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Abstract—Images of outdoor scenes captured in bad weather suffer from poor contrast. Under bad weather conditions, the light

reaching a camera is severely scattered by the atmosphere. The resulting decay in contrast varies across the scene and is exponential

in the depths of scene points. Therefore, traditional space invariant image processing techniques are not sufficient to remove weather

effects from images. In this paper, we present a physics-based model that describes the appearances of scenes in uniform bad

weather conditions. Changes in intensities of scene points under different weather conditions provide simple constraints to detect

depth discontinuities in the scene and also to compute scene structure. Then, a fast algorithm to restore scene contrast is presented. In

contrast to previous techniques, our weather removal algorithm does not require any a priori scene structure, distributions of scene

reflectances, or detailed knowledge about the particular weather condition. All the methods described in this paper are effective under

a wide range of weather conditions including haze, mist, fog, and conditions arising due to other aerosols. Further, our methods can be

applied to gray scale, RGB color, multispectral and even IR images. We also extend our techniques to restore contrast of scenes with

moving objects, captured using a video camera.

Index Terms—Physics-based vision, atmosphere, bad weather, fog, haze, visibility, scattering, attenuation, airlight, overcast sky,

scene structure, defog, dehaze, contrast restoration, shape from X, shape from weather, scene reconstruction.

æ

1 TOWARD WEATHER-FREE VISION

HUMAN perception of scene color and contrast through
the atmosphere has been extensively studied [14], [15],

[17], [18]. For centuries, artists have rendered their paint-
ings with an “atmospheric or aerial perspective” [7]. They
illustrate, in their paintings, optical phenomena such as the
bluish haze of distant mountains and reduced visibility
under adverse weather conditions such as mist, fog, rain,
and snow. Leonardo da Vinci’s paintings often contain an
atmospheric perspective of the background scene [26],
where farther scene points were painted brighter and bluer.
While these optical phenomena can be argued to be
aesthetically pleasing to humans, they are often hindrances
to the satisfactory working of a computer vision system.

Most outdoor vision applications such as surveillance,
terrain classification, and autonomous navigation require
robust detection of image features. Under bad weather
conditions, however, the contrast and color of images are
drastically altered or degraded. Hence, it is imperative to
remove weather effects from images in order to make vision
systems more reliable. Unfortunately, the effects of bad
weather increase exponentially with the distances of scene
points from the sensor. As a result, conventional space
invariant filtering techniques fail to adequately remove
weather effects from images.

Recently, there has been an increased interest in the
image processing and vision communities on issues
related to imaging under bad weather. Kopeika [13] and
Yitzhaky et al. [38] deblur atmospherically degraded

images using a weather-predicted atmospheric modulation
transfer function, and an a priori estimate of the distance
from which the scene is imaged. Oakley and Satherley [25]
and Tan and Oakley [33], [34] describe a physics-based
method to restore scene contrast without using predicted
weather information. However, they assume that scene
depths are known beforehand, and they approximate the
distribution of radiances in the scene by a single Gaussian
with known variance. Another work by Grewe and Brooks
[9] uses wavelet-based fusion of multiple bad weather
images to get a less blurred image.

Narasimhan and Nayar [21] analyze color variations in
the scene under different weather conditions based on the
dichromatic atmospheric scattering model proposed in [24].
Using constraints on scene color changes, they compute
complete 3D structure and recover clear day scene colors
from two or more bad weather images [23]. However, they
assume that the atmospheric scattering properties do not
change with the wavelength of light. This property holds
over the visible spectrum only for certain weather condi-
tions such as fog and dense haze. For several aerosols,
however, scattering strongly depends on the wavelength of
incident light. Furthermore, scene recovery using the
dichromatic model is ambiguous for scene points whose
colors match the color of fog or haze.

Polarization has been used as a cue to reduce haze in
images based on the effects of scattering on light polarization
[2], [5], [27]. In many works [4], [28], the radiation from the
object of interest is assumed to be polarized, whereas the
natural illumination scattered toward the observer (airlight)
is assumed to be unpolarized. In other works [6], [29], [36], the
radiation from the scene of interest is assumed to unpolar-
ized, whereas airlight is assumed to be partially polarized.
Polarizing filters are, therefore, used widely by photogra-
phers to reduce haziness in landscape images, where the
radiance from the landscapes is generally unpolarized.
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However, polarization filtering alone does not ensure
complete removal of haze. Schechner et al. [29], [30] further
analyzed two or more polarization filtered images to compute
scene structure and dehaze images. The effectiveness of
polarization as a cue to remove weather effects is limited
under dense fog and mist with overcast sky illumination since
scattered light is mostly depolarized.

