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Abstract 

This  paper addresses the problem of illumination plon- 
ning for  robust object recognition in st.ructured environ- 
ments. Given a set of objects, the goal is t o  determine the 
illumination for  which thc objects are most  distinguishable 
in  appearance f r o m  each other. For each object, a large n u m -  
ber of images is azitonzafically obtained by varying pose and 
illumination. Images of all objects, together, con.stitute the 
planning image s e t .  T h e  planning se f  i s  compressed using 
the Iiarhunen-Loeve transforrrr to obtain a low-dimensronnl 
subspace. For any  given illumination, objects are repre- 
sented as parametrized manifolds i n  the subspace. The  min-  
i m u m  distance between the manifolds oj  two objects repre- 
sents thr  similarity between the objects i n  the correlation 
sense. T h e  optimal illumination is therefore one  that mnx-  
imites  the shortest distance between object manifolds. Re- 
sults produced by th t  illumination planner have been used to  
enhance the performance of an object recognition syslem.  

1 Introduction 
Research in the area of computer vision can be classified 

into two broad categories. One involves the development of 
passive vision systems for the analysis of unstructured en- 
vironments, such as, outdoor scenes. T h e  second is geared 
towards t,he development of vision systems for structured en- 
vironment,s, such as, industrial assembly lines. In the case 
of structured environments, imaging and illumination pa- 
rameters are often controllable. As a result, effective vision 
sensors and algorithms can be developed to  recover various 
types of scene properties that  would generally be impossi- 
ble to  estimate in unstructured environments. In structured 
environments, vision systems are used t o  perform a variety 
of tasks, such as, inspect manufactured parts, recognize ob- 
jects and sort t,hem, or aid a robot in assembly operations. 
In each of t,hese cases, the illumination of the environment 
can be selected to enhance the reliability and accuracy of 
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the vision system. Currently, illumination paramet.ers are 
selected by human operators using the trial and error ap- 
proach. T h e  resulting illumination is seldom one t,hat max- 
imizes the performance of the vision system. 

Lately, aut,omatic illumination planning has emerged as 
a t,opic of research interest. Most. of this work focuses on 
determining light source posit,ioiis that. rnasimize the de- 
tectability of image features such as edges. Cowan and 
Bergman [2]  use CAD (geometric) models of objects to com- 
pute source posit.ions for which all brightness values in  the 
image lie within the sensor's dynamic range. The  positions, 
orientations, and reflectance parameters of the 0bject.s are 
assumed to be known. Using the same assumptions, (:owan 
and Nitzan [3] compute source positions that  ensure that 
the brightness contrast a t  select,ed edges on objects exceeds 
a threshold value. Recently, Yi et al. [ll] used the Torrance 
and Sparrow reflectance model to obtain accurate predic- 
tions of the brightness of object points. Yi propagates er- 
rors due to noise in image brightness to estimate errors in 
the positions of edges. The planning problem then is to tle- 
termine the source direction t.hat maximizes t,he accuracy of 
edge positions. 

Addressing a different. problem, Sakane e t  al. [9] deter- 
mine optimal source directions for a photoinet,ric stereo sys- 
tem. They use the accuracy of computed surface normals 
and the range of computable normals as criteria for select- 
ing the optimal source directions. Recently, Batchelor [l]  
proposed an espert  system that  uses the knowledge of il- 
lumination experts to  suggest the best illumination for a 
given vision application. T h e  illumination plan proposed by 
an expert is based on his/her experience and not a careful 
theoretical analysis of the problem. Hence, the suggested 
illumination is not guaranteed to be optimal. 

In this paper, we present a novel approach to illumination 
planning. There are several parameters that  characterize il- 
lumination, such as, source direction, source distance. source 
size, and the spectral characteristics (color) of the source. 
We describe t,he planning approach using source direction 
and source color as the parameters of interest. In theory, as 

corporate other illumination parameters. Object appearance 
is used as the criterion for finding the optimal illumination. 
Given a set of objects, our goal is to determine the illumina- 
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tion that  makes the objects maximally different from each 
other in the correlation sense. Once the optimal illumi- 
nation has been planned, i ts  validity must be verified. For 
this, we have used an object recognition system that  iden- 
tifies 3D objects and computes their poses from brightness 
images [6]. Experiments using this syst,em show that  the 
planned illumination produces the highest recognition rate. 
The  paper is concluded with a discussion on the merits and 
limitations of the proposed method. 

