
Learning by a Generation Approach to 
Appearance-based Object Recognition 

Hiroshi Murase Shree K. Nayar 

NTT Basic Research Labs 
Morinosato Wakamiya, Atsugi 

Colombia University 
New York, NY 10027 

243-01, JAPAN USA 
E-mail: murase@apollo3.brl.ntt.jp, nayarQcs.columbia.edu 

Abstract 

W e  propose a methodology f o r  the generation of 
learning samples an appearance-based object recognition. 
In m a n y  practical si tuations,  it i s  no t  easy to  obtain a 
large number of learning samples. T h e  proposed method 
learns object models f r o m  a large number of generated 
samples derived from a small  number of actually ob- 
served images.  T h e  learning algorithm has two steps: 
(1) generation of a large number of images by image in- 
terpolation, or image deformation, and (2) compression 
of the large sample sets using parametric eigenspace rep- 
resentation. W e  compare our  method with the previous 
methods that  interpolate sample points in eigenspace, 
and show the performance o f  our method to  be superior. 
Experiments were conducted f O T  432 amage samples for  
4 objects to  demonstrate the  effectiveness of the method. 

1 Introduction 

Appearance-matching techniques are becoming pop- 
ular in machine vision. For example, Pentland et. a1 
proposed the eigenface representation for human face 
recognition [I]. Recently, a new representation of object 
appearance called parametric eigenspace 121 was pro- 
posed by Murase and Nayar. In parametric eigenspace, 
an object is represented as a continuous appearance 
manifold in a low-dimensional subspace parameterized 
by object pose, illumination direction, and other rele- 
vant parameters. This method is invariant to parameter 
changes such as a pose change and gives good experi- 
mental results for object recognition. The parametric 
eigenspace representation has found several important 
applications. These include learning object models [2], 
real-time recognition of 3D objects, real-time position- 
ing and tracking of 3D objects by a robot manipulator, 
object detection from cluttered scenes [3], and illumina- 
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tion planning for robust object recognition [4]. Recently, 
a recognition system with 100 complex rigid objects in 
its database was developed that is solely based on ap- 
pearance matching. The sheer efficiency of appearance 
matching enables the system to accomplish both recog- 
nition and pose estimation in real time using nothing 
more than a standard workstation equipped with an 
image sensor. 

In the context of large systems, the primary bottle- 
neck has turned out to be the learning stage, which 
includes the acquisition of a large image set. Poggio 
et al. [5] proposed the virtual view for learning in their 
face recognition system. Daffertshofer et. a1 [SI used de- 
formed patterns in the matching stage. Rubinstein et. 
a1 [7] proposed a recognition method for distorted pat- 
terns generated by Lie transformation groups. A related 
idea can be seen in character recognition in the analysis- 
by-synthesis approach. Murase et al. [SI have shown 
that the recognition accuracy of the pattern matching 
method improves when deformed characters are added 
to the dictionary. The basic idea underlying these ap- 
proaches is the generation of feature patterns to deal 
with deformations. 

In appearance-based object recognition using the 
parametric eigenspace approach, each object is repre- 
sented as a separate manifold in eigenspace that is pa- 
rameterized by pose and illumination parameters. The 
accuracy of the learning stage is determined by the num- 
ber of sample images used to compute an appearance 
manifold. This leads to the following question: Can we 
decrease the number of images needed for constructing 
the appearance manifold for any given object? We ex- 
amine the case where the number of available learning 
samples is very small, as is the case with many practical 
applications of object recognition. 

For illumination parameters, Nayar and Murase have 
shown that the dimensionality of the illumination man- 
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ifold [9] for Lambertian surface is 3. This means that 
three images of the same object due to illumination 
from different directions is enough to  construct the 
eigenspace manifold that corresponds to  all possible il- 
lumination directions. 

In this paper, we focus on the geometric parameters 
that effect the appearance of an object. Our method 
generates new appearance patterns due to  variations 
in geometric parameters to  decrease the number of the 
learning samples that need to  be measured. First, many 
appearance variations are generated from a small num- 
bers of measured samples by image interpolation, or im- 
age deformation. Next, this large number of generated 
images is compressed using the parametric eigenspace 
representation. The computed parametric eigenspace 
is very effective in applications where appearance is 
parametrized; for example, when objects are rotated in 
3-D or 2-D, or objects are composed of parts that are 
connected to  each other at joints with a small number of 
degrees of freedom. The combination of the generation 
of learning samples and the parametric eigenspace rep- 
resentation makes it possible to  learn objects accurately 
even when the number of available learning samples is 
small. 

The structure of the paper is as follows. The sample 
generation method is described in section 2, learning by 
generation in section 3, the parametric eigenspace rep- 
resentation in section 4, and experiments are reported 
in section 5.  

