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Abstract—Multisampled imaging is a general framework for using pixels on an image detector to simultaneously sample multiple
dimensions of imaging (space, time, spectrum, brightness, polarization, etc.). The mosaic of red, green, and blue spectral filters found
in most solid-state color cameras is one example of multisampled imaging. We briefly describe how multisampling can be used to
explore other dimensions of imaging. Once such an image is captured, smooth reconstructions along the individual dimensions can be
obtained using standard interpolation algorithms. Typically, this results in a substantial reduction of resolution (and, hence, image
quality). One can extract significantly greater resolution in each dimension by noting that the light fields associated with real scenes
have enormous redundancies within them, causing different dimensions to be highly correlated. Hence, multisampled images can be
better interpolated using local structural models that are learned offline from a diverse set of training images. The specific type of
structural models we use are based on polynomial functions of measured image intensities. They are very effective as well as
computationally efficient. We demonstrate the benefits of structural interpolation using three specific applications. These are
1) traditional color imaging with a mosaic of color filters, 2) high dynamic range monochrome imaging using a mosaic of exposure
filters, and 3) high dynamic range color imaging using a mosaic of overlapping color and exposure filters.

Index Terms—Image formation, multisampling, dynamic range, color, resolution, interpolation, structural models, learning, Bayer

pattern.
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1 MULTISAMPLED IMAGING USING ASSORTED PIXELS

CURRENTLY, vision algorithms rely on images with 8 bits of
brightness or color at each pixel. Images of such quality

are simply inadequate for many real-world applications.
Significant advances in imaging canbemadebyexploring the
fundamental trade offs that exist between various dimen-
sions of imaging (see Fig. 1). The relative importance of these
dimensions clearly depends on the application at hand. In
any practical scenario, however, we are given a finite number
of pixels (residing on one or more detectors) to sample the
imaging dimensions. Therefore, it is beneficial to view
imaging as the judicious assignment of resources (pixels) to
thedimensionsof imaging that are relevant to theapplication.

Different pixel assignments can be viewed as different
types of samplings of the imaging dimensions. In all cases,
however, more than one dimension is simultaneously
sampled. In the simplest case of a gray-scale image, image
brightness and image space are sampled simultaneously.
More interesting examples result from using image detec-
tors made of an assortment of pixels, as shown in Fig. 2.
Fig. 2a shows the popular Bayer mosaic [1] of red, green, and
blue spectral filters placed adjacent to pixels on a detector.
Since multiple color measurements cannot be captured
simultaneously at a pixel, the pixels are assigned to specific
colors to trade off spatial resolution for spectral resolution.
Over the last three decades, various color mosaics have been

suggested, each one resulting in a different trade off (see [7],
[8], [17], [20], [14]).

Historically, multisampled imaging has only been used
in the form of color mosaics. Only recently has the approach
been used to explore other imaging dimensions. Fig. 2b
shows the mosaic of neutral density filters with different
transmittances used in [19] to enhance an image detector’s
dynamic range. In this case, spatial resolution is traded-off
for brightness resolution (dynamic range). In [22], spatially
varying transmittance and spectral filters were used with
regular wide FOV mosaicing to yield high dynamic range
and multispectral mosaics. Fig. 2c shows how space,
dynamic range, and color can be sampled simultaneously
by using a mosaic of filters with different spectral responses
and transmittances. This type of multisampling is novel
and, as we shall show, results in high dynamic range color
images. Another example of assorted pixels is proposed in
[2], where a mosaic of polarization filters with different
orientations is used to estimate the polarization parameters
of light reflected by scene points. This idea can be used in
conjunction with a spectral mosaic, as shown in Fig. 2d, to
achieve simultaneous capture of polarization and color.

Multisampled imaging can be exploited in many other
ways. Fig. 2e shows how temporal sampling can be used
with exposure sampling. This example is related to the idea
of sequential exposure change proposed in [18], [9], [16] to
enhance dynamic range. However, it is different in that the
exposure is varied as a periodic function of time, enabling
the generation of high dynamic range, high frame rate
video. The closest implementation appears to be the one
described in [12], where the electronic gain of the camera is
varied periodically to achieve the same effect. A more
sophisticated implementation may sample space, time,
exposure, and spectrum simultaneously, as shown in Fig. 2f.

The above examples illustrate that multisampling pro-
vides a general framework for designing imaging systems
that extract information that is most pertinent to the
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application. Though our focus is on the visible light
spectrum, multisampling is, in principle, applicable to any
form of electromagnetic radiation. Therefore, the pixel
assortments and reconstruction methods we describe in
this paper are also relevant to other imaging modalities,
such as X-ray, magnetic resonance (MR), and infrared (IR).
Furthermore, the examples we discuss are two-dimen-
sional, but the methods we propose are directly applicable
to higher-dimensional imaging problems, such as ones
found in tomography and microscopy.

2 LEARNED STRUCTURAL MODELS FOR

RECONSTRUCTION

How do we reconstruct the desired image from a captured
multisampled one? Nyquist’s theory [4] tells us that, for a
continuous signal to be perfectly reconstructed from its
discrete samples, the sampling frequency must be at least
twice the largest frequency in the signal. In the case of an
image of a scene, the optical image is sampled at a
frequency determined by the size of the detector and the
number of pixels on it. In general, there is no guarantee that
this sampling frequency satisfies Nyquist’s criterion. There-
fore, when a traditional interpolation technique is used to
enhance spatial resolution, it is bound to introduce errors in
the form of blurring and/or aliasing. In the case of
multisampled images (see Fig. 2), the assignment of pixels
to multiple dimensions causes further undersampling of
scene radiance along at least some dimensions. As a result,
conventional interpolation methods are even less effective.