2 Illumination Planning 
In this section, we discuss the problem of finding optimal 

illumination for recognition and pose estimation of a set of 
objects. Our approach differs in two fundamental ways from 
previous work on illumination planning. (a) We do not use 
3D geometric (CAD) models or reflectance models of objects 
during illumination planning. Our planning approach uses 
raw 2D images of objects to determine the optimal illumi- 
nation for correlation-based object recognition. ( b )  We do 
not assume that the pose of each object is fixed and known 
a-priori. First, we describe the planning of illumination di- 
rection. Later, these results are extended to  the planning of 
illumination color. T h e  planning system described here is 
fully automated. 

2.1 Illumination and Object Appearance 

T h e  appearance of an object depends on i ts  shape, it 
reflectance properties, its pose, and the illumination condi- 
tions. The  first two factors are intrinsic properties of the 
object tha t  d o  not vary. On the other hand, object pose 
and illumination can vary substantially from one scene to  
the next. In most machine vision applications. the pose of 
the object is not within the control of the vision system; ob- 
jects show u p  in the scene with arbitrary poses T h a t  leaves 
us with illumination. In structured environments. such as 
industrial assembly lines, the illumination of the scene can 
be controlled to  provide the “best” images of the objects 
of interest. Fig. 1 shows images of an object obtained us- 
ing different illumination directions. These images illustrate 
that  object appearance is very sensitive to the direction of 
illumination. 

Figure 1: T h e  effect of illumination direction on object 
appearance. 

‘Correlation, or template matching, remains one of the most 
widely used recognition strategies in the industrial arena. Find- 
ing optimal illumination for this task is therefore a problem of 
significant practical relevance. 

Though we have posed the planning problem as one of 
finding the optimal source direction, the approach can also 
be used to  determine the optimal source position. In fact, 
since the planning method uses ?D images and not 3D ob- 
ject models, other source characteristics (such as, source size 
and color) as well as sensor characteristics (such as, spec- 
tral response and optical settings) can be incorporated into 
the planning process. T h e  only requirement is that these 
source and sensor characteristics be varied during the image 
acquisition stage of planning. 

2.2 Planning Image Set 
While const,ructing t,he planning image set, we need to  

ensure that  all object images are of the same sizp.  Each 
digitized image is segmented into an object region and a 
background region. T h e  background is assigned zero bright.- 
ness value and the object region is re-sampled such t.hat, t.he 
larger of it.s two dimensions fits the size we have selected 
for image representation. The result. is an image that  is 
normalized with respect to scale and thus invariant t,o t.he 
magnificat.ion of the imaging syst.em. This  image is written 
as a vector x by reading pixel values in a rast,er scan fashion: 

T h e  above vect.or represents an unprocessed brightness im- 
age. Alternatively, processed images such as blurred images, 
first derivatives, and second derivat,ives may be used. For 
the purpose of developing the illuminat,ion planning met.hod 
we use raw brightness images, keeping i n  mind that, t.he plaii- 
ning methodology is directly applicable 1.0 any other image 
type. 

We would like t,he illumination planning system to be 
unaffected by variations in the inte1~sit.y of illumination or 
the aperture of the imaging system. This can be achieved 
by normalizing each image, such tha t ,  the total energy con- 
tained in t.he image is unity. This bright,ness iiormalizat,ion 
transforms each measured image x to  a normalized image 
x, where x = x/ 1 1  x 1 1 .  