2 Image generation 
It is essential to  have a large number of learning sam- 

ples to  increase the recognition accuracy. Image gener- 
ation may help to increase the number of learning sam- 
ples. There are two ways to  generate the images. One 
is image interpolation, and the other is image deforma- 
tion. 

The original parametric eigenspace method interpo- 
lates sampled points in eigenspace by cubic spline inter- 
polation. The interpolated points represent an image 
between two images corresponding to  the two points 
in eigenspace. This interpolation is efficient only when 
the density of the sampled points is high enough, and 
two consecutive images are strongly correlated to  each 
other. However, if the sampled pattern is very sparse, 
this interpolation does not work well because the point 
in the eigenspace represents an image that is a linear 
combination of images in a learning set. This means 
that it is difficult to  construct a new image by any lin- 
ear combination of images that are not correlated to  the 
target image. However, if we generate the new images 
in image space, this problem can be solved. In this sec- 
tion, we show the generation in the image space, not in 
the eigenspace. 

2.1 Image interpolation in image space 

Many image interpolation techniques have been pro- 
posed, and they can be used for our purpose. The fol- 
lowing interpolation method is one of them. We as- 
sume the control points are given and the correspon- 
dences are known. We need to  provide this infor- 
mation only once in the learning stage, and this can 
be done manually. Assume that M control points in 
one image, I I ,  are labeled (zk, yk) and corresponding 
M points in the other image, Iz,  are labeled (zk,yk). 
We interpolate between two images, I1 and 1 2 ,  con- 
trolled by parameter a(0 < a < 1). Here, the control 
points in the interpolated image can be formulated as 
(uk,vk) = a ( z k , y k )  + (1 -a)(zL,yk). Next, we make a 
mapping function for the whole image area; V(z, y)  and 
U($, y)  for mapping from 11, and V’(z,y) and U’(z,y) 
for mapping from 12. The interpolation is done in the 
following three steps. 

(1) Triangulation 
Partition of each image into triangular regions con- 

necting neighboring control points with noncrossing line 
segments forms a planar graph. Delaunay triangulation 
is a well-known method, which can be calculated in the 
computation time of O(nZogn), where n is the number 
of control points. Figure l(a) shows the control points 
for the examples of scissors, and Fig. l (b)  shows a result 
of Delaunay triangulation for these points. 
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Figure 1. (a) An example of control points for scis- 
sors, (b) Delaunay triangulation for the points. 

(2) Linear triangulation patches 
Deriving mapping function U, for example, is equiv- 

alent to  determining a surface that passes through 
points (zk,yk,uk). Here, we show a linear triangula- 
tion patch with a linear interpolant. The equation of a 
plane through three points (z1,y1,u1), (z~,y~,uz), and 
(23, Y3, ‘u3) is 

Az +By + CU(2,y) + D = 0 (1) 
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where 
COSO sine 0 

Y1 U1 1 
1 (2) 

(2) Perspective transformation 
If we consider the sensor position is close to  the 

object, we have to  consider the perspective transform 
[lo]. Assume the view point is on the positive Z axis 
at ( O , O , f )  looking toward the origin, and f is a focal 
length. The image plane is on the Z = 0 plane. The 

x1 Y1 1 
(3) 

Each patch is calculated separately, and the surface image Plane Point for Point (2, Y, ’) is given 

U(z ,y)  is constructed for the whole image area. We 
can calculate V ( z ,  y), U’($, y), and V‘(5, y) in the same 
way. Here, U’ and V’ are mapping functions from image 
1 2 .  

by 

(7 )  
f x  f Y  

(u,v) = (KlG). 
(3) Image resampling 
Using mapping function (U,  V )  and (U’, V’),  we re- 

sample the images to form the interpolated image. We 
generate the image using the formula 

We can generate the distorted image by non-linear 
image transformation parameterized by the camera po- 
sition, which is formulated as above. 

(4) 
The method above is piecewise linear mapping, where 

the mapping functions are continuous at the boundaries 
between neighboring functions, but they do not provide 
a smooth transition across patches. In order to  obtain 
smoother results, the patches must be at  least use C1 
interpolants. There are several methods using N-degree 
polynomials. However, in many cases, piecewise linear 
mapping may be enough to approximate the interpola- 
tion. 

2.2 Image deformation 

The other type of image generation for learning ob- 
ject models is image deformation. The pattern is gener- 
ated from a reference pattern in this case. If deforma- 
tion rules of the object are given, they can be used to 
generate any types of deformation. Here, we show two 
examples. 