Our objective is to overcome the limits imposed by
Nyquist’s theory by using prior models that capture
redundancies inherent in images. The physical structures
of real-world objects, their reflectances and illuminations,
impose strong constraints on the light fields of scenes. This
causes different imaging dimensions to be highly correlated
with each other. Therefore, a local mapping function can be
learned from a set of multisampled images and their
corresponding correct (high-quality) images. As we shall
see, it is often beneficial to use multiple mapping functions,
as shown in Fig. 5a. Then, given a novel multisampled
image, these mapping functions can be used to reconstruct
an image that has enhanced resolution in each of the
dimensions of interest (see Fig. 5b). We refer to these
learned mapping functions as local structural models.

We are not claiming that any learned model (mapping
function) can guarantee perfect reconstruction of an image

irrespective of its sampling. Instead, we posit that the
models can provide the most likely (frequently occurring in
real scenes) value for an image point given neighboring
measurements. This permits us to develop reconstruction
algorithms that compute high-quality images from low-
resolution multisampled images.

The general idea of learning interpolation functions is not
new. In [10], aprobabilisticMarkovnetwork is trained to learn
the relationship between sharp and blurred images and then
used to increase spatial resolution of an image. In [3], a linear
system of equations is solved to estimate a high-resolution
image from a sequence of low-resolution images wherein the
object of interest is in motion. Note that both of these
algorithms are developed to improve spatial resolution,while
our interest is in resolution enhancement along multiple
imaging dimensions.

Learning-based algorithms have also been applied to the
problem of interpolating images captured using color
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Fig. 1. A few dimensions of imaging. Pixels on an image detector may be
assigned to multiple dimensions in a variety of ways depending on the
needs of the application. Such pixels are called “assorted pixels.”

Fig. 2. A few examples of multisampled imaging using assorted pixels.
(a) A color mosaic. Such mosaics are widely used in solid-state color
cameras. (b) An exposure mosaic. (c) A mosaic that includes different
colors and exposures. (d) A mosaic using color and polarization filters.
(e) and (f) Multisampling can also involve varying exposure and/or color
over space and time.



mosaics. The most relevant among these are the works of
[24], [14] that estimate an interpolation kernel from training
data (high-quality color images of test patterns and their
corresponding color mosaic images). The same problem
was addressed in [5] using a Bayesian method.

We are interested in a general method that can interpolate
not just color mosaic images, but any type of multisampled
data. For this, we propose the use of a structuralmodelwhere
each reconstructed value is a polynomial function of the
image brightnesses measured within a local neighborhood.
The size of the neighborhood and the degree of the
polynomial vary with the type of multisampled data being
processed. It turnsout that themodelproposed in [24], [14] isa
special instance of our model as it is a first-order polynomial
applied to the specific caseof colormosaic images.Asweshall
see, our polynomial model produces excellent results for a
variety of multisampled images. Since it uses polynomials,
ourmethod is very efficient and can be easily implemented in
hardware. In short, it is simple enough tobe incorporated into
any imagingdevice (digital still orvideocamera, for instance).

3 TRAINING USING HIGH QUALITY IMAGES

Sincewewish to learn ourmodel parameters,we need a set of
high-quality training images. These could be real images of
scenes, synthetic images generated by rendering, or some
combination of the two. Real images can be acquired using
professional grade cameras whose performance we wish to
emulateusing lowerqualitymultisamplingsystems.Sincewe
want ourmodel to be general, the set of training imagesmust
adequately represent a wide range of scene features. For
instance, images of urban settings, landscapes, and indoor
spaces may be included. Rotated and magnified versions of
the images can be used to capture the effects of scale and
orientation. In addition, the images may span the gamut of
illuminationconditionsencounteredinpractice,varyingfrom
indoor lighting to overcast and sunny conditions outdoors.
Synthetic images are useful as one can easily include in them
specific features that are relevant to the application. For
instance, edges, lines, curves, or more complex features are
easily renderedatvariousorientationsandscales. Inaddition,
specific types of textures can be synthesized.

Some of the 50 high-quality images we have used in our

experiments are shown in Fig. 3. Each of these is a 2; 000�
2; 000 color (red, green, blue) image with 12 bits of

information in each color channel. These images were
captured using a 35mm Nikon N90 SLR film camera and

scanned using a 12-bit Nikon LS2000 slide scanner. Though

the total number of training images is small, they include a

sufficiently large number of local (say, 7� 7 pixels)
appearances for training our structural models.

Given such high-quality images, it is easy to generate a
corresponding set of low-quality multisampled images. For
instance, given a 2; 000� 2; 000 RGB image with 12 bits per
pixel per color channel, simple downsampling in space,
color, and brightness results in a 1; 000� 1; 000, 8 bits per
pixel multisampled image with the sampling pattern shown
in Fig. 2c. We refer to this process of generating multi-
sampled images from high-quality images as downgrading.

With the high-quality images and their corresponding

(downgraded) multisampled images in place, we can learn
the parameters of our structural model. A structural model
is a function f that relates measured data Mðx; yÞ in a

multisampled image to a desired value Hði; jÞ in the high-
quality training image (see Fig. 4):

Hði; jÞ ¼ fðMð1; 1Þ; . . . :;Mðx; yÞ; . . . :MðX;Y ÞÞ; ð1Þ

where X and Y define some neighborhood of measured

data around or close to the high-quality value Hði; jÞ. Note
that a large variety of linear and nonlinear functions can be
used for f . Depending on the nature of f , a suitable

estimation algorithm can be used to find its parameters
from the training data. In the experiments reported here, we

have chosen a simple function; the desired value Hði; jÞ is
expressed as a low-order polynomial in the measured

valuesMðx; yÞ. The coefficients of the polynomial define the
structural model. The polynomial structural model is linear

in its coefficients. Therefore, the coefficients can be
efficiently computed from training data using linear

regression. As we will see, this simple structural model is
very effective in predicting local appearances.

