concentrations.
Red wine is a highly absorbing liquid, showing only a saturation of the bulb
color with increasing concentration, and no blurring. The highlighted im-
ages are chosen for estimating the parameters.
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Figure 7: Plot of extinction coefficient estimate σ̂ as a function of the vol-
ume of the media diluted in water in the measurement apparatus. The plots
are linear when multiple scattering is negligible and single scattering is
dominant. As the concentrations of media (and hence multiple scattering)
increase, the estimated σ̂ is less than the true extinction coefficient σ . For
a highly scattering medium such as milk, the linearity fails at very low con-
centrations, while for an absorbing medium such as MERLOT, the linearity
is always preserved.

4 Estimating Medium Properties based
on Single Scattering

In this section, we present a non-linear minimization algorithm to
estimate the properties of the medium (σ , β and g), from the mea-
sured image irradiances E(x,y) (see Equation (2)). We then demon-
strate the accuracy of the algorithm through extensive simulations.

4.1 Formulating the Error Function
The error at each pixel is written as the difference between the mea-
sured irradiance E(x,y) and the irradiance predicted by the model
in equation 2,

F (x,y) = E(x,y)−RHS(x,y) . (4)

Here RHS(x,y) is the numerically evaluated right hand side integral
in the model of equation 2. Then, the parameters σ , β and g can be
estimated by computing the global minimum of the sum of squares
of the errors of all the pixels, as,

min
β ,σ ,g

∑
y
∑
x

F 2(x,y) . (5)

The above function essentially requires a 3-parameter search. How-
ever, note that the parameter β is a global scale factor. Thus, we
can eliminate β by defining a normalized error function as,

Fnorm(x,y) =
E(x,y)

max
x,y

E(x,y)
− RHS(x,y)

max
x,y

RHS(x,y)
. (6)

Now, instead of requiring a 3-parameter search, the above problem
can be reduced to a 2-parameter search that minimizes the normal-
ized objective function to estimate σ and g:

min
σ ,g ∑y ∑x

F 2
norm(x,y) . (7)

Then, the scale factor β can be recovered using the original func-
tion F . To compute the global minimum, we use Nelder-Meade
search implemented by the MatlabTM function ”fminsearch”.
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Figure 8: Plot showing the errors in reconstruction of the single scattering
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values. The low errors indicate the accuracy of our estimation technique.
The maximum of the errors for positive or negative g is shown.

4.2 Estimation Accuracy using Simulations
Fortunately, since the space of the possible parameters is small (see
Section 3.3), exhaustive simulation of the above algorithm is pos-
sible. We only show the correctness of the estimated parameters
σ and g, using Equation (7). The estimation of the scale factor β
then follows trivially. Gaussian noise of unit standard deviation was
added in all our simulations. The non-linear search was initialized
randomly for both the parameters σ and g. The plot in Figure 8
shows the error in the estimated parameters as compared to ground
truth values. In all the cases, the estimation errors were less than
0.0001%, and the number of iterations required for convergence
was less than 100. Since the numerical evaluation of the integral is
very fast, the time for convergence is usually of the order of a few
minutes. This demonstrates that the inverse estimation is fast and
results in unique and correct parameters.