In this paper, we present a physics-based method to restore
contrast of a scene from two or more images taken in uniform
bad weather conditions. A monochrome atmospheric scatter-
ing model that describes how scene intensities are affected by
homogeneous weather conditions is presented. This model is
valid in both the visible and near-IR spectra, and for a wide
range of weather conditions such as mist, haze, fog, and other
aerosols. The model does not require the scattering properties
of the atmosphere to be constant with respect to wavelength of
light over a large spectral range (for example, the range of
visible spectrum, as in [23]). Since we are interested in a short
range of distances (of the order of a few kilometers), we
assume that the weather condition does not change spatially
in the field of view.1

Using the monochrome weather model, we show how
contrast of a scene degrades with distance. We conclude
that standard contrast enhancement techniques can only
handle a scene or a region within a scene at a fixed distance
from the sensor. A simple contrast restoration technique
similar to contrast stretching is derived for scenes where
depth segmentation is known a priori. Changes in scene
intensities, observed under different weather conditions,
present strong physical constraints regarding scene struc-
ture. These constraints are exploited to automatically detect
depth discontinuities in the scene and also to recover
complete scene structure from two images taken under
different weather conditions during daytime. Using the
computed structure, contrast is restored from a single
weather-degraded image of the scene. Unlike previous
methods for contrast restoration, we do not need accurately
predicted weather information or prior distributions on
scene radiances. We extend our algorithms to handle video
and describe a simple heuristic to restore contrasts of
moving objects in the scene whose depths are unknown.

The entire analysis in this paper is done for monochrome
(single narrow spectral band) images. However, the same
methods can be applied independently to images with
multiple spectral bands. We show that our methods can be
applied to images taken using gray scale, wide-band RGB,
multispectral, and also narrow-band IR cameras.

2 ATMOSPHERIC SCATTERING MODELS

Scattering of light by physical media has been one of the
main topics of research in the atmospheric optics and
astronomy communities. In general, the exact nature of
scattering is highly complex and depends on the types,
orientations, sizes, and distributions of particles constitut-
ing the media, as well as wavelengths, polarization states,
and directions of the incident light [3], [10]. Here, we focus
on two models—attenuation and airlight, which form the
basis of our work. Since we are interested in a short range of

distances (of the order of a few kilometers), we assume that
the properties of the weather condition (say, type of
particles and their density) does not change spatially. In
other words, we only consider homogeneous atmospheres
in this paper. Also, given the limited dynamic range of the
sensors (say, 8 bits per pixel), we do not explicitly model
multiple scattering or blurring effects of bad weather [23].

2.1 Attenuation and Airlight

The attenuation model describes the way light gets attenu-
ated as it traverses from a scene point to the observer. Due to
atmospheric scattering, a fraction of light flux is removed
from the incident beam. The unscattered flux, called direct
transmission, is transmitted to the observer. The attenuated
irradiance at the observer is given by (see [17], [21]),

Edtðd; �Þ ¼
E1ð�Þ rð�Þ eÿ�ð�Þd

d2
; ð1Þ

where, d is the depth of the scene point from the observer
and � is the wavelength. �ð�Þ is called the scattering
coefficient of the atmosphere; it represents the ability of a
unit volume of atmosphere to scatter light in all directions.
�ð�Þd is called the optical depth of the scene point. E1 is the
horizon brightness and r is a function that describes the
reflectance properties and the sky aperture2 of the scene
point. The attenuated irradiance is illustrated by the solid
arrow from the scene to the sensor in Fig. 1. The sky is
assumed to be mostly cloudy or overcast and that the
radiance from the sky varies smoothly with respect to the
polar and azimuth angles of the hemisphere [8], [11], [20].
For more details, we refer the reader to [21].

The second atmospheric scattering model we consider is

called the airlight model. The airlight model quantifies how

a column of atmosphere acts as a light source by reflecting

environmental illumination towards an observer. Refer to

the dotted arrows in Fig. 1. The light reflected into the line

of sight is integrated along the entire path length, d, from

the scene to the observer. Then, the irradiance due to

airlight is given by (see [16]),

Eaðd; �Þ ¼ E1ð�Þ 1ÿ eÿ�ð�Þd
� �

: ð2Þ

The total irradiance E received by the sensor is the sum

of irradiances due to attenuation and airlight, respectively,

Eðd; �Þ ¼ Edtðd; �Þ þ Eaðd; �Þ: ð3Þ

2.2 Wavelength Dependence of Scattering

Generally, different wavelengths of light are scattered
differently by atmospheric particles. Interesting atmospheric
phenomena such as the blueness of the sky and the bluish
haze of distant mountains are examples of the wavelength
selective behavior of atmospheric scattering [12], [18]. In these
cases, the blue wavelengths are scattered more compared to
other visible wavelengths. On the other hand, fog and dense
haze scatter all visible wavelengths more or less the same way.