Note that a single structural model may be inadequate.
This is particularly the case when we are sampling the scene
simultaneouslyalong several dimensions. Suchanexample is

shown inFig. 2. Ifweset aside themeasureddata and focuson
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Fig. 3. Some of the 50 high-quality images (2; 000� 2; 000 pixels, 12 bits
per color channel) used to train the local structural models described in
Sections 4, 5, and 6.

Fig. 4. Relationship between measured (low-quality) and desired (high-
quality) data.



the type of multisampling used (see Fig. 2), we see that pixels

can have different types of neighborhood sampling patterns.

With respect to Fig. 2,wemay be interested in high-qualityR,

G, and B values at each of the pixels shown. However, the

pattern of exposures and spectral filters around a pixel is

different from the patterns around its neighbors. Hence,

using a single structuralmodel topredict the brightness of the

image in any one color channel may be asking for too much

from the model itself. That is, if we want our models to be

compact (small number of coefficients) and effective, we

cannot expect them to capture variations in scenes as well as

changes in the sampling pattern. Hence, we use a single

structuralmodel for each typeof local samplingpattern. Since

our imagingdimensions are sampled in auniformmanner, in

all cases, we have a small number of local sampling patterns.

Therefore, only a small number of structural models are

needed. During reconstruction, given a pixel of interest, the

appropriate structural model is invoked based on the pixel’s

known neighborhood sampling pattern.

4 SPATIALLY VARYING COLOR (SVC)

Most color cameras have a single image detector with a

mosaic of red, green, and blue spectral filters on it. The

resulting image is, hence, a widely used type of multi-

sampled image. We refer to it as a spatially varying color

(SVC) image. When one uses an NTSC color camera, the

output of the camera is nothing but an interpolated

SVC image. Color cameras are notorious for producing

inadequate spatial resolution and this is exactly the

problem we seek to overcome using structural models.

Since this is our first example, we will use it to describe
some of the general aspects of our approach.

4.1 Bayer Color Mosaic

Several types of color mosaics have been implemented in
the past [1], [7], [8], [17], [20], [14]. However, the most
popular of these is the Bayer pattern [1], shown in Fig. 6.
Since the human eye is more sensitive to the green channel,
the Bayer pattern uses more green filters than it does red
and blue ones. Specifically, the spatial resolutions of green,
red, and blue are 50 percent, 25 percent, and 25 percent,
respectively. Note that the entire mosaic is obtained by
repeating the 2� 2 pattern shown on the right in Fig. 6.
Therefore, given a neighborhood size, all neighborhoods in
a Bayer mosaic must have one of four possible sampling
patterns. The different types of sampling patterns exactly
correspond to the distinct cyclic shifts of the rows and
columns of the 2� 2 pattern (see Fig. 7). So, if the
neighborhood is of size 3� 3, the resulting patterns are
p1, p2, p3, and p4, shown in Fig. 6.

4.2 SVC Structural Model

From the measured SVC image, we wish to compute three
color values (red, green, and blue) at each pixel, even
though each pixel in the SVC image provides a single color
measurement. Let the measured SVC image be denoted by
M and the desired high-quality color image by H. A
structural model relates each color value in H to the
measured data within a small neighborhood in M. This
neighborhood includes measurements of different colors
and, hence, the model implicitly accounts for correlations
between different color channels.

As shown in Fig. 8, let Mp be the measured data in a
neighborhood with sampling pattern p, and Hpðiþ 0:5; jþ
0:5; �Þ be the high-quality color value at the center of the
neighborhood. The center is off-grid because the neighbor-
hood is an even number of pixels in width and height. Then,
a polynomial structural model can be written as:
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Fig. 5. Estimating structural models and using them to generate high-
quality data.

Fig. 6. Spatially varying color (SVC) pattern on a Bayer mosaic. Given a
neighborhood size, all possible sampling patterns in the mosaic must be
one of four types. In the case of a 3� 3 neighborhood, these patterns
are p1, p2, p3, and p4.

Fig. 7. Cyclic shifts of columns and rows of the 2� 2 Bayer-mosaic

neighborhood correspond to the four unique types of local patterns

possible. For examples, see p1 . . .p4 in Fig. 6.



Hpðiþ 0:5; jþ 0:5; �Þ ¼
X

ðx;yÞ2Spði;jÞ

X
ðk6¼x;l 6¼yÞ2Spði;jÞXNp

n¼0

XNp�n

q¼0

Cpða; b; c; d; �; nÞ Mp
nðx; yÞ Mp

qðk; lÞ:
ð2Þ

Spði; jÞ is the neighborhood of pixel ði; jÞ, Np is the order of
the polynomial, and Cp are the polynomial coefficients for
the pattern p. The coefficient indices ða; b; c; dÞ are equal to
ðx� i; y� j; k� i; l� jÞ.

The product Mpðx; yÞMpðk; lÞ explicitly represents the
correlation between different pixels in the neighborhood. For
efficiency, we have not used these cross-terms in our
implementations. We found that very good results are
obtained even when each desired value is expressed as just
a sum of polynomial functions of the individual pixel
measurements:

Hpðiþ 0:5; jþ 0:5; �Þ ¼
X

ðx;yÞ2Spði;jÞ

XNp

n¼0

Cpða; b; �; nÞMp
nðx; yÞ:

ð3Þ

In short, a polynomial is computed for each on-grid pixel
of a neighborhood in the low-quality SVC data, and the
aggregation of polynomials of all pixels in that neighbor-
hood gives the high-quality color values at the correspond-
ing off-grid center pixel. It should be noted that, in general,
the method holds for any neighborhood size and shape and
for off-grid as well as on-grid computation.