4.3 Implementation Issues
We present two issues that need careful implementation for our al-
gorithm to be successful on real images.
Calibrating the area source: Our method does not rely on
isotropic point sources but requires only a calibrated divergent
source to take advantage of the different phase angles measured
in the same view and hence, any off-the-shelf bulb suffices. For our
real setup, we have implemented a spherical diffuse area source. To
compute the irradiance at any point P within the tank, we sample
(using roughly 10x10 samples) the hemisphere of the bulb that is
visible to that point P. The non-uniform directional intensities and
intensity fall-off were calibrated carefully by using a light meter at
discrete 3D locations within the tank. The camera also measures
a pure water image (without any scattering or absorption) to give
the image irradiance of each source element (sample). This irradi-
ance along with the fall-off value and the pixel solid angle is used
to determine the intensity without scattering.
Instabilities in the H-G phase function for highly absorbing me-
dia: The H-G phase function was designed for scattering media
and is not defined for purely absorbing media. However, for highly
absorbing media, the scattering coefficient β is very low and the
average cosine g ≈ 1 since rays only pass straight through, much
like highly forward scattering media. Even though this was not
a problem in simulations, the instability for g > 0.95 can be high
in real experiments. For this special case, we simply use a trun-
cated legendre polynomial expansion of the H-G phase function as
P(g,θ ) = ∑i (2i+1)gi Li(θ ) , and truncate to less than 100 terms.
As an undesirable byproduct the fits may show some “ringing” at
the tail of the phase function. However, this truncated function
still fits higher brightness well and thus does not affect appearance
strongly. Despite this instability, the H-G phase function is flexible
enough to model the scattering behavior of all our materials.
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Figure 9: Captured photographs of a variety of water-soluble media illus-
trating different degrees of scattering and absorption. For highly scattering
media such as milk, chocolate milk and espresso, we observe a significant
blur around the bulb. For highly absorbing media such as grape juice, there
is very little scattering. All the images have wide dynamic range of inten-
sities and hence, we have tone-mapped them for illustration. Please see
supplementary material for more images.

5 Actual Measurements and Validation
Using our approach, we have measured the scattering properties of
a broad class of forty commonly found participating media that can
be either (a) diluted in water such as juices (for example, apple,
strawberry, orange), beverages (for example, coffee, soft drinks,
milks, wines, beers), cleaning supplies (detergents), or (b) sus-
pended in natural waters such as impurities and organisms, or even
(c) dissolved in water such as powders and sugar, salt crystals. In
addition to liquids available at the usual supermarkets, we have
also collected four samples from different locations and depths in
the Pacific ocean. We then present detailed validation by showing
that our parameters extrapolate correctly to higher concentrations
as well, where multiple scattering is prominent.

A subset of nine photographs of the diluted set of liquids con-
tained in the glass tank is shown in Figure 9, similar to the four
in Figure 1. Together, these include representative types of media
such as highly scattering, highly absorbing and moderate levels of
absorption and scattering. The images show a high dynamic range
of brightness and are enhanced to show the scattering effects. The
set of scattering parameters for all the media is shown in Table 1.
The extinction (σ ) and scattering (β ) coefficients are given for each
of the three color channels, red, green and blue. The phase function
parameter g is also shown for the three color channels. Note that all
the extinction and scattering coefficients are less than 0.04 in accor-
dance with our simulations in Section 3.3. Also, as expected, in all
cases, the scattering coefficient does not increase with wavelength.

5.1 Fits to Measured Brightness Profiles
We demonstrate the accuracy of our technique by reconstructing
the photographs using the estimated parameters. Although we con-
sidered the brightness at all pixels in the captured photographs, for
illustration purposes we show only the profile of intensity values
in the direction that is radially outward from the source. Figure 10

0 50 100 150
0

0.2

0.4

0.6

0.8

Distance from the Source (mm)

In
te

ns
ity

 (
0−

25
5)

          Original Profile

          Reconstructed Profile

50 100 150
0

1

2

3

4

Yuengling Beer Cappuccino Powder

0 50 100 150
0

2

4

6

8

10

0 50 100 150
0

5

10

15

20

25

Sports Gatorade Low Fat Milk

0 50 100 150
0

2

4

6

8

10

12

0 50 100 150
0

5

10

15

Regular Soymilk Orange Powder

Figure 10: Fits obtained using the estimated parameters as compared
against the corresponding measured brightness profiles in the captured pho-
tographs. The brightness profile is measured radially outward from the
source in the image. The red, green and blue plots correspond to the three
color channels of the camera. The match between the estimated and mea-
sured data demonstrates the accuracy of the estimation technique. The fits
for six (out of 40) representative materials with varying degrees of absorp-
tion and scattering are shown. Please see the supplementary material for
more plots.

shows the good fits obtained using the estimated parameters com-
pared against the measured profiles for a subset of six materials of
varying degrees of scattering and absorption properties (please re-
view supplementary document for plots of other materials). When
there is no scattering (pure absorption), fitting a scattering model
can induce some “ringing” effect in the dark tail end of the profile.
We can detect this special case and use the attenuation model to
compute the absorption coefficient (κ = σ ).