We denote each normalized image as xT,~(?’) where 7 is 
the rotation or pose parameter, I represent,s the illumina- 
tion direction, and y is the object number. The  image set 
obtained by varying the pose of an object for a given illu- 
mination direct.ion 1 can be written as: 

XI(’) { x1,1(p) ,x2,1(p)  ......, x R , [ ( p )  } (2 )  

where, R is the total number of discrete poses used for each 
object.. Let P be t,he total number of objects and L be the 
total number of illumination directions. Then, the planning 
image set for the entire set of objects is: 

{ XI(’), ..., X L ( I ) ,  x1(2), ..., x L ( 2 ) ,  ..., xL(p) } 
(3)  

In our experiments, we have used a mot,orized turnt.able 
to  vary object pose. This  gives us  pose variations about, a 
single axis. We have used several light. sources posit.ioned in 
a plane around the turnt,able. For each object, illuminat,ion 
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direction is automatically varied and for each illumination 
direction a set of images is obtained by rotating the object. 
Fig.:! shows some of the images in the set obtained by vary- 
ing the pose of the object in Fig. 1 for a given illumination 
direction. 

Figure 2: Image set for the object. shown in Fig.1 obtained 
by varying pose, for a given illumination direct.ion. 

2.3 Universal Eigenspace 
Consecutive images in the planning image set are cor- 

related t o  a degree since pose and illumination variations 
between t.hese images are not large. Our objective is t o  take 
advantage of this correlation and compress the large plan- 
ning set into low-dimensional representations of each ob- 
ject's appearance. A suitable compression technique is t,he 
Karhunen-Loeve method [7] where the eigenvect.ors of an im- 
age set are computed and used as orthogonal basis functions 
for representing individual images. Though, in general, all 
eigenvect.ors of an image set are required for perfect, recon- 
struction of any particular image. only a few eigenvect,ors 
are sufficient for illuminat,ion planning. These eigenvectors 
are the dimensions of a subspace2 that  we refer to  as the 
universal eigenspace. 

First,, t,he average c of all images in the planning set is 
subt.ract.ed from each image in the set. The result is the 
following image mati-cz: 

A Y = { x1,1(') - c ,  ..._.., XR,1(') - c ,  ......, X R , L ( ' )  - c } 
(4) 

Y is N x M ,  where Ari = RLP is the total number of images 
in the planning set and ,Y is the number of pixels in each 
image. To compute eigenvectors of the image set we define 
the covnriance matrix: 

Q is ?Ir x N ,  clearly a very large matrix since a large number 
of pixels constitute an image. T h e  eigenvectors e,  and the 
corresponding eigenvalues A z  of Q are to  be computed by 
solving the well-known eigenvect,or decomposition problem: 

A, e, = Qe, ( 6 )  

'This subspace has previously been used in vision to  classify 
handwriting [4] and human faces [lo], as well as for recognition 
and pose estimation of 3D objects [SI. 

Though, all N eigenvectors of the planning image set are 
needed to represent images exactly, only a small number 
( E  << N )  of eigenvectors are generally sufficient for capturing 
the primary appearance characteristics of the objects. These 
E eigenvectors correspond to  t,he largest k eigenvalues of Q 
and constit.ut,e the universal eigenspace. An issue t,hat has 
yet to  be addressed is the selection of k. One approach is 
to select k such that  the first E eigenvectors capture the 
important appearance variat.ions in the image set, that  is: 

where the threshold TI is close to, but less than.  unity. T h e  
denominator in the above expression equals the trace of the 
covariance matrix Q. For the objects we have used in our 
experiments, universal eigenspaces with less than 10 dimen- 
sions (I; < 10) are found to  be adequate. A property of 
the eigenspace that is fundamental to  our planning method- 
ology IS that  it is the optimal subspam for estimating the 
correlation between images (se? ['i], [6]). 

Computing the eigenvectors of a large matrix such as Q 
can prove comput at ionally very intensive. Efficient algo- 
rithms for this are described in [7], [5 ]  and summarized in 
[GI. 