Over the visible spectrum, Rayleigh’s law of atmospheric
scattering provides the relationship between the scattering
coefficient � and the wavelength � [16]:
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1. Multiple scattering effects are not taken into account in this model and
hence, for highly dense weather conditions, the model will not be effective.
Also, this model does not take into account blurring effects of bad weather
due to turbulence. 2. Solid angle subtended by the area of sky visible to a scene point.



�ð�Þ / 1

�

; ð4Þ

where 0 � 
 � 4 depending on the exact particle size
distribution in the atmosphere. For pure air, the constituent
particle (molecules) sizes are very small compared to the
wavelength of light and hence, there is a strong wavelength
dependence of scattering. In this case, 
 ¼ 4; short (blue)
wavelengths dominate and we see the clear blue sky. For
fog, the constituent particle (water droplets) sizes are large
compared to the wavelength of light and, hence, the
scattering coefficient does not depend on wavelength. So,
for fog, 
 � 0; all wavelengths are scattered equally and we
see grayish (or white) fog. A wide gamut of atmospheric
conditions arise from aerosols whose particle sizes range
between minute air molecules (10ÿ4�m) and large fog
droplets (1ÿ 10�m). Such aerosols (e.g., mild haze) show a
significant wavelength selectivity (0 < 
 < 4).

2.3 Weather Conditions and Camera Response

Different cameras measure irradiance over different color
bands. Some examples include gray-scale cameras (entire
visible spectrum), conventional color cameras (three broad
bands R, G, and B), and multispectral cameras (multiple
narrow color bands). In the appendix, we derive an
expression for the brightness recorded by a monochrome
(narrow spectral band) camera, using (3). In this derivation,
we assume that the scattering coefficient � remains constant

within the spectral bandwidth of the monochrome camera.
Keeping the above assumption in mind, we now discuss

under what weather conditions can our methods be applied

to various sensors. Recall from Section 2.2 that the scattering

coefficient for fog and dense haze remains more or less

constant over the visible spectrum. Accordingly, a broadband

RGB or gray-scale camera suffices to analyze images taken in

fog and dense haze. For other aerosols such as mild haze,

multispectral cameras or cameras fitted with narrow-band

filters should be used in order to apply our methods

satisfactorily. Finally, scattering coefficients of most weather

conditions vary significantly in the near-IR spectrum [37] and

hence, narrow-band IR cameras have to be used for the

analysis beyond the visible wavelengths. In other words, the

greater the variation in the scattering coefficient with respect

to wavelength, the narrower the spectral bandwidth needed

for effective results.
We would like to clarify that multiple color channels are

not required for our algorithms. We can, however, apply the

methods we describe in this paper to each color channel of the

sensor independently. This is in contrast to previous methods

that required at least three color channels (say, R, G, and B)

over which the scattering coefficient had to be equal [21].

3 CONTRAST DEGRADATION IN BAD WEATHER

In this section, we show how contrast degrades in poor

visibility conditions as a function of both the scattering

coefficient of the atmosphere and the distance of the scene

from the sensor. Consider an image taken in bad weather.

The brightness at any pixel recorded by a monochrome

camera is derived in the appendix:

E ¼ I1 � eÿ�d þ I1 1ÿ eÿ�d
ÿ �

; ð5Þ

where I1 is termed as sky intensity. We call � the normalized

radiance of a scene point; it is a function of the scene point

reflectance (BRDF), normalized sky illumination spectrum,

and the spectral response of the camera, but not the weather

condition defined by ð�; I1Þ (see the appendix).
Using (5), we formulate the image contrast between two

adjacent scene points as a function of the amount of

scattering and their distance from the observer. Consider

two adjacent scene points Pi and Pj at the same depth d

from a sensor. Their pixel intensities are given by,

EðiÞ ¼ I1 �ðiÞ eÿ�d þ I1 1ÿ eÿ�d
ÿ �

;

EðjÞ ¼ I1 �ðjÞ eÿ�d þ I1 1ÿ eÿ�d
ÿ �

:
ð6Þ

The observed contrast between Pi and Pj can be defined as,

EðiÞ ÿ EðjÞ
EðiÞ þ EðjÞ ¼

�ðiÞ ÿ �ðjÞ
�ðiÞ þ �ðjÞ þ 2ðe�d ÿ 1Þ : ð7Þ

This shows that the contrast degrades exponentially with the

scattering coefficient � and the depths of scene points in bad

weather. As a result, conventional space-invariant image

processing techniques cannot be used to completely remove
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Fig. 1. Scattering of light by atmospheric particles can be described by two models—direct transmission (or attenuation) and airlight. Direct

transmission is the attenuated irradiance received by the sensor from the scene point along the line of sight. Airlight is the total amount of

environmental illumination (sunlight, skylight, ground light) reflected into the line of sight by atmospheric particles.



weather effects. Note that other formulations for image
contrast (e.g., MTF, log intensity) [13] can also be used to
illustrate the exponential contrast decay.

