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Abstract 

This paper proposes a novel method to detect three-dimensional objects in arbitrary poses and sizes from a complex 
image and to simultaneously measure their poses and sizes using appearance matching. In the learning stage, for a sample 
object to be learned, a set of images is obtained by varying pose and size. This large image set is compactly represented by a 
manifold in compressed subspace spanned by eigenvectors of the image set. This representation is called the parametric 
eigenspace representation. In the object detection stage, a partial region in an input image is projected to the eigenspace, and 
the location of the projection relative to the manifold determines whether this region belongs to the object, and what its pose 
is in the scene. This process is sequentially applied to the entire image at different resolutions. Experimental results show 
that this method accurately detects the target objects. © 1997 Elsevier Science B.V. 
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1. Introduction 

Detection of three-dimensional (3D) objects has 
wide applications such as visual search of a target in 
security systems or target detection in recognition 
systems. There are two approaches used for object 
detection. One uses local features such as edges or 
corners and matches them with 3D models (Besl and 
Jain, 1985; Chin and Dyer, 1986; Poggio and Edel- 
man, 1990; Weng et al., 1993). This method might 
handle 3D rotation and scaling of objects; however, 
extraction of geometric features from noisy natural 
scenes is not easy. The other approach uses template 
matching such as image correlation (matched filter- 
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ing) or image subtraction. This approach is insensi- 
tive to noise and small distortions. Our method is 
based on this approach. 

Template matching is a fundamental task in image 
processing. Even if we limit the discussion to search 
problems, many vision algorithms using template 
matching have been proposed. For example, feature 
detection using template matching in pyramids (Ro- 
senfeld and Vanderbrug, 1977; Tanimoto, 1981), 
using matched-filters (Liu and Caelli, 1988), or using 
modular eigenspaces (Pentland et al., 1991), were 
proposed. Caelli and Liu (1988) showed that a small 
number of templates is enough to detect a pattern 
using template matching. However, these methods 
were developed for two-dimensional template match- 
ing, so they cannot deal directly with 3D objects in a 
3D scene. A 3D object has many appearances (Weng 
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a combination of these two ideas yields a new continu- 
ous and compact representation of 3D objects. We 
used this representation for partial image matching 
and hierarchical matching at image resolutions to 
detect target objects. 

Fig. 1, A variety of appearances when varying the pose of one 
object. 

et al., 1993) depending on the pose and distance 
between the camera and the object. Fig. 1 shows that 
a variety of appearances can be seen even for one 
object. If  we store all variations of the object appear- 
ance and sequentially match them with the whole 
subpart of the input image using conventional tem- 
plate matching, a vast amount of memory and com- 
putation time is required. Our method is related to 
this exhaustive template matching, however, we use 
a new compact representation that makes the compu- 
tation of image correlation quick and efficient. This 
representation is called parametric eigenspace. This 
approach makes it possible to detect a 3D object in 
an arbitrary pose and position in the scene. 

The idea of a parametric eigenspace was first 
applied for isolated object recognition (Murase and 
Nayar, 1994, 1995a). We extend this idea to object 
detection (Murase and Nayar, 1995b), which solves 
the complex situation in which there is an object 
with a complicated background. This representation 
uses two fundamental ideas: KL (Karhunen-Loeve) 
expansion and a manifold representation. The KL 
expansion is a well-known technique to approximate 
images in the low-dimensional subspace spanned by 
eigenvectors of the image set. This technique is 
based on principal component analysis (Fukunaga, 
1990; Oja, 1983), and has been applied to pattern 
recognition problems such as character recognition 
(Murase et al., 1981) and human face recognition 
(Sirovich and Kirby, 1987; Pentland et al., 1991). 
We call this subspace the eigenspace. Calculation in 
the eigenspace reduces computation time. Secondly, 
an appearance manifold conveniently represents con- 
tinuous appearance changes due to changes in pa- 
rameters such as object pose or object size. The 

2. Learning object models 

The appearance of an object depends on its shape, 
reflectance properties, pose, distance from the cam- 
era, and the illumination conditions. The first two 
parameters are intrinsic properties of the object that 
do not vary. The correlation method is relatively 
robust to illumination variations when a brightness 
normalization process is used. On the other hand, 
object pose and camera distance can vary substan- 
tially from one scene to the next. Here, we represent 
an object using the parametric eigenspace representa- 
tion that is parameterized by its pose and its distance 
from the camera. 