2.4 Parametric Eigenspace Representation 

Our objective is to obtain a measure of how well the 
set of objects can be discriminated under illumination from 
each of the source directions. The image set X l ( P )  includes 
images of the object j ) ,  obtained for different object poses r ,  
while i t  is illuminated by the source 1. Each image x ~ , , ( ~ )  in 
 XI(^) is projected t o  the universal eigenspace. This is done 
by subtracting the average image c from x,,!(~),  then finding 
the dot product of the result with each of the k eigenvectors, 
or dimensions, of the eigenspace. The  result is a single point 
g , , l ( p )  in eigenspace: 

By projecting all t,he planning samples in XltP), we obtain a 
set of discrete points in the universal eigenspace. Pose vari- 
ation between any two consecutive images in x!(') is small. 
As a result, consecutive images are strongly correlated and 
their projections in eigenspace are close to  one another '. 
T h e  discret,e points obtained by project,ing all samples in 
X i ( P )  can be assumed t,o lie on a manifold: 

where, 81, B2, and BS are the three continuous rot.atioii 
parameters needed to  describe pose in three-dimensional 

'This assumption holds well except when the object is either 
highly specular or has high-frequency texture. In such cases, an 
incremental pose variation can cause dramatic changes in image 
brightness. 
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space. The  above manifold is referred to  as the  paramet- 
ric eigenspace representation; it is a compact representation 
of the appearance of object p when illuminated by source 
I. In our experiments, we rotate the object about a sin- 
gle axis. This variation in pose is sufficient for 0bject.s that  
have a finite number of stable configurations when placed 
on a planar surface. Thus,  the above manifold is reduced to  
a curve with a single parameter: gl(p) ( 01 ). Fig.3 shows the 
parametrized eigenspace representation of the object shown 
in Fig.1. The  eigenspace used is 8-dimensional and is com- 
puted using a planning set that  includes two object image 
sets. The figure shows only three of the most significant 
dimensions of the eigenspace since it is difficult to display 
and visualize higher-dimensional spaces. For illumination 
planning, such a curve is computed for each object, for each 
illumination direction. 

the universal eigenspace. T h e  minimum distance d l ( P ' q )  is 
computed for all pairs of objects in the object set, resulting 
in P2 minimum distances. The minimum of all these dis- 
tances, say d l ,  represents the worst case for the entire object 
set. The  source direction 1 t,hat maximizes df is then the op- 
timal source direction for t,he object set. Fig. 4 shows the 
eigenspace curves of two objects used in the experiments, for 
a particular illumination direction. The Solid line segment 
indicates the shortest distance between the two curves. 

Figure 4: Parametric eigenspace curves of two different ob- 
jects obtained for a given illumination direction. The  short- 
est distance (line segment) between t.he two curves repre- 
sents the worst case poses for which the object,s appear most 
similar in the correlat,ion sense. 

Figure 3: Curve obtained in universal eigenspace by pro- 2*6 Optima' Illumination 
jecting the object image set shown in Fig.?. 

2.5 Optimal Illumination Direction 
Consider two objects, say 1' and q ,  from the set used 

to compute the universal eigenspace. For each light source 
direction I, we compute parametric curves for the t w o  ob- 
jects: g l ( P )  ( ) and g ~ ( ~ )  ( 1 9 1 ( ~ )  ). Here, the parameters 
6'1(~) and S1(9) represent rotations of objects p and q ,  re- 
spectively. The shortest euclidean distance bet ween the two 
curves in eigenspace is computed as: 

The and f11(9) values that  produce the minimum dis- 
tance dl(p'9), correspond to  poses of the  two objects for 
which they appear most similar (in correlation) when illumi- 
nated by the source I.  The  illumination planning problem 
is formulated as follows: Find the source direction i that 
maximizes the minimum distance d l ( p 8 4 )  between thr  object 
curves. This mar-mzn strategy gives us  the safest illumina- 
tion direction for the worst case where the two objects have 
poses for which they are most similar in appearance 

The above example includes only two objects. The mar- 
mzn strategy is easily extended t o  a set of P objects. For 
a given illumination direction 1, we now have P curves in 