5.2 Extrapolation to higher concentrations
The extinction and scattering coefficients are proportional to the
concentration of the medium. Thus, if β1 and σ1 are estimated at
concentration c1, then the coefficients β2 and σ2 at another concen-
tration c2 can be extrapolated using:

β2 = β1

(
c2

c1

)
, σ2 = σ1

(
c2

c1

)
. (8)

Note, however, that g is independent of the medium concentration.
While we estimate the parameters from lower concentrations, it is
important to ensure that the parameters can be scaled to any con-
centration (where multiple scattering cannot be ignored) to produce
accurate scattering effects. We show an example validation using
fits obtained in comparison to the measured brightness profiles of
chocolate milk at various concentrations. Figure 11 shows the fits



Material Name
Extinction Coefficient (σ ) Scattering Coefficient (β ) Average Cosine % RMS

Volume (×10−2 mm−1) (×10−2 mm−1) (g) Error
R G B R G B R G B

Milk (lowfat) 16ml 0.9126 1.0748 1.2500 0.9124 1.0744 1.2492 0.932 0.902 0.859 0.95
Milk (reduced) 18ml 1.0750 1.2213 1.3941 1.0748 1.2209 1.3931 0.819 0.797 0.746 1.27
Milk (regular) 15ml 1.1874 1.3296 1.4602 1.1873 1.3293 1.4589 0.750 0.714 0.681 1.56
Coffee (espresso) 8ml 0.4376 0.5115 0.6048 0.2707 0.2828 0.2970 0.907 0.896 0.880 1.90
Coffee (mint mocha) 6ml 0.1900 0.2600 0.3500 0.0916 0.1081 0.1460 0.910 0.907 0.914 2.00
Soy Milk (lowfat) 16ml 0.1419 0.1625 0.2740 0.1418 0.1620 0.2715 0.850 0.853 0.842 1.75
Soymilk (regular) 12ml 0.2434 0.2719 0.4597 0.2433 0.2714 0.4563 0.873 0.858 0.832 1.68
Chocolate Milk (lowfat) 10ml 0.4282 0.5014 0.5791 0.4277 0.4998 0.5723 0.934 0.927 0.916 1.04
Chocolate Milk (regular) 16ml 0.7359 0.9172 1.0688 0.7352 0.9142 1.0588 0.862 0.838 0.806 2.19
Soda (coke) 1600ml 0.7143 1.1688 1.7169 0.0177 0.0208 0.0000 0.965 0.972 − 4.86
Soda (pepsi) 1600ml 0.6433 0.9990 1.4420 0.0058 0.0141 0.0000 0.926 0.979 − 2.92
Soda (sprite) 15000ml 0.1299 0.1283 0.1395 0.0069 0.0089 0.0089 0.943 0.953 0.952 3.22
Sports Gatorade 1500ml 0.4009 0.4185 0.4324 0.2392 0.2927 0.3745 0.933 0.933 0.935 3.42
Wine (chardonnay) 3300ml 0.1577 0.1748 0.3512 0.0030 0.0047 0.0069 0.914 0.958 0.975 5.10
Wine (white zinfandel) 3300ml 0.1763 0.2370 0.2913 0.0031 0.0048 0.0066 0.919 0.943 0.972 5.49