(1) Affine transform 
One simple but powerful deformation technique is 

affine transformations. The affine transforms cover ro- 
tation, size change, and shearing of the objects. The 
general representation of an affine transformation is 

If we consider all variations of object appearance, it 
is impossible to represent the object by small number of 
parameters; however, in many practical situations, the 
freedom of deformation is limited. In some situations, 
the object may be rotated along only one axis, or it 
may be deformed along with one joint. In this case, 
our approach is very powerful for learning in parametric 
eigens pace. 

We can use different image generation rules for differ- 
ent geometric parameters. Some of them can generate 
strict deformation and some are approximated deforma- 
tion. 

First, we assume the simple case of two-step image 
generation; (i) image interpolation, and (ii) affine trans- 
formation (rotation). Figure 2 shows the image set gen- 
erated from only three actually observed samples. 

4 Parametric eigenspace 

In the learning step, these generated images are com- 
pressed using the parametric eigenspace representation. 
This section shows the way to  make this representation. 

4.1 Eigenspace 
Each learning image is represented by the N dimen- 

sional vector 5ij ir ,s(~ = 1, ..., R,s = 1, ..., S), where the 
element of the vector is the pixel value of the image, N 
is the number of the pixels, T is the rotation parameter, 
and s is the interpolation parameter. Here, R and S are 

We can generate many types of useful deformed pat- 
terns by this transform. For example, Rotation by angle 
6 is 

the total number of discrete joint angles and rotations, 
respectively. We normalize the brightness to be unaf- 
fected by variations in intensity of illumination or the 

26 



Observed 
images 

Generated images 

Figure 2. Examples of the generated patterns from 
three observed examples. 

aperture of the imaging system. This can be achieved 
by normalizing each image such that the total energy 
constrained in the image is unity. This brightness nor- 
malization transforms each measured image j i r , s  into a 
normalized image xr,s where 

The covariance matrix of this normalized image vec- 
tor set is 

S R  

Here, c is the average of all images in the learning set 
determined as 

The eigenvectors ei(i = 1, ..., k) and the correspond- 
ing eigenvalues X i  of Q can be determined by solving 
the well-known eigenvalue decomposition problem 

Xiei = Qei. (11) 

Although all N eigenvectors of the planning image 
set are needed to represent images exactly) only a small 
number (k << N )  of eigenvectors are generally suffi- 
cient for capturing the primary appearance characteris- 
tics of objects. The k-dimensional eigenspace spanned 
by the eigenvectors, 

is the optimal subspace to approximate the original 
leaning image set in the sense of Z2  norm. Computing 
the eigenvectors of a large matrix such as Q can prove 
computationally very intensive. Figure 3 shows eigen- 
vectors for the object in Fig. 2. 

e1 e2 e3 e4 

Figure 3. Eigenvectors for the patterns in Fig. 2. 

4.2 Parametric Manifold 

The next step is to construct the parametric man- 
ifold for the object in eigenspace. Each image in 
the object image set is projected to the eigenspace by 
finding the dot product of the result with each of the 
eigenvectors of the eigenspace. The result is a point gT,s 
in the eigenspace: 

Once again the subscript r represents the rotation 
parameter and s is the interpolation parameter. By pro- 
jecting all the learning samples in this way, we obtain a 
set of discrete points in universal eigenspace. Since con- 
secutive object images are strongly correlated, their pro- 
jections in eigenspace are close to one another. Hence, 
the discrete points obtained by projecting all the learn- 
ing samples can be assumed to lie on a k-dimensional 
manifold that represents all possible poses and a lim- 
ited range of object size variation. We interpolate the 
discrete points to obtain this manifold. In our imple- 
mentation, we have used a standard cubic spline inter- 
polation. This interpolation makes it possible to repre- 
sent appearance between sample images. The resulting 
manifold can be expressed as g(81 , e,), where 01 and 
are the continuous rotation and interpolation parame- 
ters. The above manifold is a compact representation 
of the object's appearance. Figure 4 shows the para- 
metric eigenspace representation of the object in Fig. 
2. It shows only three of the most significant dimen- 
sions of the eigenspace since it is difficult to display and 
visualize higher dimensional spaces. The object repre- 
sentation in this case is a surface since the object image 
set was obtained using two parameters. If we add more 
parameters such as rotations in other axes, this surface 
becomes high dimensional manifold. 

The total flow of the learning involves (i) the collec- 
tion of sample images, (ii) image interpolation, (iii) im- 
age deformation, (iv) eigenspace computation, (v) point 
interpolation in eigenspace, and (vi) manifold construc- 
tion. 
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e3 

Figure 4. Parametric eigenspace representation 
(manifold in the eigenspace). 

4.3 Object recognition using the Paramet- 
ric Eigenspace 

First, an input image is normalized with respect to 
brightness as described in the previous section. The 
normalized sub-image is represented by vector y. Next, 
y is projected into the eigenspace by 

h = [el, e2, ..., ekITy. (14) 

If this image belongs to the learned object, the pro- 
jected point y will be located on the manifold s(&, &). 
Next, we compute the distance between the projected 
point and the manifold using 

The rotation and joint angle parameters can be esti- 
mated by the parameters B1 and Bz that minimize the 
distance. 