The  above approach can also be used to plan other illu- 
minat.ion parameters. Here, we show how illun~ination color 
can be computed to  render a set. of objects minimally cor- 
relat.ed in appearance with each other. Many man-made 
objects have regions with different spectral properties. For 
such objects. t.he spectral characterist,ics of the illumination 
can be cont,rolled to  robust,ly identify them. The bright,ness 
at. a pixel in an image can be expressed as: 

x = J s ( A ) b ( A ) i ( A ) d A  ( 1 1 )  

where, A is the wavelengt,h of light, .(A) is t,he spect,ral re- 
sponse of the sensor, h(A) is the reflectance of t,he scene point 
corresponding t,o the pixel, and ;(A) is the spectral distribu- 
tion of the illuminat.ion. If the  0bject.s are illuminated using 
whit,e light (;(A) = l ) ,  the illumination color can, i n  effect, 
be controlled using a filter wit.h spectral response f ( A )  a t  
the sensor end. Then,  the brightness measured bv a pixel 
can be writ.ten as: 

s = s ( A ) f ( A ) h ( A ) d A  ( 1 2 )  

Thus, the image of an object under illumination f ( A )  can be 
obtained by illuminating the object with white light and us- 
ing a filter with response f ( A )  in front of the sensor. Fig. 5 
shows images of an object taken using three different filters 
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with responses r ( X ) ,  g(X), and b ( X ) .  These response func- 
tions have their peaks close t o  the wavelengths that  humans 
perceive as “red,” “green,” and “blue.” It is interesting to  
note that the brightness of some of the regions on the object 
vary dramatically between the three images. 

(a) (b) (Cl 

Figure 5. 1lnagc.s of an object obtained using three color 
filters under white light illumination: ( a )  red; ( b )  green; and 
(c)  blue. The  use of filter5 at the sensor end is equivalent to 
varying I he color of the illumination. 

The planning set. in t.his case is obt,aiiied by varying t,he 
pose of each object., for c.ac11 filter f .  Each image in the plan- 
ning set can be tlenotrtl as x ~ , , ( ~ )  where T is t,he rotation 
or pose paranletcr. f represents the filter or illurninat.ion 
color, and J )  is t.he object. number. In this case, the dircct.ion 
of illnmination is held tonstant .  Once again, t,he universal 
eigenspacr is conipnt.ed, antl each image in the plan~iing set 
is projected to  a point, g,.,,(7’) in eigenspace. Again, consider 
two objects, say p and q, from the set. used to cot1ipiit.e the 
universal ciigenspactt. For each filt.er f ,  we compute para- 
met.ric curves, g , ( ” ) (  H ~ ( P )  ) and g,(q)( ~ l l ( 9 )  ), for tlir two 
objects, where @ I ( ” )  and are t,he poses of the objects. 
‘The shortest dist.ance between the two curves is cornputed 
as : 

The @I(’) and Sl(*) values that  produce the nlinimurn dis- 
t.ance d , ( P , y ) .  correspond t.o poses of the two objects for 
wliich they appear most similar when imaged through filter 
f .  The optimal illuinination color is determined by fincl- 
ing the filter that  maximizes t.he minimum distance d , ( F ’ , q )  
between the object curves. As i n  Sect,ion 2 . 5 ,  the above 
optimizat.ion is extensible to a set of P objects. 

Note that we have treated the planning of source direc- 
tion antl sonrce color as two separate problems. It is possi- 
ble to ~imnltaneously determine t.he opt.ima1 tlirect,ion and 
color. This is done by computing manifolds of objects in 
eigenspace for each direct,ion-color pair and finding the pair 
that  maximizes the rninimum distance between object. man- 
ifolds. 

3 Object Recognition 
I n  this section, w e  describe an object recognition system 

that  is based on the parametric eigenspace representation. 
We first presented this system in [6]  where it was success- 
fully demonstrated as a robust and efficient approach for 

recognizing a variety of complex objects. In the experimen- 
tation section, i t  is used to evaluate the performance of the 
illuminat,ion planning met,hod described above. 