Wine (merlot) 1500ml 0.7639 1.6429 1.9196 0.0053 0.0000 0.0000 0.974 − − 4.56
Beer (budweiser) 2900ml 0.1486 0.3210 0.7360 0.0037 0.0069 0.0074 0.917 0.956 0.982 5.61
Beer (coorslight) 1000ml 0.0295 0.0663 0.1521 0.0027 0.0055 0.0000 0.918 0.966 − 4.89
Beer (yuengling) 2900ml 0.1535 0.3322 0.7452 0.0495 0.0521 0.0597 0.969 0.969 0.975 4.48
Detergent (Clorox) 1200ml 0.1600 0.2500 0.3300 0.1425 0.1723 0.1928 0.912 0.905 0.892 1.99
Detergent (Era) 2300ml 0.7987 0.5746 0.2849 0.0553 0.0586 0.0906 0.949 0.950 0.971 4.17
Apple Juice 1800ml 0.1215 0.2101 0.4407 0.0201 0.0243 0.0323 0.947 0.949 0.945 4.92
Cranberry Juice 1500ml 0.2700 0.6300 0.8300 0.0128 0.0155 0.0196 0.947 0.951 0.974 4.60
Grape Juice 1200ml 0.5500 1.2500 1.5300 0.0072 0.0000 0.0000 0.961 − − 5.19
Ruby Grapefruit Juice 240ml 0.2513 0.3517 0.4305 0.1617 0.1606 0.1669 0.929 0.929 0.931 2.68
White Grapefruit Juice 160ml 0.3609 0.3800 0.5632 0.3513 0.3669 0.5237 0.548 0.545 0.565 2.84
Shampoo (balancing) 300ml 0.0288 0.0710 0.0952 0.0104 0.0114 0.0147 0.910 0.905 0.920 4.86
Shampoo (strawberry) 300ml 0.0217 0.0788 0.1022 0.0028 0.0032 0.0033 0.927 0.935 0.994 2.47
Head & Shoulders 240ml 0.3674 0.4527 0.5211 0.2791 0.2890 0.3086 0.911 0.896 0.884 1.91
Lemon Tea Powder 5tsp 0.3400 0.5800 0.8800 0.0798 0.0898 0.1073 0.946 0.946 0.949 2.83
Orange Powder 4tbsp 0.3377 0.5573 1.0122 0.1928 0.2132 0.2259 0.919 0.918 0.922 2.25
Pink Lemonade Powder 5tbsp 0.2400 0.3700 0.4500 0.1235 0.1334 0.1305 0.902 0.902 0.904 1.02
Cappuccino Powder 0.25tsp 0.2574 0.3536 0.4840 0.0654 0.0882 0.1568 0.849 0.843 0.926 0.67
Salt Powder 1.75cup 0.7600 0.8685 0.9363 0.2485 0.2822 0.3216 0.802 0.793 0.821 1.34
Sugar Powder 5cup 0.0795 0.1759 0.2780 0.0145 0.0162 0.0202 0.921 0.919 0.931 1.80
Suisse Mocha Powder 0.5tsp 0.5098 0.6476 0.7944 0.3223 0.3583 0.4148 0.907 0.894 0.888 1.33
Mission Bay Surface Water (1-2 hours) 3.3623 3.2929 3.2193 0.2415 0.2762 0.3256 0.842 0.865 0.912 2.48
Pacific Ocean Surface Water (1 hour) 3.3645 3.3158 3.2428 0.1800 0.1834 0.2281 0.902 0.825 0.914 2.57
Mission Bay 10ft deep Water (30 min) 3.4063 3.3410 3.2810 0.0990 0.1274 0.1875 0.726 0.820 0.921 5.10
Mission Bay 10ft deep Water (8 hours) 3.3997 3.3457 3.2928 0.1018 0.1033 0.1611 0.929 0.910 0.945 5.13