4 CONTRAST RESTORATION OF ISO-DEPTH

REGIONS

We now describe a simple method to restore scene contrast
from one bad weather image using depth segmentation of
the scene. We define depth segmentation as the extraction
of iso-depth regions in the scene. Note, this does not mean
that actual scene depths have to be known. In several
situations, it may be easy to interactively provide the
necessary segmentation. For instance, in urban scenes with
frontal views of buildings, a user can easily mark out
regions that roughly have the same depths. Later, we will
present two automatic depth segmentation techniques
using images taken under different weather conditions.

Consider an image taken in bad weather. The brightness
at any pixel recorded by a monochrome camera is given by,

E ¼ I1 � eÿ�d þ I1 1ÿ eÿ�d
ÿ �

: ð8Þ

Now, consider two scene pointsPi andPj at the same depth d
from a sensor. The observed contrast between Pi and Pj is
given by (7). Eliminating the unknown eÿ�d from (6), we
obtain,

1ÿ �ðiÞ
1ÿ �ðjÞ ¼

I1 ÿEðiÞ
I1 ÿ EðjÞ

: ð9Þ

For robustness, we consider all the pixels at the same depth,

1ÿ �ðiÞP
jð1ÿ �ðjÞÞ

¼ I1 ÿ EðiÞP
jðI1 ÿ EðjÞÞ

: ð10Þ

Then, the normalized radiance of any scene point is
obtained using,

�ðiÞ ¼ 1ÿ
X
j

1ÿ
X
j

�ðjÞ

 !
I1 ÿEðiÞP
jðI1 ÿEðjÞÞ

: ð11Þ

This procedure is repeated independently for each depth in
the scene. So, if we have a priori depth segmentation of the
scene and have measured the sky intensity I1, then �ðiÞ can be
computed up to a linear factor

P
j �
ðjÞ: Since � is independent

of the weather condition, we have restored the contrast of the
scene using just one bad weather image.

What can we do if we do not have the sky intensity I1?
Let us assume that Pj has the minimum brightness within
the iso-depth scene points: EðjÞ ¼ Emin. Also, since scene
point brightnesses are much lower than sky brightness on
an overcast day, i.e., ð8iÞ; I1 > EðiÞ, we can set I1 ¼ Emax.
Then, the right-hand side of (9) is just contrast stretching the
inverted bad weather image. In other words, by setting
�min ¼ 0 and �max ¼ 1, contrast stretching (or histogram
stretching) each iso-depth region in the image can restore
contrast. Even though contrast is restored at each depth
satisfactorily, the image can look unrealistic. In summary,
simple image processing techniques such as contrast
stretching can be effective for scenes that are at the same
depth from the sensor (e.g., a planar scene at a fixed
distance from the camera). Clearly, for scenes with

significant depth variations, this simple method will not
be effective.

5 DEPTH EDGES FROM TWO WEATHER

CONDITIONS

In this section, we present a simple cue to automatically
locate the depth edges (discontinuities) present in a scene
from two monochrome images taken under different but
unknown weather conditions. In other words, we present a
method to label image edges as reflectance edges and depth
edges. Several researchers have pursued the problem of
classifying different types of edges (diffuse, specular, and
occluding) based on image intensity/color cues [31], [35]
and polarization cues [1]. As we shall show, changes in
weather conditions can be exploited as a cue to differentiate
depth edges from reflectance edges.

Note that closed contours of depth edges can be used for
depth segmentation. In outdoor surveillance applications,
video cameras capture the same scene (albeit with moving
objects) over long periods of time during which the weather
may change. Also, depth edges in the static portion of any
scene have to be computed just once and not for every video
frame. Hence, we see this as an initialization step that needs
to be done before applying the contrast restoration algo-
rithm of Section 4 to all frames.

Consider a small image neighborhood corresponding to
scene points that are at the same depth from an observer
(i.e., no depth edges present). We call such a neighborhood
an iso-depth neighborhood. From (5), the average brightness of
an iso-depth neighborhood is,

E ¼ I1 e
ÿ �d� �

� þ I1 ð1ÿ eÿ�dÞ
� �

; ð12Þ

and the standard deviation of the neighborhood is,

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

EðiÞ ÿ E
ÿ �2

s
: ð13Þ

Using (5), we simplify to obtain,

�E ¼ I1eÿ�d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

�ðiÞ ÿ �ð Þ2
s

: ð14Þ

Normalizing the pixel values in the neighborhood, we get,

EðiÞ ÿE
�E

¼
�ðiÞ ÿ �
ÿ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 �ðiÞ ÿ �ð Þ2

q : ð15Þ

For iso-depth neighborhoods, clearly the above equation is
invariant to the weather condition ð�; I1Þ: More impor-
tantly, the invariance does not hold for a neighborhood that
contains depth edges. This is easily explained as follows:
The airlight does not remain constant across a neighbor-
hood with depth discontinuities. Hence, subtracting the
mean (as in (15)) will not remove the airlight completely.