The mapping function (3) for each color � and each local
pattern type p can be conveniently rewritten using matrices
and vectors, as shown in Fig. 9:

Hpð�Þ ¼ Ap Cpð�Þ: ð4Þ

For a given pattern type p and color �, Ap is the
measurement matrix. The rows of Ap correspond to the
different neighborhoods in the image that have the
pattern p. Each row includes all the relevant powers (up
to Np) of the measured data Mp within the neighborhood.
The vector Cpð�Þ includes the coefficients of the polynomial
mapping function and the vector Hpð�Þ includes the
desired high-quality values at the off-grid neighborhood
centers. The estimation of the model parameters Cp can
then be posed as a least squares problem:

Cpð�Þ ¼ ðAT
p ApÞ�1AT

p Hpð�Þ: ð5Þ

When the signal-to-noise characteristics of the image
detector are known, (5) can be estimated using weighted
least squares to achieve greater accuracy by solving:

AT
p W2

p Ap Cpð�Þ ¼ AT
p W2

p Hpð�Þ; ð6Þ

where Wp is a diagonal matrix that can be used to
assign weights to different neighborhoods based on
their signal-to-noise characteristics. AT

p W2
p Ap is called

the weighted normal matrix and AT
p W2

p Hpð�Þ is called
the weighted regression vector.

4.3 Total Number of Coefficients

The number of coefficients in the model (3) can be calculated
as follows: Let the neighborhood size be u� v and the
polynomial order corresponding to each pattern p beNp. Let
the number of distinct local patterns in the SVC image be P
and thenumberof color channels be�. Then, the total number
of coefficients needed for structural interpolation is:

jCj ¼ P þ u � v �
XP
p¼1

Np

 !
� �: ð7Þ

For the Bayer mosaic, P ¼ 4 and � ¼ 3 (R,G,B). If we use
Np ¼ 2 and u ¼ v ¼ 6, the total number of coefficients is 876.
Since these coefficients are learned from real data, they yield
greater precision during interpolation than standard inter-
polation kernels. In addition, they are very efficient to apply.
Since there are P ¼ 4 distinct patterns, only 219 (a quarter) of
the coefficients are used for computing the three color values
at a pixel. Note that the polynomial model is linear in the
coefficients. Hence, structural interpolation can be imple-
mented in real-time using a set of linear filters that act on the
captured image and its powers (up toNp).

4.4 Experiments

A total of 30 high-quality training images (see Fig. 3) were
used to compute the structural model for SVC image
interpolation. Each image is downgraded to obtain a
corresponding Bayer-type SVC image. For each of the
four sampling patterns in the Bayer mosaic and for each of
the three colors, the appropriate image neighborhoods were
used to compute the measurement matrix Ap and the
reconstruction vector Hpð�Þ. While computing these, one
additional step was taken; each measurement is normalized
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Fig. 8. The measured data Mp in the neighborhood Spði; jÞ around
pixel ði; jÞ are related to the high-quality color values Hpðiþ 0:5; jþ
0:5; �Þ via a polynomial with coefficients Cp.

Fig. 9. The mapping function in (3) can be expressed as a linear system
using matrices and vectors. For a given pattern p and color �, Ap is the
measurement matrix, Cpð�Þ is the coefficient vector, and Hpð�Þ is the
reconstruction vector.



by the energy within its neighborhood tomake the structural
model insensitive to changes in illumination intensity and
camera gain. The resultingAp andHpð�Þ are used to find the
coefficient vector Cpð�Þ using linear regression (see (5)). In
our implementation, we used the parameter values P ¼ 4
(Bayer),Np ¼ 2, u ¼ v ¼ 6, and� ¼ 3 (R,G,B) to get a total of
876 coefficients. The coefficients computed using all the
training images are shown in Fig. 10.

The above structural model was used to interpolate 20 test
SVC images that are different from the ones used for training.
In Fig. 11a, a high-quality (8 bits per color channel) image is
shown. Fig. 11b shows the corresponding (downgraded)
SVC image. This is really a single channel 8-bit image and its
pixels are shown in color only to illustrate the Bayer pattern.
Fig. 11c shows a color image computed from the SVC image
using bicubic interpolation. As is usually done, the three
channels are interpolated separately using their respective
data in the SVC image. The magnified image region clearly
shows that bicubic interpolation results in a loss of high
frequencies; the edges of the tree branches and the squirrels
are severely blurred. Fig. 11d shows the result of applying
structural interpolation. Note that the result is of high-
quality with minimal loss of details. Three more results are
shown in Figs. 12, 13, and 14.

We also compared the structural interpolation against
other commonly used techniques for demosaicing, such as
[6], [11], [15], [13]. A comparison between the reconstruction
results obtained is shown in Fig. 15. The structural model
produces results that are visually comparable to the best
demosaicing method while not introducing spurious high
frequencies.

4.5 Quantitative Evaluation

We have also quantitatively verified our results. Figs. 16
and 17 show histograms of the luminance error for bicubic

and structural interpolation as well as four other com-
monly used demosaicing techniques. These histograms are
computed using all 20 test images (not just the ones in
Figs. 11, 12, 13, and 14). The difference between the
two histograms may appear to be small but is significant
because a large fraction of the pixels in the 20 images
belong to “flat” image regions that are easy to interpolate
for all methods. The RMS errors (computed over all
20 images) are 6.12 and 3.27 gray levels for bicubic and
structural interpolation, respectively. The other demosaicing
methods have RMS error values in between. These quanti-
tative results indicate that structural models clearly outper-
form the other commonly used demosaicing techniques.