2.1. Search window 

First, for a given object sample to be learned, we 
collect a set of images by varying the pose using a 
computer controlled turntable. Then we segment the 
object region from each image and normalize its 
size to some fixed rectangle. Next, we generate 
several sizes of the images (i.e., scale factor 
1, 1.1, 1.2 . . . . .  or, where ce= 1.5) for each pose. 
These images are used for object learning. We refer 
to this image set as the learning image set (Fig. 2). 
Using all the generated images, we design the search 

View 
direction 

Size 

• • • 

Fig. 2. A learning image set. 
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(a) Object region of the learning images 

I1 
(b) Search window 

Fig. 3. A search window. 

window. The window is the AND area of the object 
region of all images in the learning image set. Fig. 3 
shows an example of the search window constructed 
using the learning image set. This search window is 
introduced to eliminate the background region and 
extract only the parts of the object region in the 
learning stage. In the object detection stage, this 
search window is used to scan the entire input image. 

2.2. E i g e n s p a c e  

Each learning image is first masked by the search 
window, then represented by the N-dimensional vec- 
tor -~r..,- ( r =  1 . . . . .  R, s = 1 . . . . .  S), where the ele- 
ment of the vector is a pixel value of the image 
inside the window, N is the number of pixels, r is a 
pose parameter, and s is a size parameter. Here, R 
and S are the respective total number of discrete 
poses and sizes. We normalize the brightness to be 
independent of variations in intensity of illumination 
or the aperture of the imaging system. This can be 
achieved by normalizing each image, such that the 
total energy constrained in the image is unity. This 
brightness normalization transforms each measured 
image ~r.~,- to a normalized image xr..~ where 

"~r,s 
X,.s liar  11" 

The covariance matrix of this normalized image 
vector set is 

1 S R 
E .... - c )  T 

s = l  r = l  

Here, c is the average of all images in the teaming 
set determined as 

1 s R 

= - - E  E X r s  • 
C RS  s = l r ~ l  . 

The eigenvectors e i ( i =  1 . . . . .  k) and the corre- 
sponding eigenvalues A i of Q can be determined by 
solving the well-known eigenvalue decomposition 
problem: 

Ale  i = Qe i. 

Although all N eigenvectors of the learning image 
set are needed to represent images exactly, only a 
small number (k << N) of eigenvectors is generally 
sufficient for capturing the primary appearance char- 
acteristics of objects. The k-dimensional eigenspace 
spanned by the eigenvectors 

{ e , , e2  . . . . .  ek} (Al>~Az~ > . . .  ~>Ak) 

is an optimal subspace to approximate the original 
learning image set in the sense of an 12 norm. 
Computing the eigenvectors of a large matrix such as 
Q can prove to be computationally very intensive. 
Efficient algorithms for this are summarized in 
(Murase and Lindenbaum, 1995; Oja, 1983). Fig. 4 
shows eigenvectors for the object shown in Fig. 2. 