Now, let us consider two images captured under different
weather conditions. We assume that the two images are
taken under similar daylight distributions. However, the
magnitudes of the distributions (I1) may vary. In other
words, the shadow edges (if any) appear at the same pixel
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location in both the images. Figs. 2a and 2b illustrate the
brightnesses within an iso-depth neighborhood under two
weather conditions. Figs. 2c and 2d show that the normalized
signals under the two weather conditions match perfectly.
On the other hand, Fig. 3 illustrates that normalized signals
of scene neighborhoods that contain depth edges, do not
match. Normalized SSD can be used to determine the quality
of the match. Note that (15) still holds if we apply a more
robust estimate of mean and standard deviation (for e.g.,
median of absolute deviations from the neighborhood
median).

It is interesting to note what happens if we treat the entire

image as a single neighborhood. Applying normalized SSD to

two images of a scene, a poor match implies that the weather

condition changed between the two images and a good match

implies otherwise. For this, the scene should have at least two

different depths and the images should be linearized using

the radiometric response function of the camera. This cue is

helpful in deciding which frames can be used to compute

depth edges in a video sequence.
Fig. 4 shows the experimental results of classifying image

edges into reflectance edges and depth edges for a real scene
captured under two different foggy conditions. The time
between the capture of the images was about half an hour.
The edge map of one of the images was computed using the
Canny edge detector. For each edge pixel, we considered
15� 15 neighborhoods around the pixel in the two images.
We applied normalized SSD to match these neighborhoods.
For the depth edges, the normalized SSD value was high;
for the reflectance edges, the value was low. The depth
edges are shown in white and reflectance edges are shown
in black (Fig. 4d). Note if both reflectance edges and depth
edges are within the same neighborhood, this method may
misclassify the reflectance edges as depth edges. Also, note
that shadow edges (if any) will not be distinguished from
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Fig. 2. Invariance of iso-depth neighborhoods to weather conditions.
(a) and (b) Signals representing the intensities of a neighborhood of iso-
depth scene points in two weather conditions. Airlight (dashed lines) is
constant for the entire neighborhood. (c) and (d) Normalized signals in
the two weather conditions match exactly.

Fig. 3. Illustration of scene intensities of a neighborhood that has a depth
edge. (a) and (b) Signals representing the intensities of the neighbor-
hood under two weather conditions. Airlight (dashed lines) varies across
the neighborhood. (c) and (d) Normalized signals in the two weather
conditions do not match.

Fig. 4. Classification of image edges into reflectance edges and depth
edges. (a) and (b) Images of the same scene captured under different
fog conditions (half an hour apart). (c) The image in (a) is histogram
equalized to aid visualization of depth edges (shown using arrows).
(d) White pixels denote depth edges and black pixels denote reflectance
edges. Note that the edge detector was applied to the original image in
(a) and not the histogram equalized image in (c).



reflectance edges. Finally, this method to classify edges can
be sensitive to noise, especially under poor weather
conditions. Under poor weather conditions, due to the
limited dynamic range of the sensor (typically 8 bits), the
direct transmission (signal) to airlight (noise) ratio can be so
low that the direct transmission magnitude can be
compared to the sensor noise level. In this case, the results
produced by the method may not be trusted.

6 SCENE STRUCTURE FROM TWO WEATHER

CONDITIONS

In the previous section, we described a method to locate

depth discontinuities from two bad weather images. Note,

however, that normalized SSD is effective only in textured

neighborhoods (reflectance edges and depth discontinu-

ities). In other words, normalized SSD is not reliable for

“flat” intensity regions and regions where depth changes

are gradual. Moreover, due to the blurring seen in images

taken under poor visibility conditions, the edge maps may

not be reliable enough to create closed contours of depth

discontinuities (needed for depth segmentation).