We also performed experiments to study the effectiveness
and stability of the learning technique. First, we performed
testing on the images used for training. The average RMS
error in luminance was very low, as expected. Second, we
performed the experiments where the testing and training
images were not identical but similar (for example, different
types of grass, trees, etc). Even in this case, the RMS errorwas
low, as shown in Fig. 18. Then,we performed experiments by
randomly selecting a set of images from the training set. The
training set of images was different from the testing set and
contained scenes of similar as well as dissimilar content (for
example, urban versus natural scenes). For very small
training sets, the average luminance RMS error is high.
However, the average RMS error is more or less stable for
larger training sets, indicating the stability in the learning
technique. It is conceivable that more complex learning
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Fig. 10. Coefficients of the SVC structural model for the four different
patterns. A second order polynomial is used and the neighborhood size
is 6� 6. The first 36 coefficients denote the coefficients corresponding to
the first order terms and the remaining correspond to the second order
terms in the SVC structural model. The first order terms capture most of
the energy. (a) RGB coefficient for SVC pattern 1. (b) RGB coefficient for
SVC pattern 2. (c) RGB coefficient for SVC pattern 3. (d) RGB
coefficient for SVC pattern 4.

Fig. 11. (SVC Reconstruction) (a) Original (high-quality) color image
with 8 bits per color channel. (b) SVC image obtained by downgrading
the original image. The pixels in this image are shown in color only to
illustrate the Bayer mosaic. Color image computed from the SVC image
using (c) bicubic interpolation and (d) structural interpolation.



techniques (carefully chosen, for example, from the machine
learning literature) could be used to obtain better results.
However, our focus here is to present a simple and efficient
technique that may also be implemented in hardware.

5 SPATIALLY VARYING EXPOSURES (SVE)

In [19], it was shown that the dynamic range of a gray-scale
image detector can be significantly enhanced by assigning
different exposures (neutral density filters) to pixels, as
shown in Fig. 19. This is yet another example of a multi-
sampled image and is referred to as a spatially varying
exposure (SVE) image. In [19], standard bicubic interpolation
was used to reconstruct a high dynamic range gray-scale
image from the captured SVE image; first, saturated anddark
pixels are eliminated, then all remaining measurements are
normalized by their exposure values, and, finally, bicubic
interpolation is used to find the brightness values at the
saturated and dark pixels. As expected, the resulting image
has enhanced dynamic range but lower spatial resolution. In
this section, we apply structural interpolation to SVE images
and show how it outperforms bicubic interpolation.

Consider the array of pixels shown in Fig. 19. The
brightness level associated with each pixel represents its
sensitivity such that the brighter pixels have greater

exposure to image irradiance and the darker ones have
lower exposure. In the example shown, four neighboring
pixels have different exposures (e1 < e2 < e3 < e4) and this
2� 2 neighborhood is repeated over the detector array.

The key feature here is that we are simultaneously
sampling the spatial dimensions as well as the exposure
dimension of image irradiance. Note that, when a pixel is
saturated in the acquired image, it is likely to have a neighbor
that is not and, when a pixel produces zero brightness, it is
likely to have a neighbor that produces nonzero brightness.
Our goal is to exploit this spatio-exposure sampling and
compute a high dynamic range image of the scene.

It is worth noting that we are by no means restricted to
the mosaic shown in Fig. 19. The number of discrete
exposures can differ (hence, the number of local pattern
types) and the pattern does not have to be periodic. There
may be instances where a random exposure mosaic may be
useful. The mosaic can be implemented in many ways as
discussed in [19]. One approach is to place a mask with cells
of different optical transparencies adjacent to the detector
array. As discussed in [19], other implementations also
result in the same effect, namely, a detector array with
spatially varying exposures.

5.1 SVE Structural Model

As in the SVC case, let the measured SVE data beM and the
corresponding high dynamic range data be H. Again, we
use simple polynomial structural models to relateH andM.
If the SVE detector uses only four discrete exposures (see
Fig. 19), it is easy to see that a neighborhood of any given
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Fig. 12. (SVC Reconstruction) (a) Original (high-quality) color image
with 8 bits per color channel. (b) SVC image obtained by downgrading
the original image. The pixels in this image are shown in color only to
illustrate the Bayer mosaic. Color image computed from the SVC image
using (c) bicubic interpolation and (d) structural interpolation.

Fig. 13. (SVCReconstruction) (a) Zoomed in regions of an original color
image with 8 bits per color channel. (b) SVC image obtained by
downgrading the original image. The pixels in this image are shown in
color only to illustrate the Bayer mosaic. Color image computed from the
SVC image using (c) bicubic interpolation and (d) structural interpolation.



size can have only one of four different sampling patterns
(P ¼ 4). Therefore, for each sampling pattern p, a poly-
nomial structural model is used that relates the captured
data Mp within the neighborhood to the high dynamic
range value Hp at the center of the neighborhood:

Hpðiþ 0:5; jþ 0:5Þ ¼
X

ðx;yÞ2Spði;jÞ

XNp

n¼0

Cpða; b; nÞ Mp
nðx; yÞ;

ð8Þ

where, as before, ða; bÞ = ðx� i; y� jÞ, Spði; jÞ is the
neighborhood of pixel ði; jÞ, Np is the order of the
polynomial mapping, and Cp are the polynomial coeffi-
cients for the pattern p. Note that there is only one
channel in this case (gray-scale) and, hence, the parameter
� is omitted. To avoid asymmetries in the number of
exposures in a neighborhood, we use square neighbor-
hoods of even length and width. The high dynamic range
value is computed at the off-grid neighborhood center
ðiþ 0:5; jþ 0:5Þ. It should be noted that, in general, the
method holds for any neighborhood size and shape and
off-grid as well as on-grid computation. Once again, we
could have used a more general mapping function like the
one in (2), but have chosen a simpler model as it is does
very well and is more efficient to learn and apply.