Table 1: Scattering properties for 40 different water-soluble materials estimated using our technique. The second column lists the volumes V of the materials
dissolved in 23−V litres of water to achieve the desired levels of dilution where single scattering is dominant. These parameters can be proportionately scaled
to any other volume Vn, using a scale factor of Vn/V . The percentage RMS errors (obtained over all pixels) quantify the accuracy of fits achieved with the
estimated parameters to the measured intensity profiles. Errors for all the highly scattering media are less than 3%. For low-scattering materials, the total
intensity of profiles is relatively low, thus making the estimation more sensitive to noise. Even for such low-scattering media, the errors are less than 5− 6%.
The last four rows are the parameters for various ocean water samples at their original concentrations. The time elapsed between the collection of samples
and the image acquisition is listed in the parentheses. Since the suspended particles in ocean water settle down with time, we observe a small decrease in
scattering coefficients in the sample for which 8 hours had been elapsed as compared to the one which was imaged just 30 minutes after collection. Note that
all the extinction and scattering coefficients are less than 0.04 in accordance with our simulations in Section 3.3. As expected, the scattering coefficients do
not decrease with wavelength. The scattering albedos (ratio of scattering coefficients to the extinction coefficients) is much higher for the scattering media
(milk, coffee, orange powder) as compared to the absorbing ones (coke, wine). For materials that have β = 0, the phase function parameter g is undefined. As
seen from the values of g which are closer to 1, several media are predominantly forward scattering. The parameters for the milks match those in [Jensen et al.
2001] up to a scale factor (due to the different fat contents in the milks used), providing further support for our estimation.

in this validation experiment. First, we estimate the parameters
from the photograph of only 8ml of chocolate milk diluted in wa-
ter, where single scattering is dominant. In (a), we show the fit
obtained compared against the measured intensity profile. How-
ever, for higher concentrations of 50ml, 100ml and 150ml, multiple
scattering cannot be ignored. For these cases, we scaled the coeffi-
cients (σ and β ) by factors of {50/8,100/8,150/8} (see Equation

8) and use them in a standard volumetric Monte Carlo renderer that
includes multiple scattering. The plots in (b) - (d) demonstrate the
strong fits obtained. This demonstrates that our parameters are ro-
bust enough to be extrapolated to higher concentrations. In fact,
we will show renderings of most of the liquids at their natural con-
centrations (Section 6) despite measuring the parameters at signifi-
cantly dilute states.
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Figure 11: Extrapolation of parameters to higher concentrations with mul-
tiple scattering. (a) 8 ml of chocolate milk is diluted in water and the
parameters are estimated using the measured brightness profile. (b) - (d)
The parameters estimated in (a) are scaled to higher concentrations (50ml,
100ml and 150ml) where multiple scattering cannot be ignored. Plots show
a good fit between the brightness profile obtained by extrapolating our esti-
mated parameters with a Monte Carlo renderer, and the ground truth mea-
surements. The fits are shown in logarithmic scale.

MERLOT Wine CHARDONNAY Wine

ESPRESSO Coffee YUENGLING Beer

Figure 12: Rendered scenes of liquids in a cognac glass under complex
lighting. The KITCHEN environment map [Debevec 1998] was used for
the lighting. The natural colors, shading and caustics indicate the high
accuracy of our parameters.

Pink Lemonade Powder ERA Detergent

Strawberry Shampoo Orange Powder

Figure 13: Rendered scenes of liquids and powders in a cognac glass
illuminated with a single directional white light source. The bright caustics
show the colors transmitted through the media.

6 Example Volumetric Renderings
The scattering properties estimated in this work can be input to any
volumetric rendering algorithm to create visual effects of partici-
pating media. Here, we chose brute-force volumetric Monte-Carlo
path tracing since it can be used to render arbitrary materials3. We
use photon mapping for rendering caustics. For display purposes,
we have applied a tone-mapping operator [Ward-Larson et al. 1997]
to the renderings. Indices of refraction (IOR) of these media are
also important for rendering. In initial experiments, we found the
IOR to be between 1.33 (water) and 1.42 (milk) and varying lin-
early with concentrations, by using location of total internal reflec-
tion from the top of the water surface in the tank. In current ren-
derings, we have simply used an IOR proportionate to the medium
concentrations between 1.33 and 1.42, since this does not alter the
visual appearance of the liquid drastically. We wish to perform
thorough experiments in the future.