5 Interpolation in eigenspace vs. inter- 
polation in image domain 

When interpolation is performed in eigenspace, the 
image corresponding to the interpolated points is equiv- 
alent to one that is generated by the linear combination 
of the original image set. If two consecutive images are 
not strongly correlated, the interpolation in eigenspace 
is not accurate. 

Here, we can compare two cases. The learning sam- 
ples are the three shown in Fig. 5 .  We denote this 
as X = [XI, x2, xg], where xl, x2, and x3 are observed 
images. 

Assume a novel image is y, and this image is rep- 
resented by the linear sum of the three images. The 
minimum case of the mean square error is then 

where the elements of vector p are the coefficients of 
each image for the linear sum. This value is the lower 
bound of the distance between the manifold and the 
point. This means that even if we make the manifold 
using any good interpolation function in the eigenspace, 
the distance is greater than this value. Xp = y is an 
over determinant linear system, so p which minimize 
llXp - yII is formulated as p = X*y, where X' is the 
pseudoinverse of X. 

We compare two cases: (1) the pattern is interpolated 
only in the eigenspace, and (2) the pattern is interpo- 
lated in the both image space and eigenspace. Figure 5 
shows the lower bound E for both cases. If we do not 
apply our method, E is low only when the novel pattern 
is around the learning samples. On the other hand, E is 
low for all values of the parameter in our method. We 
can see from this experiment that the image interpola- 
tion improves the accuracy of the parametric eigenspace 
representation even when the number of samples is very 
low. 

Interporation in the eigenspace 
3 " : O o 2  Interpolation of the images 

a 5 003 
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Figure 5. Lower bound of t h e  distance from the man- 
ifold. 

6 Experiments 
(I) Image sets 
Our learning framework can be applied to many cases 

where the object appearance changes in a parametric 
way. For the experiments, we used a typical object set 
as follows. Each object in the set is composed of two 
parts that are connected to each other at  a joint, and the 
joint angle is unkown. The orientation of the object is 
unkown. The camera is viewing the object from above. 
This is a common situation for object recognition in the 
factory. Experiments were conducted on the set of four 
objects shown in Fig. 6. 

(2) Experiment 1 
In the first experiment, we considered only image in- 

terpolation. For the learning image set, only three sam- 
ples with different joint angles were used for each ob- 
ject. For test samples, we took 54 samples for each 
object with random joint angle (Total 432 samples). 
The orientation for each sample was approximately the 
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Figure 6. Examples of the test data.  

same. Each of these images was automatically normal- 
ized in scale and brightness. Each normalized image was 
64x64 pixels in size. In the learning stage, we generate 
the interpolated pattern from three learning samples, 
calculate the eigenspace, and form the manifold in the 
eigenspace. Here, the control points were selected man- 
ually. The manifold was formed by again interpolating 
among the projected points of generated samples in the 
eigenspace. We used 16 dimensions of eigenspace, be- 
cause preliminary experiments showed this is enough. 
Figure 7(a) shows the recognition rates versus the num- 
ber of interpolated samples. The recognition rate with 
our method was 100%. The rate obtained when using 
only observed samples for learning was 92.5%. 

(3) Experiment 2 
In this experiment we considered combination of two 

kinds of generation: interpolation and deformation. We 
used the same three samples for learning. First we in- 
terpolated the images in the same way as above, and 
rotated the patterns by affine transform. A part of the 
generated patterns are shown in Fig. 2. For test sam- 
ples, we took 180 samples for each object with random 
orientation and random joint angles. This gave us a 
total 720 images. Each of these images was normal- 
ized in scale and brightness in the same way. Figure 
7(b) shows the recognition rates versus the number of 
rotated samples. A recognition accuracy of 99.5% was 
obtained with our method. 

‘11 /-, i.i/- 
90 3 40 

85 20 
0 10 20  

Number of the interpolated patterns 
0 10  2 0  30 40 50  60 
Number of the rotated patterns 

Figure 7. (a) The recognition rates versus the num- 
ber of interpolated samples, (b)  the recognition rates 
versus the number of rotated samples. 

Conclusion 
We have proposed a new learning algorithm for 

consists of a sample generation step using image in- 
terpolation or deformation and an image compression 
step using parametric eigenspace representation. Ex- 
periments were conducted for 720 image samples for 4 
objects, and the results show a recognition accuracy of 
99.5% was obtained. In this paper, we have shown only 
simple deformation cases; however, we can apply our 
method for many types of deformation for many kinds 
of objects. 
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