Consider an image of a scene that  includes one or  more 
of the object,s we have used to  compute the universal 
eigenspace. We assume that  the objects are not occluded 
by other objects in the scene when viewed from t,he sensor 
direction, and that. image regions corresponding to 0bject.s 
have been segmented away from the scene image. These as- 
sumptions are valid for a variety of industrial applications, 
for instance, when manufactured parts pass by on an assem- 
bly line and need t.o be recognized. 

T h e  first st,ep is to normalize the segmented image re- 
gions with respect t,o scale and brightness as described in 
Section 2 . 2 .  T h e  normalization renders the recognition sys- 
tern invariant. to imaging optics (magnification’ and aper- 
ture)  and the  int,ensit.y of the illumination. An image region, 
after normalization, is referred t,o as input image y. 

For recognition, the average c of the planning set used 
t,o compute the universal eigenspace is snbtracted from the 
input. image y. The resulting image is projected (as de- 
scribed in Sect.ion 2.4)  t.o the universal eigenspace t.0 obtain 
a point. z.  T h e  recognition problem then is to  find the ob- 
ject p whose eigenspace representat.ion (manifold in general, 
and cnrve in our case) the point z lies on. Here, the source 
direction I is known a-priori, and so are the object curves 
in t,he eigenspace for the direction l .  Due to factors such as 
image noise, aberrat,ions in the imaging system, and digiti- 
zat.ion effect.s, the point z may not. lie exactly on a n  object. 
cnrve. Therefore, we find the object p that  gives the mini- 
i n u ~ n  distance between its curve gr(P)  ( & )  and the point 
z: 

min 
h ( P )  = 81 1 )  z - g( * )  (01) 1 1  (14) 

If h ( p )  is less than a small threshold value, we conclude tha t  
the input  image is of object p .  T h e  value of 81 that. corre- 
sponds to  represents the pose of the object in the  scene. 
Fig. 6(a) shows an input image of the object whose para- 
niet.ric curve was shown in Fig. 3. In Fig. 6(b) ,  the input 
image is mapped to eigenspace and is seen to lie close to the 
paramet,ric curve of the object. 

4 Experiments 
If an object’s geometry and reflectance are known a- 

priori, it,s images under different poses and illuminat,ion con- 
ditions can be synthesized using image rendering techniques 
such as radiosity or ray tracing. Here, we have not assumed 
that  object. models are available. Therefore, we need a mech- 
anism tha t  automat,ically varies object pose and illumination 
and generates image set,s. Fig. 7 shows t,he setup we have 
developed for illumination planning. The  object is placed 
on a motorized turntable and i ts  pose is varied about  a sin- 
gle axis, namely, the axis of rotation of the turnt.able. T h e  
turntable posit.ion is controlled via software and can be var- 
ied with an accuracy of about 0.1 degrees. Most object,s 

‘The image projection model is assumed to be weak- 
perspective; orthographic projection followed by scaling. 
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(b) 
Figure G :  (a)  An input image. (b) The  input image is 
mapped to  a point in  eigenspace. The  location of the point 
determines the object and its pose in the input image. 

have a finite number of stable configurations when placed 
on a planar surface. For such objects, the turntable is ade- 
quate  as it. can be used to vary pose for each of t,he object's 
stable configurations. 

T h e  objects are illuminated by the ambient lighting con- 
ditions of the environment that  d o  not vary dnring the ac- 
quisition of image sets. This ambient. illumination is of rela- 
tively low int,ensity. I n  addition. 8 incandescent light bulbs 
(100 Wat.t.s each) are used to illuminate the objects from 
different, directions. Of these only 6 sources were usrd sincp 
sources 1 and 8 generate strongly self-shadowed images of 
the objects. The  light. bulbs are uniformly distributed i n  a 
plane around the turnt,able and the angle between adjacent 
light bulbs is 30 degrees. These light sources are activat.ed 
via software. The planning problem is t.o find the optimal 
light. source among the six. We have also conducted ex- 
periments on planning illumination color. In this case, the 
illumination direction is fixed while t.hree filters ( red,  green, 
and blue) are sequentially used at  the sensor. For each fil- 
ter, images sets are obtained for each object by varying pose. 
Images are sensed using a 512x480 pixel CCD camera, and 
are digitized using an Analogics frame-grabber board. 