2.3. Corre la t ion  a n d  d i s tance  in e i g e n s p a c e  

In this section, we discuss the relation between 
image correlation and distance in an eigenspace. 
Consider two images x m and x,  that belong to the 
image set used to compute an eigenspace. Let the 
points gm and g~ be the projections of two images 
in the eigenspace. Each image can be expressed in 
terms of its projection as 

N 

Xm = E gmiei q- C, 
i = 1  

l l  
e~ e 2 e3 

Fig. 4. Eigenvectors for a learning image set shown in Fig. 2. 
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where c is once again the average of the entire 
image set. Note that our eigenspaces are composed 
of only k eigenvectors. Hence, x,, can be approxi- 
mated by the first k terms in the above summation: 

k 

Xm ~ E gmiei  + C. 
i=1 

As a result of  the brightness normalization described 
in Section 3.2, x,, and x ,  are unit vectors. The SSD 
(sum-of-squared-difference) measurement between 
the two images is related to correlation as 

]l X m - -  X n II 2= ( X m - -  X n ) T (  X m  - -  X n )  

2 T = -- 2 X m X n ,  

where x mz x ,  is the correlation between the images. 
Alternatively, the SSD can be expressed in terms of 
the coordinates g,~ and g,, in the eigenspace: 

II x , .  - x .  II 2 - -  gmiei - -  gniei 
i= 

= II g m -  g , ,  II 2 

So we have 

II g . , - g ,  II 2 -- 2 - 2 x ~ x  n, 

This relation implies that the square of the Euclidean 
distance between the point gm and g~ is an approxi- 
mation of the SSD between the images x m and x,,. 
In other words, the closer the projections are in an 
eigenspace, the more highly correlated are the im- 
ages. We use this property of  an eigenspace to 
calculate image correlation efficiently. 

2.4. Parametric manifold 

The next step is to construct the parametric mani- 
fold for the object in an eigenspace. Each image xr, , 
in the object image set is projected to the eigenspace 
by finding the dot product of the result with each of 
the eigenvectors of  the eigenspace. The result is a 
p o i n t  gr,s in the eigenspace: 

T 
g ..... = [el... ek] Xr.s. 

Once again, the subscript r represents the rotation 
parameter and s is the size parameter. By projecting 
all the learning samples in this way, we obtain a set 
of discrete points in a universal eigenspace. Since 

0.2 0 

e3 

-0.2 

0.5 

-0 .4  

Fig. 5. A parametric eigenspace representation for the object 
shown in Fig. 2. 

consecutive object images are strongly correlated, 
their projections in an eigenspace are close to one 
another. Hence, the discrete points obtained by pro- 
jecting all the learning samples can be assumed to lie 
on a k-dimensional manifold that represents all pos- 
sible poses and a limited range of  object size varia- 
tion. We interpolate the discrete points to obtain this 
manifold. In our implementation, we have used a 
standard cubic spline interpolation (Press et al., 
1988). This interpolation makes it possible to repre- 
sent appearance between sample images. The result- 
ing manifold can be expressed as g(Oj, 02) where 
0~ and 02 are the continuous rotation and size 
parameters. The above manifold is a compact repre- 
sentation of the object 's appearance. Fig. 5 shows 
the parametric eigenspace representation of  the ob- 
ject shown in Fig. 1. The figure shows only three of 
the most significant dimensions of  the eigenspace 
since it is difficult to display and visualize higher-di- 
mensional spaces. The object representation in this 
case is a surface since the object image set was 
obtained using two parameters. If we add more 
parameters such as rotations about other axes, this 
surface becomes a high-dimensional manifold. 

3. Image spotting 

3.1. Image spotting using the parametric eigenspace 

Consider an image of a scene that includes one or 
more of the objects that we have learned, on a 
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complicated background. We assume that the objects 
are not occluded by other objects in the scene when 
viewed from the camera direction. 

First, the search window is scanned on the entire 
input image area (1 <~x<~X, 1 <~y<~Y) and a se- 
quence of the subimages is made. Here, X and Y are 
sizes of the input image. The search window elimi- 
nates the background effect and extracts only a 
subpart of the input images, namely, inside the ob- 
ject region. Each subimage is normalized with re- 
spect to brightness as described in the previous 
section. The normalized subimage at position (x, y) 
is represented by vector p(x, y). Next, p(x, y) is 
projected into the eigenspace by 

T h(x ,  y ) = [ e l . . . e k ]  p ( x ,  y).  