In this section, we present a method to compute

complete structure of an arbitrary scene, from two images

taken under different weather conditions. In contrast to the

methods proposed in [21], [24] that require color images

(three color channels), our algorithm can be applied to both

gray scale as well as color images.
Consider the observed pixel values E1 and E2 of a scene

point under two weather conditions ð�1; I11
Þ and ð�2; I12

Þ.
Let us examine how the brightness of this scene point changes
from the first weather condition to the second. From (5),

E1 ¼ I11
� eÿ �1d þ I11

1ÿ eÿ �1d
ÿ �

E2 ¼ I12
� eÿ �2d þ I12

1ÿ eÿ �2d
ÿ �

:
ð16Þ

Eliminating � from (16) we get,

E2 ¼
I12

I11

eÿð�2ÿ�1Þd
� �

E1 þ I12
1ÿ eÿð�2ÿ�1Þd
� �h i

; ð17Þ

which is linear in E1 and E2. Also, for the two weather
conditions, the coefficients of the linear equation depend
only on scene depth. In other words, for iso-depth scene
points, the plot of E1 versus E2 is a straight line.

Another significant constraint results from our physical

model that suggests a means of estimating sky intensities.

Interestingly, if we substitute E1 ¼ I11
in (17), we get

E2 ¼ I12
, irrespective of the depth d. Therefore, the point

ðI12
; I11
Þ lies on all the straight lines corresponding to

different depths in the scene (see Fig. 5). In other words, the

intersection of straight lines corresponding to different

depths yields the sky intensities I11
and I12

.

The iso-depth lines in the plot of E1 versus E2 can be

detected using the Hough transform. Then, the intersection

(sky intensities) of the iso-depth lines can be computed using

a least squares line-fitting algorithm. A problem arises if the

iso-depth lines are not detected correctly in the plot of E1

versusE2. In other words, scene depths can change smoothly

and the iso-depth lines could “bunch up.” In order to

compute sky intensities, we just divide the two images into

blocks and within each block we fit lines to the (E2; E1) pairs of

scene points. If the fit is good, we decide that the scene points

in the block are at the same depth. Finally, we use at least two

such iso-depth blocks to estimate sky the intensities.
Substituting the values of I11

and I12
in (17), we obtain

the scaled depth of each scene point:

ð�2 ÿ �1Þd ¼ ÿ ln
I12
ÿE2

I11
ÿE1

ÿ ln
I11

I12

: ð18Þ

Thus, we have computed the depth map of a scene from
two images taken under different weather conditions.

7 CONTRAST RESTORATION USING SCENE

STRUCTURE

In Section 4, we described a method to restore scene

contrast given a depth segmentation of the scene. This

method is simple and effective for scenes where depth

changes are abrupt (for example, an urban scene with

frontal views of buildings). However, it is hard to define

good depth segmentation when scene depths change

gradually (for instance, a natural scene with mountains or

an urban scene with a oblique view of a road). In this

section, we present a method to restore contrast of an

arbitrary scene using scaled depths (18) of scene points.
We assume that there exists a patch Ezero in the scene

whose direct transmission is zero. This can happen in two

instances. First, Ezero can be a black patch with its scene

radiance equal to zero. Note that the black scene patch will

not appear black in the image due to the addition of airlight.

Second, Ezero could be a distant scene patch that is

completely invisible due to strong airlight. In other words,

this distant scene patch has zero direct transmission and its

contrast cannot be restored from a bad weather image.
We can either mark such a patch manually or detect one

automatically from the image. To detect zero direct

transmission patches automatically in weather degraded

images, we use the method described in [21]. Since the
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Fig. 5. Plot of the pixel values E1 observed under one weather condition
versus the corresponding pixel values E2 observed under another
weather condition. Each line represents all the scene points at the same
depth from the sensor. All iso-depth lines intersect at the horizon
brightnesses (I11

; I12
) of the two weather conditions.



apparent brightness of the patch Ezero is solely due to
airlight, its optical depth can be computed as,

� dzero ¼ ÿ ln ð1ÿ Ezero=I1Þ: ð19Þ

Then, the optical depth of any other scene point Pi is
obtained using,

� di ¼ ð� dzeroÞ
di
dzero

� �
; ð20Þ

where the second term can be computed using the ratio of

scaled depths (see (18)). Then, the normalized radiance �i of

the scene pointPi is estimated using (5). Recall that �does not

depend on the weather condition ð�; I1Þ:Thus, by computing

� for each scene point, we restore contrast of the entire scene.

Note that structure computation requires two images to be

taken under different weather conditions, but under similar

daylight spectra. However, once scene structure is computed,

contrast can be restored from a single image of the scene taken

under arbitrary weather and illumination conditions.

8 EXPERIMENTAL RESULTS

We performed experiments with both synthetic and real
scenes. Fig. 6a shows a synthetic scene consisting of a stack of
cylinders with random brightness values. To this image, two
different amounts of fog are added according to the model
described in (5). To this image, Gaussian random noise of
� ¼ 3:0 gray levels was added. Figs. 7a and 7b shows the
results of applying the structure computation and contrast
restoration algorithms to images of the synthetic scene. The
error in the recovered depth map was less than 1 percent.