The above model is rewritten in terms of a measurement
matrix Ap and a reconstruction vector Hp, and the
coefficients Cp are found using (5). The number of
coefficients in the SVE structural model is determined as:

jCj ¼ P þ u � v �
XP
p¼1

Np: ð9Þ

In our implementation, we have used P ¼ 4, Np ¼ 2, and

u ¼ v ¼ 6, which gives a total of 292 coefficients. Since

P ¼ 4, only 73 coefficients are needed for reconstructing

each pixel in the image.

5.2 Experiments

The SVE structural model was trained using 12-bit gray-scale

versions of six of the images shown in Fig. 3 and their

corresponding downgraded 8-bit SVE images. Each SVE

imagewas obtained by applying the exposure pattern shown

in Fig. 19 (with e4 ¼ 4e3 ¼ 16e2 ¼ 64e1) to the original image,

followed by a downgrade from12 bits to 8 bits. The structural

modelwas testedusing six test images, one ofwhich is shown

in Fig. 20. Fig. 20a shows the original 12-bit image, Fig. 20b

shows the downgraded 8-bit SVE image, Fig. 20c shows a

12-bit image obtained by bicubic interpolation of the SVE

image, and Fig. 20d shows the 12-bit image obtained by

structural interpolation. Themagnified images shown on the

right are histogram equalized to bring out the details (in the

clouds and walls) that are lost during bicubic interpolation

but extracted by structural interpolation. Fig. 21 compares
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Fig. 14. (SVC Reconstruction) (a) SVC image obtained by down-
grading the original image. The pixels in this image are shown in color
only to illustrate the Bayer mosaic. Color image computed from the SVC
image using (b) bicubic interpolation and (c) structural interpolation.

Fig. 15. (SVC Reconstruction) Comparison of the reconstruction
technique with bicubic interpolation and four other commonly used
demosaicing techniques. Two regions of an urban scene are shown. As
can be seen, the visual quality of our reconstruction is at least as good as
the best demosaicing technique with the added advantage of avoiding
spurious high frequencies. See Fig. 16 for a quantitative comparison. The
methods used for demosaicing were obtained from four different papers
[6], [11], [15], [13]. The implementations of these demosaicing methods
(excluding bicubic interpolation) were obtained from Dr. Rajeev Rama-
nath [21]. (a) Original. (b) Structural Model. (c) Freeman. (d) Cok.
(e) Laroche. (f) Hamilton. (g) Original. (h) Structural Model. (i) Freeman.
(j) Cok. (k) Laroche. (l) Hamilton.



the error histograms (computed using all six test images) for

the two cases. The RMS errors were found to be 33.4 and

25.5 gray levels (in a 12-bit range) for bicubic and structural

interpolations, respectively. Note that, even though a very

small number (six) of images were used for training, our

method outperforms bicubic interpolation.

6 SPATIALLY VARYING EXPOSURE AND COLOR

(SVEC)

Since we are able to extract high spatial and spectral

resolution from SVC images and high spatial and brightness

resolution from SVE images, it is natural to explore how

these two types of multisamplings can be combined into

one. The result is the simultaneous sampling of space, color,

and exposure (see Fig. 22). We refer to an image obtained in

this manner as a spatially varying exposure and color

(SVEC) image. If the SVEC image has 8 bits of a single color

channel at each pixel, we would like to compute, at each

pixel, three color values, each with 12 bits of precision. Since

the same number of pixels on a detector are now being used

to sample three different dimensions, it should be obvious

that this is a truly challenging interpolation problem. We

will see that structural interpolation does remarkably well at
extracting the desired information.

6.1 SVEC Patterns and Neighborhoods

Color and exposure filters can be used to construct an SVEC
sensor in many ways. If the number of pixels is p, the
number of exposures used is e, and the number of color
channels is c, then the cardinality ðceÞp of the entire space of
possible SVEC sensors is enormous. A simple way to
decrease the number of possibilities is to assign colors and
exposures within a small neighborhood and then to repeat it
over the entire detector array. We call this repeated pattern
the base pattern. In Fig. 22, the 4� 4 neighborhood p1 (base
pattern) is repeated over the entire detector array.

The advantage of repeating a base pattern throughout
the detector array is that the number of distinct types of
sampling patterns within a local neighborhood corresponds
exactly to the distinct cyclic shifts of columns and rows of
the base pattern. As an example, in Fig. 22, p16 is obtained
from the base pattern p1 by cyclically shifting the columns
of p1 by four steps and then cyclically shifting the rows of
p1 by four steps. For a base pattern size of u� v, the
number of distinct cyclic shifts and, hence, the number of
unique patterns is at most uv. For the 4� 4 base pattern p1
(see Fig. 22), the unique patterns correspond to the
neighborhoods p1 . . .p16.

Even with the repetitive pattern, we are left with ðceÞn
SVEC mosaic possibilities, where n is the number of pixels
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Fig. 16. Comparison of the histograms of luminance error (averaged
over 20 test images) obtained by using five different methods. The
average RMS error in luminance is 6.12 gray levels for bicubic
interpolation and 3.27 gray levels for structural interpolation. The
RMS values for the methods—Freeman [11], Hamilton and Adams [13],
Laroche and Prescott [15], and Cok [6]—are in between. Note that our
method outperforms the other five methods. Structural: 3.7, Freeman
4.21, Hamilton 4.63, Laroche 4.78, Cok 4.96, and bicubic 6.12.