If this subimage is one of the learning set, the 
projected point h(x,  y) will be located on the mani- 
fold g(O 1, Oz). Next, we compute the distance be- 
tween the projected point and the manifold, using 

d( x, y) = min II h( x, y) - g(  01 , 02) I[. 
0t,02 

If the distance d(x, y) is less than some predeter- 
mined threshold value, the position (x,  y) is a candi- 
date for the object. After finding the candidate, the 
minimum peak of the distance around this position is 
searched, because the distance of the subimage at 
(x, y) is similar to that of the subimage around this 
position since these images are correlated to each 
other. Finally, we can conclude that the position that 
minimizes the distance is of the object. The pose and 
size parameters can be estimated by the parameters 
0~ and 0 z that minimize the distance. 

3.2. Hierarchical image spotting 

We assume weak perspective image projection. 
This means the size of the object is a function of the 
distance between a camera and the object. As shown 
in the previous section, the parameter 02 in the 
manifold can deal with size variation of the object 
region. However, the dynamic range should be lim- 
ited, because the effective window area, that is, the 
area used for correlation, becomes small if we cover 
a large range of the size parameter using the para- 
metric eigenspace representation. In our experiment, 
we set the dynamic range of the size parameter of 

Resized input image 

a -2 

O~ -I 

f J 

~ Input i m a g e /  

Size range of 
manifold 

l ~ a  

l ~ a  

l ~ a  

Detectable 
size 

~ 2  ~3 

~t - O~ 2 

l ~ a  

Fig. 6. Hierarchical scaling of the input image for arbitrary size. 

the manifold to around 1.5 (1 ~< 0 2 ~< 1.5). This range 
in size variation is not sufficient for many applica- 
tions. Here, to cover a wider range of size variations, 
we apply this process hierarchically. The input image 
is resized as 1, a - I ,  a -2 . . . . .  and the same object 
detection procedure is applied for each resized im- 
age. Here, a is set to the maximum value of the 
parameter 0 I. As a result, this method can cover size 
variations continuously. Fig. 6 shows the range to 
cover the size for each resized input image. 

3.3. Computational cost 

Here, we discuss the computational cost by esti- 
mating the number of operations such as multiplica- 
tions for each calculation of distance d(x, y). Let 
the number of pixels in the search window be N, and 
the number of the templates that corresponds to the 
number of the possible poses and sizes be M. The 
term k is the dimension of the eigenspace. In gen- 
eral, N > M >> k. If we ignore the second order, the 
number of operations for each step for the conven- 
tional correlation technique is as follows: (1) N 
multiplications for normalization. (2) NM multipli- 
cations for the correlation. (3) M comparisons to 
find the maximum correlation. The total number of 
operations for each calculation of distance d( x, y) is 
N + NM + M. On the other hand, if we apply the 
parametric eigenspace method, the operation in each 
step is as follows. (1) N multiplications for normal- 
ization. (2) Nk multiplications for the projection. (3) 
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Mk multiplications for distance calculation. (4) M 
comparisons to find the minimum distance. The total 
number of operations is N + Ark + Mk + M, hence, 
the dominant factor is (N  + M)k. Assume that N is 
6,500 (the number of pixels in the search window), 
and M is 3,600 ( R = 3 6 0 ,  S = 10 ) ,  and k is 10. 
These numbers are picked from the example in our 
experiments (see Section 5). The results show there 
are 111,100 operations for our method, and 
23,410,100 operations for the exhaustive correlation 
method. At the same time, the memory size for the 
templates can be reduced from NM to Nk words. 

4. Experiments 

We conducted several experiments using complex 
objects to verify the effectiveness of the parametric 
eigenspace representation. This section summarizes 
some of our results. 