Results of experiments performed on images of real
scenes are shown in Figs. 8 and 9. The images were captured

using a Professional KODAK DCS 315 digital camera.
Multiple exposures of the same scene were acquired and
the radiometric response function of the camera was
computed using the method proposed in [19]. Then, the
multiple exposed images were linearized and combined
using simple weighted averaging to obtain a high dynamic
range image of the scene. Fig. 8a shows two high dynamic
range images of the same scene captured under different
conditions of mist (light and moderate). The depth map
computed using the algorithm mentioned in Section 6 is
shown in Fig. 8b. The mist was removed using the contrast
restoration algorithm mentioned in Section 7. Notice the
windows of the farther buildings that are clearly visible in
Fig. 8d as compared to the images in Fig. 8a.

We performed experiments under rainy conditions also.
Since we are interested in a far away scene, the captured
image does seem like a foggy or a misty one due to spatio-
temporal averaging in the sensor. The results proved that
we can apply our algorithm to rainy images of faraway
scenes as well. In this case, we just captured one image
under mild rain conditions shown in Fig. 9a. The depth
map, precomputed from the misty images shown in Fig. 8a,
was used to restore the contrast of the rainy day image.
Thus, changes in weather conditions are required only to
compute scene structure whereas contrast restoration can be
applied to a single image of that scene taken under arbitrary
weather conditions. Compare the results of our algorithm
(Fig. 9d) with conventional histogram equalization (Fig. 9b).

In general, removing the spatio-temporal effects of rain is a
much harder problem compared to more stable weather
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Fig. 7. Experiments on a synthetic scene—a stack of discs textured with
random gray dots. Two images of a synthetic scene with different
amounts of fog are shown in Fig. 6b. (a) Iso-depth lines shown in the plot
of pixel values under the first weather condition versus the correspond-
ing pixel values under the second weather condition. X mark shows the
intersection ðI12

; I11
Þ of all the iso-depth lines. (b) The recovered

structure and contrast restored image. Compare (b) with the original
synthetic scene in Fig. 6a.

Fig. 6. Generating a synthetic scene—a stack of discs textured with
random gray dots. ðaÞ On the left is the 3D structure and on the right is
an image of the top view of the scene. The gray levels on the structure
are used only to illustrate the disks better. (b) Two different amounts of
fog and noise (� ¼ 3:0 gray levels) are added to the image in (a).



conditions such as fog, mist, and haze. The brightnesses due

to raindrops in the scene cannot be modeled using the simple

direct transmission and airlight models used in this paper.

8.1 Experiments with Video: Moving Objects

Consider an outdoor surveillance video camera capturing a

scene (with moving objects) over an extended period of time.

We would like to process this video in real-time to obtain a

weather-free video. Note that our algorithms cannot remove

temporal effects of rain from a video of a rainy scene. For the

purposes of discussion, we define the static part of the scene

as the background and the moving objects in the scene as the

foreground. The foreground objects can be separated from the

background using any background subtraction method (for

instance, [32]). Then, weather-free video is obtained using an

algorithm that has the following two stages:

. Initialization stage. We first detect any change in

weather condition using normalized SSD (Section 5).

Then, the two frames that correspond to the different

weather conditions are used to compute scaled

depths of the background scene (Section 6).
. Contrast Restoration. Note that the methods we

described hitherto cannot be used to restore contrast
of moving objects since their depths are unknown.

Therefore, heuristics are needed to assign depths to

foreground objects. One conservative heuristic is to

examine the depths in a neighborhood around each

moving object and assign the minimum depth to it.

The algorithm presented in Section 7 can then

applied to the entire frame to restore scene contrast.

Experimental results with a video of a traffic scene taken

under foggy conditions are shown in Fig. 10. We used an off-

the-shelf 8-bit digital video camera and captured two short

video clips half an hour apart. As described in previous

experiments, we linearized the frames with the radiometric

response function of the video camera. We averaged

100 frames in each video clip to reduce noise and used the

resulting images to compute structure of the background

scene (buildings). The scaled depths in the road region were

linearly interpolated using scaled depth values at pixels on

the left and right corners of the road. Then, contrasts of

buildings, the road, and moving vehicles were restored for

each frame of the video. Notice the significant increase in

contrast at various depths in the scene (Figs. 10d and 11).

Compare our method to histogram equalization in Fig. 12. In

our current implementation, contrast restoration was applied

to the video offline.