Fig. 17. Comparison of the histograms of luminance error (averaged
over 20 test images) obtained by using structural models of orders 1 and
2, respectively. Note that the structural model with order 1 reduces to the
works proposed in [14], [24]. Second order polynomials perform slightly
better than the first order polynomials. Later, we will show that higher
orders can have more significance in other multisampled images.

Fig. 18. (Effectiveness and Stability of the Learning Technique) (a) When the training and testing image sets are identical or when the images
used in training are very similar to the test images (say, different types of grass), the average RMS errors in the luminance channel are very small.
(b) If the training set consists of scenes that are different as well as similar to the testing set, then the results vary with the number of training images.
The training images are selected randomly from a set of 40 images. The luminance RMS errors are computed over all 20 test images. The RMS
errors shown are averaged over five trials of random selection. Note that the RMS errors are more or less stable (apart from the five image case).



in the neighborhood. Two questions need to be addressed at
this point: 1) What is the size of base neighborhood pattern
that is repeated throughout the detector array? 2) How do
we assign the colors and exposures within a neighborhood?

We now describe some guidelines to assign the various
exposures and colors to pixels in a neighborhood. These
guidelines are decided based on the following parameters:

1. Neighborhood size and shape, parameterized by
length u, width v. The neighborhood aspect ratio is
then a ¼ v

u .
2. Number of R, G, or Bs in any neighborhood and

their relative positions.
3. Number of discrete exposures e, their transmit-

tances, and relative positions in the neighborhoods.
4. Number of R, G, or Bs assigned to each discrete

exposure value.

In this paper, we choose the spatial distribution of the
colors on the detector array to follow the Bayer mosaic (see
Fig. 6). Now, we need to find the size of the minimum
repeatable SVEC neighborhood (base neighborhood) and
also find assignments to the exposures.

Within each local neighborhood of size u� v, we constrain
the spatial resolution of R, G, and B to be 25 percent,
50 percent, and 25 percent, respectively (see Fig. 6),

jRj ¼ jBj ¼ 0:25 u v; jGj ¼ 0:5u v: ð10Þ
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Fig. 19. The dynamic range of an image detector can be improved by
assigning different exposures to pixels. In this special case of
four exposures, any 6� 6 neighborhood in the image must belong to
one of four possible sampling patterns shown as p1 . . .p4.

Fig. 20. (SVE Reconstruction) (a) Original 12-bit gray scale image.
(b) 8-bit SVE image. (c) 12-bit (high dynamic range) image computed
using bicubic interpolation. (d) 12-bit (high dynamic range) image
computed using structural models. The magnified image regions on the
right are histogram equalized.

Fig. 21. Error histograms for the two case (averaged over six test
images). The RMS error for the six images is 33.4 and 25.5 gray levels
(on a 12-bit scale) for bicubic and structural interpolation, respectively.

Fig. 22.Acombinedmosaicof threespectral and four neutral density filters
used to simultaneously sample space, color, andexposuresusing a single
imagedetector. The captured8-bit SVEC imagecanbeused to computea
12-bit (per channel) color image by structural interpolation. For this
mosaic, for any neighborhood size, there are only 16 distinct sampling
patterns. For a 4� 4 neighborhood size, the patterns are p1 . . .p16.



From the above equation, we see that the neighborhood
length u and width v must be even. Also, it is desirable to
have each color channel combined with all the different
exposures, within each neighborhood. Therefore,

jRj ¼ jBj ¼ k e; jGj ¼ 2 k e

4 k e ¼ u v;
ð11Þ

where R and B are combined with each exposure k times
and G is combined with each exposure 2 k times. Further-
more, in terms of the aspect ratio a of the neighborhood

4 k e ¼ a u2: ð12Þ

Note thatk, e, anduarepositive integers.Ourgoal is to find
the smallest local SVEC pattern that satisfies the above
constraints. For a fixed number of exposures e and aspect
ratio a, theminimumsizeuof the local pattern corresponds to
the smallest integer value for k that satisfies (12). For example,
if e ¼ 2 and a ¼ 1 (for square neighborhoods), then the
smallest neighborhood that needs to be repeated over the
entire detector array is of size u ¼ 4 (corresponding to k ¼ 2).
Similarly, for e ¼ 4 and a ¼ 1, we have u ¼ 4 (and k ¼ 1). In
Fig. 22, we have used e ¼ 4 (shown using different gray
levels), the Bayer color mosaic, and, hence, the 4� 4 square
neighborhood p1, is repeated over the entire array.

Equation (12) gives the relationship between the number
of exposures and the local neighborhood pattern size for a
Bayer mosaic. Note that, without fixing the positions of the
colors on the detector array, we are still left with a large
number of possibilities for the SVEC mosaic. However,
since the Bayer mosaic is very commonly used in CCDs, we
assume the Bayer pattern for the colors and, hence, assign
the exposures to the various pixels in the neighborhood.

6.2 SVEC Structural Model

The polynomial structuralmodel used in the SVEC case is the
same as the one used for SVC and is given by (3). The only
caveat is that, in the SVEC case, we need to ensure that the
neighborhood sizeused is large enough to adequately sample
all the colors and exposures. That is, the neighborhood size is
chosen such that it includes all colors and all exposures of
each color.

The total number of polynomial coefficients needed is
computed in the sameway as in the SVC case and is given by
(7). In our experiments, we have used the mosaic shown in
Fig. 22.Therefore,P ¼ 16,� ¼ 3 (R,G, andB),Np ¼ 2 foreach
of the 16 patterns, and u ¼ v ¼ 6 to give a total of 3,504 coeffi-
cients. Once again, at each pixel for each color, only
3; 504=48 ¼ 73 coefficients are used. Therefore, even for this
complex type ofmultisampling, our structural models can be
applied to images in real-time using a set of linear filters.