Figure 12 shows a mosaic of images of liquids rendered in their
natural concentrations, partially filled in a cognac glass and il-
luminated by the “Kitchen Environment Map” [Debevec 1998].
These include two different types of wine (deep red MERLOT and
golden-yellow CHARDONNAY), dark brown coffee ESPRESSO,
and the golden-orange YUENGLING beer. Notice the color dif-
ferences between MERLOT (no scattering) and ESPRESSO (mod-
erate scattering) even though both of them are dark liquids. Ob-
serve that while beer and CHARDONNAY are very clear liquids,
coffee is noticeably more opaque. Similarly, Figure 13 shows a
mosaic of predominantly bright colored liquids such as the deep

3Under-sampling of path-traces can cause speckle noise seen in the ren-
derings, and is not an artifact of our estimation.
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Figure 14: Effect of changing concentrations of a highly absorbing (MERLOT) and a highly scattering (milk) liquid. In the case of wine, notice that while
the color gradually becomes deep red, the liquid remains clear, due to the lack of scattering. In the case of milk, however, we see a quick transition from a
murky appearance to a soft white appearance, due to the high scattering albedo of milk.

blue ERA detergent, the reddish strawberry shampoo, and powders
dissolved in water such as the ”pinkish” strawberry lemonade and
orange powders. These images are illuminated only by a strong
directional source to illustrate the bright caustics whose colorings
are primarily due to absorption. We also present different types of
novel visual effects obtained by changing or blending the param-
eters of different media to create realistic images of dilutions and
mixtures of the original measured materials.

Effect of changing concentrations: Figure 14 illustrates the ef-
fects of changing concentrations of media in water. The top row
shows a transition from pure water to MERLOT, obtained by scal-
ing parameters of wine as in Equation 8. Notice the changes in
caustics and the gradual deepening of the red color of the liquid.
Note that as the transition occurs, the liquid remains clear even
though the color changes; this is due to the pure absorbing nature
of wine, as depicted by our parameters. The bottom row shows
the effect of changing milk concentration in water. Since milk is
a highly scattering medium, as expected, the appearance quickly
changes from murky whitish water to soft and thick white milk.
This is because the scattering albedo β/σ is high and the phase
function parameter g is such that a significant amount of light dif-
fuses into different directions.

Blending parameters for mixtures of media: For example,
what are the properties of a mixture of ESPRESSO and milk, or
otherwise known as light coffee? Consider a medium containing a
mixture of two types of media, A and B. The properties of the indi-
vidual media are denoted with the subscripts A and B. The scatter-
ing coefficient of the mixture is obtained by a weighted average,

βmix =
VAβA +VBβB

VA +VB
. (9)

The absorption and extinction coefficients are similarly defined.

Unlike above where we just changed the scattering and absorption
coefficients, here a new phase function parameter must be defined
for the mixture as the weighted average [Key 2005],

gmix =
gAβA +gBβB

βmix
. (10)

These equations can be used to render mixtures of participating me-
dia or morph from one medium into another. Figure 15 shows mix-
ing of different proportions of milk and wine. The second example
shows a more common mixing of milk and coffee. Such mixing
between materials, for the first time, gives a user the flexibility to
create novel renderings of participating media.

7 Conclusion
Rendering the rich visual effects of participating media, like fluids
or underwater impurities, requires precise measurements of their
scattering properties. In this paper, we have developed a simple de-
vice and method for accurately estimating the scattering properties
of a variety of media that can be diluted in water. Our approach
only requires a single high dynamic range photograph. By dilut-
ing the medium, we work in the single scattering regime, where the
inverse light transport problem is well conditioned—however, we
can later render at arbitrary concentrations and even mix materials.
We have presented a database of scattering parameters for 40 com-
monly found materials. This database is the first of its kind, and
enables computer graphics practitioners to accurately render a wide
variety of participating media, rather than having to set parameters
in an ad-hoc fashion. In the future, we would like to improve this
work by investigating different phase functions and measuring in-
dices of refraction more accurately.



50% Milk + 50% Coffee 75% Milk + 25% Coffee

50% Wine + 50% Milk 75% Wine + 25% Milk

Figure 15: Mixing two liquids - milk and coffee (top) and milk and wine
(bottom), in different proportions. The wine-milk combination produces a
soft pink appearance while the ESPRESSO-milk combination produces soft
but brown appearance. (Minor noise due to Monte-Carlo under-sampling.)
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