For example, we demonstrated five kinds of target 
objects: a toy cat, a juice can, two paper boxes, and a 
human face. In the learning step, the object is placed 
on a motorized turntable and its pose is varied on a 
single axis, namely, the axis rotation of the turntable. 
Most objects have a finite number of stable configu- 
rations when placed on a planar surface. For such 
objects, a turntable is adequate as it can be used to 
vary poses for each of the object's stable configura- 
tions. For a human face, we used a rotating stool 
instead of a turntable. When learning, we used a 
black background to make it easy to segment the 
object region from the background. Images of the 
object are sensed using a 512× 480 pixel CCD 

camera and are digitized to 8 bits per pixel. We took 
45 images of different poses for each object for 
learning. The object region is segmented by the 
simple thresholding technique and its size is normal- 
ized to 128 x 128 pixels. Then, we compute a search 
window and the parametric eigenspace representa- 
tion for each object (see Fig. 2). In this example, the 
window has 5400 pixels. 

Next, we constructed a manifold in the eigenspace 
according to the procedure in Section 3, and densely 
resampled the manifold by 360 poses for the rotation 
parameter and 10 steps for the size parameter. There 
were 3,600 total resampled points on the manifold, 
which are used for searching the manifold. In our 
experiments, we calculated the distance from the 
manifold by finding the nearest neighbor distance 
from these resample points. 

To test the algorithm, we used 30 images where 
the target object was placed on the complicated 
background. We applied the procedure explained in 
Section 4. Fig. 7(c) shows the distance map for the 
image example shown in Fig. 7(b) and the target 
object shown in Fig. 7(a). Here, a white pixel indi- 
cates an area of small distance value, and the object 
is possibly there. The computation time is two min- 
utes using a SUN workstation SS10. Fig. 8 shows 
the results for several input images. Our method 
correctly detected 28 out of 30 examples. Errors in 
detection occurred when a part of the background 
was similar in texture to the target object. 

We evaluated the number of dimensions of the 
eigenspace by changing the number of dimensions 
and plotting the graph of the distance from the 
manifold. If there are too few dimensions, the repre- 

(b) Input image (c) Distance from the manifold 

Fig. 7. An example of image spotting. (a) A target object, (b) an input image, (c) distance map from the manifold. 
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Fig. 8. Results of image spotting. 

sentation is less accurately approximated. Fig. 9 
shows the graph of the distance value for the place 
along the white line in Fig. 7(b). In Fig. 9(a) (two-di- 
mensional eigenspace was used), there are many 
positions that do not belong to the object and that 
have a small distance. This causes errors in object 
detection. Figs. 9(b) and (c) show the graphs for six- 
and 16-dimensional eigenspace, respectively. If there 
are enough dimensions, the correct position of the 
object is detected accurately. We tested this algo- 
rithm with 30 test images, and found that 10-dimen- 
sional eigenspace is enough to detect these objects. 
We can evaluate the approximation of the representa- 
tion by the sum of the contribution factor 

__~l /~i E "~i' 
i= i=l 

where A i is the ith largest eigenvalue, k is the 
dimension of eigenspace and N is the dimension of 
the original image. Fig. 10 shows a graph of the sum 
of the contribution factor. This is 0.7 for 10 dimen- 
sions. 

Image correlation methods are robust to noise. 
The result for the noise pattern (SNR is 20 dB) is 
shown in Fig. 11. Fig. 9(d) shows the distance graph 
for this case. It is not very different from Fig. 7(c). 
Our method works well for these images. 

We can compute an object's pose at the same 

time of object detection, by estimating the pose 
parameter that minimizes the distance from the man- 
ifold. It was shown that the accuracy of the pose 
estimation for an isolated object (Murase and Nayar, 
1995a) is high using the parametric eigenspace 
method. In our case, however, the strong feature of 
the object boundary cannot be used, because the 
boundary can be obtained after segmentation and 
pose estimation. We evaluate the pose estimation 
error for both cases for the same object: (1) isolated 
objects, using image matching including object 
boundary, and (2) objects that are not isolated, using 
only partial matching of the object region. Fig. 12 
shows a histogram of the error for both cases for 45 
test images. The accuracy of the pose estimation 
without using boundary information is still high, 
although it is a little lower than that using boundary 
information. Cui and Weng (1996) used a prediction- 
and-verification approach for the segmentation of 
hand gesture. This idea is useful when the boundary 
of the object cannot be extracted in a bottom-up 
approach. If our method includes this approach, the 
accuracy of the pose estimation might be improved. 