9 SUMMARY

In this paper, we addressed the problem of restoring the

contrast of atmospherically degraded images and video. We

presented methods to locate depth discontinuities and to

compute structure of a scene, from two images captured

under different weather conditions. Using either depth

segmentation (regions within closed contours of depth edges)
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Fig. 8. Structure computation and restoration of image contrast from two images taken under poor visibility conditions. The depth map is median filtered

and averaged to reduce noise. Notice the significant increase in contrast in the farther buildings. Contrast stretching is applied to all the images for

display purposes. (a) Images taken at 3 P.M. and 4 P.M. under poor visibility conditions (mist). (b) Computed depth map. (c) Contrast restore image.



or scene structure (scaled depths), we then showed how to

restore contrast from any image of the scene taken in bad

weather. Note, although structure computation requires

changes in weather, the contrast restoration algorithms do

not. The entire analysis is presented for monochrome images.

However, our methods can be applied to images captured

using multispectral cameras, IR cameras, and the usual

broadband RGB and gray-scale cameras.

APPENDIX

MONOCHROME CAMERA SENSING IN BAD WEATHER

In this section, we derive an expression for the intensityE, of a

scene point under bad weather, recorded by a camera within a

narrow wavelength band ð�; �þ ��Þ. From (3) we write,

E ¼
Z �þ��

�

sð�Þ Edtðd; �Þ þEaðd; �Þð Þ d�; ð21Þ

where sð�Þ is the spectral response of the camera. We

assume that the scattering coefficient � does not change

appreciably over the narrow spectral band and write,

E ¼ e
ÿ�d

d2

Z �þ��

�

E1ð�Þsð�Þrð�Þd� . . .

þ 1ÿ eÿ�d
ÿ � Z �þ��

�

E1ð�Þsð�Þd�:
ð22Þ

The sky illumination spectrum can be written as,

E1ð�Þ ¼ I 01 bEE1ð�Þ; ð23Þ

where I 01 is the magnitude of the sky illumination

spectrum and bEE1ð�Þ is the normalized sky illumination

spectrum. Letting

g ¼
Z �þ��

�

bEE1ð�Þsð�Þd�;
� ¼ 1

gd2

Z �þ��

�

bEE1ð�Þsð�Þrð�Þd�;
I1 ¼ I 01g;

ð24Þ

we rewrite the final brightness at any pixel as,

E ¼ I1 � eÿ�d þ I1 ð1ÿ eÿ�dÞ; ð25Þ

where I1 is termed as sky intensity. Note that � is a

function of normalized sky illumination spectrum, scene

point reflectance, and the spectral response of the camera,

but not the weather condition �. The algorithm we present

in the paper recovers � for each pixel to restore scene

contrast.

Let us now examine the wavelength range in which this

model can be applied. By changing the limits of integration to

½�1; �2�, and assuming the scattering coefficient to be constant

over this wavelength band, we can use the same model for a
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Fig. 9. Contrast restoration from one bad weather (in this case, rain) image and precomputed scene structure. Scene structure can be computed
using two images taken under possibly different weather conditions (say, mist). The depth map computed from two misty images (Fig. 8a) was used
to restore contrast from just one image of the same scene under rain. The rainy image shown in (a) and the misty images shown in Fig. 8a were
captured on different days. (b) Applying histogram equalization to the entire rainy image does not enhance contrast in all depths. (c) Contrast
restoration using the algorithm proposed in Section 7.



black and white camera (entire visible range), or smaller color

bands (R, G, B) for a color camera, or narrow band multi-

spectral cameras. Thus, for removal of fog and dense haze, we

can use RGB color or gray-scale cameras whereas we must use

narrow spectral band cameras for the removal of many

aerosols.
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Fig. 11. Zoomed in regions of the frame (see the marked rectangles in Fig. 10b) demonstrate the significant increase in contrast at various depths of
the scene. Note that different amounts of fog were removed at different depths. Also, notice the better contrast of moving objects (vehicles).

Fig. 10. (a) Scene imaged at 5:00 P.M. (b) Scene imaged at 5:30 P.M. (c) Depth map computed from images (a) and (b). (d) Contrast restored using
image (b). Experiments with videos of a traffic scene on a foggy day. (a) and (b) Two short video clips were captured half an hour apart using an 8-bit
video camera. 100 frames were averaged to reduce noise. Note that the vehicles on the road in the two images are different. (c) The depth map was
computed for the background image using the algorithm presented in Section 5. The scaled depths of the region corresponding to the road were
linearly interpolated using scaled depth values at pixels on the left and right corners of the road. (d) The defogged (contrast restored) image obtained
from the video frame in (b). Compare the contrast restored image with the histogram equalized image in Fig. 12.
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Fig. 12. Artificial contrast enhancement (not contrast restoration) of a
foggy image by histogram equalization does not remove fog completely
at all depths in the scene. In this example, farther depths have poorer
contrast when compared to the nearer depths.
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