6.3 Experiments

The SVEC structural model was trained using six of the
images in Fig. 3. In this case, the 12-bit color images in the
training set were downgraded to 8-bit SVEC images. The
original and SVEC images were used to compute the
3,504 coefficients of the model. The model was then used
to map 10 different test SVEC images to 12-bit color
images. One of these results is shown in Fig. 23. The
original 12-bit image shown in Fig. 23a was downgraded
to obtain the 8-bit SVEC image shown in Fig. 23b. This
image has a single channel and is shown here in color only
to illustrate the effect of simultaneous color and exposure

sampling. Fig. 23c and Fig. 23d show the results of
applying bicubic and structural interpolation, respectively.
It is evident from the magnified images on the right that
structural interpolation yields greater spectral and spatial
resolution. The two interpolation techniques are compared
in Fig. 24, which shows error histograms computed using
all 10 test images. The RMS luminance errors were found
to be 118 gray-levels and 80 gray-levels (on a 12 bit scale)
for bicubic and structural interpolations, respectively.

Note that learned polynomial models for SVEC lie in a
high-dimensional space. So, naturally, the following ques-
tion arises: Is the learning and, hence, the reconstruction
algorithm, sensitive to the size of the neighborhood and/or
the order of the polynomial chosen for the structural
model? We analyze the reconstruction error by performing
several experiments with different polynomial orders and
neighborhood sizes. To see a general trend, we just show
reconstruction errors corresponding to three different
neighborhood sizes and three polynomial orders. To avoid
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Fig. 23. (SVEC Reconstruction) (a) Original 12-bit color image.
(b) 8-bit SVEC Image. 12-bit color images reconstructed using
(c) bicubic interpolation and (d) structural interpolation. The
magnified images on the right are histogram equalized.



asymmetries in the local sampling pattern, we consider only
neighborhoods that have even length and width.

Fig. 25 shows the average error histograms plotted for
reconstruction using polynomial structural models of orders
1, 2, and 3 and neighborhood sizes 6� 6, 8� 8, and 10� 10.
When the neighborhood size is small, we see that the
reconstruction does better with higher order polynomials.
Note also the RMS values of error obtained by using
polynomials of orders 1, 2, and 3 (Fig. 26). As we increase the
neighborhood size, the second and third order polynomials
do not perform any better than the first order polynomials.
This trend does not continue further aswe increase neighbor-
hood size since the correlation between the center location in
the neighborhood and the outer edge of the neighborhood is
minimal. Note, however, that, in all cases, the structural
models performmuch better than pure bicubic interpolation.

7 FUTURE WORK

We presented a general framework for using pixels on an
image detector to simultaneously sample multiple dimen-
sions of imaging (space, time, spectrum, brightness,
polarization, etc.). Such pixels are termed Assorted Pixels.
High-quality reconstructions along different imaging di-
mensions are done based on learning structural models
from high-quality images of real scenes.

In the entire paper, we used polynomials of image
intensities to represent structural models. We chose poly-
nomials because of their simplicity, efficiency, and potential
hardware implementation. It is conceivable that more
complex learning techniques could lead to better recon-
structions. For instance, Bayesian nets and belief propaga-
tion techniques or neural nets could be carefully chosen to
represent the structural models. These techniques have
been used in the context of increasing spatial resolution of
single channel images, as well as in the context of
demosaicing the Bayer pattern [10], [23]. However, it still
remains to be seen how these methods can be extended to
other multisampled images. Moreover, convergence issues,
the requirement of priors, and the computational complex-
ity of these methods make them less favorable when
compared to the simple polynomial models. Another way
to increase flexibility and accuracy is to use multiple
structural models per multisampled pattern. This was done
for the SVC case by Tappen et al. [23], where it was shown
to be better than the simple polynomial-based learning
technique. However, again, it will be interesting to explore

how these methods could be extended to other types of
multisampled images. Also, it is important to note that our
focus in this work is to derive a general framework for
enhancing the resolution of arbitrary multisampled images
and is not limited to the popular Bayer mosaic (SVC) case.

The multisampled framework can also include the
temporal dimension. Thus, it is possible to apply learning
techniques to increase temporal and spatial resolution of
video as well. Note that this is fundamentally different
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Fig. 24. Luminance error histogram computed using 10 test images.
RMS luminance errors were found to be 118 and 80 (on a 12-bit scale)
for bicubic and structural interpolation, respectively.

Fig. 25. Comparing error histograms computed using all the test images
with structural models of different polynomial orders and different
neighborhood sizes and with bicubic interpolation. In all the cases, the
reconstruction using structural models is better than bicubic interpola-
tion. (a) The neighborhood size is 6� 6 and it can be seen that higher
order polynomials (order 2 or 3) do better than the first order polynomial.
(b) The neighborhood size is 8� 8 and now the performance of the
structural model is better than the 6� 6 case. (c) The neighborhood size
is 10� 10 and the results are only marginally improved. However, notice
that the polynomial orders do not effect the reconstruction errors. This
shows we don’t need very high order polynomials or very large
neighborhoods to capture the inherent structure of the scene.



from other traditional superresolution techniques that
mostly correspond to the enhancement of spatial resolu-
tion using images captured using a moving camera. In
future work, we wish to study different learning
techniques that can be used to obtain better temporal
resolution in addition to the dimensions of imaging
considered in this work (exposure and color).
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Fig. 26. RMS errors for different orders and neighborhood sizes.