5. Discussion 

This section briefly discusses advantages and lim- 
itations of our method. 
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Fig .  11. A n  input  i m a g e  wi th  w h i t e  n o i s e  ( S N R  = 20  d B ) .  

(1) Learning-based approach. Because our 
method uses a learning-based approach, it can recog- 
nize rotated objects and differently sized objects if 
these variations of the learning samples are prepared 
in the learning step. The feature itself is not invariant 
to the rotation and size. Preparing good learning 
samples is the important factor with our method. 

(2) Eigenspace. We calculate eigenspace sepa- 
rately depending on the object. The object detection 
is basically a two-class problem (object and back- 
ground). If we can estimate a distribution of the 
features in the background, we can use discriminant 
analysis, which may be a more efficient space than 
object eigenspace. However, it is usually difficult to 
estimate the distribution of the background, because 
the background is almost always unknown. 

(3) Occlusion. The appearance-based method is 
basically template matching, so it is robust to small 
noise; however, it simply cannot handle occlusion. 

(4) Lighting. Illumination changes the appear- 
ance, and this causes problems with our method. One 
way to solve this problem is to add samples with 

10 

i . o, | t  0° 
- 8 - 7 - 6 - 5 - 4 - 3 - 2 - |  1 2 3 4 5 6 7 8 

d e  ; r e e  

Fig .  12. H i s t o g r a m  fo r  p o s e  e s t ima t i on  e r ror  ( the s t r iped bar:  

w i thou t  u s ing  b o u n d a r y  in fo rma t ion ;  the  b lack  bar:  u s i n g  bound-  

a ry  in fo rma t ion ) .  
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different illuminations when learning. This increases 
the number of parameters of the manifold in 
eigenspace. If the number of parameters is larger, we 
have to use high-dimensional eigenspace. This in- 
creases the computation time. 

(5) Local features. One extension of our method 
is to extract local features and to integrate them to 
deal with the deformation of the shape. (Cootes and 
Taylor (1996) used a similar approach for shape 
deformation.) However, extraction of local features 
is not usually accurate because it can use only local 
information. If the object is rigid and not occluded, a 
global feature is more stable. 

(6) Shape of the mask. We used the AND region 
of many appearances of a target object. If the object 
shape has large enough volume this works well; 
however, if the object is made of wires or thin parts, 
this approach does not work. This is the limitation of 
this mask approach. 

6. Conclusion 

In this paper, we described a detection method for 
a three-dimensional object with a complicated back- 
ground. This new image representation is called the 
parametric eigenspace method. The method detects 
an object in an arbitrary pose and size in a natural 
scene based on 2D image correlation, and simultane- 
ously computes the pose and size of the object. 
There are a variety of appearances for a 3D object 
depending on its pose and position. We represent 
them using a compact image representation based on 
two key ideas. One is the KL transform, which 
approximates the appearance of the object image set 
using a small number of eigenvectors to reduce the 
computation time and memory size. The other is a 
parametric representation, which represents the con- 
tinuous change in appearance by varying pose and 
position by a manifold to compute object pose and 
position. Image correlation using this representation 
is hierarchically computed for different sizes of input 
images to cover a large dynamic size range of the 
object. 

Experimental results showed this method can ac- 
curately detect the target object. We have also shown 
that this method reduces the computational cost com- 
pared with the exhaustive correlation method, and is 

also robust to noise in input images. Future research 
will concentrate on increasing parameters of the 
manifold to handle general pose of the object in 
three dimensional space, and recognizing objects 
with large occlusion. 
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