T h e  experiments were conducted using three pairs of ob- 
jects. These objects are shown i n  Fig. 8. Object pairs A 
and B were used for experiments on illumination direction 
planning, while pair C was used for illumination color plan- 
ning. In t,he case of direction planning, for each of the 6 
light. sources, each object. was placed on t,he turntable and 
images were obtained for 45 different poses ( 6  degree rota- 
tions of the turntable). For each of the  object pairs. A and 
B, therefore, a planning set with 710 images was obtained. 
Images are automatically segmented and normalized i n  scale 
and brightness as described in Section 2.2. Each normalized 
image is 128x 1 %  pixels in size. 8-dimensional universal 
eigenspaces were comput,ed from t,he planning image sets. 

T h e  45 pose images of each object, taken for each of the 
light sources, are projected onto the universal eigenspace to 
get a set. of discrete points. These points are interpolated 

using a standard cubic spline int,erpolation algorithm [8] to  
obtain a parametric curve. Fig. 9(a) shows the minimum 
distance dr (P3q)  between the eigenspace curves of the two 
objects in pair A, plotted as a function of source number. 
Note that  poses of the two objects corresponding to  the min- 
imum distance dr(Ps4)  need not, be among the ones present 
in the planning image set. Since the curves are obtained by 
interpolation, the worst case poses may lie in between the 
discrete poses used for planning. We see that  source 6 (at 
45 degrees) is found to be opt,imal for object pair A. Fig. 
9(b)  shows results for an object set tha t  includes all objects 
in pairs A and B. Here, all 720 images of the 4 objects were 
used t,o compute the universal eigenspace and for each il- 
liimination direction 4 appearances curves were computed. 
As seen from Fig. 9 (b) ,  source 6 is optimal in this case also. 

T h e  optimal source direction determined by the illumi- 
nation planner is meaningful only if  it can be used t.o ac- 
complish a vision task. We have used the correlation-based 
recognition system presented in  Section 3 to  verify the above 
resu1t.s. For each light source, 4 5  test. images of each object 
are used as input,s t.o the recognit.ion system. All of these 
test, images are different from the ones used for illumina- 
tion planning; they correspond to  object poses that  lie in 
between the poses used for planning. 

We define recognition rate as the percentage of test im- 
ages for which the object i n  the image is correctly recog- 
nized and t.he comput,ed posc: is within 6 degrees6 of the 
actual pose. Fig. lO(a) conipares recognition rates pro- 
duced by the optimal source 6 and the sub-optimal source 
2, for object pair A. T o  t,est the sensitivity of the optimal 
source, we added white noise to  t.he test images. The  noise 
level is expressed i n  decibels of signal to noise rat,io; i.e. 10 
loglo ( S / N )  . Hence, a noise level of -10 dB corresponds 
to noise that  is 10 t,imes the signal. Note that  the noise 
levels added to the test. images are substantial. As noise in- 
creases, recognition rates nat,urally det.eri0rat.e but the opti- 
mal source 6 consistently produces higher recognition rates 
than source 2 (used as a non-optimal source). Fig. 10(b) 
shows the validity of optimal source 6 for the set including 
all 4 objects. These results demonst,rate the robustness of 
the source selected by the illumination planning method to  
image noise. 

In Fig. 1O(c), the effects of segmentation error on the 
planning result are explored. Here, the object region is first 
segmented from each of the 710 test images and scale nor- 
malized to fit a 128x128 pixel image, as described in Section 
2 . 2 .  Then segmentation errors are int,roduced in each nor- 
malized image by shifting the object. region in a randomly 
selected direction (+z, -z, +y, or -y )  by some percentage 
of the image dimension (128 pixels). The  resulting image 
emulates one with segment.ation error. In Fig. 10(d), the 
segmentation error, or percent,age shift, is plott.ed along the 
horizontal axis. As the segmentation error increases, recog- 
nition rate deceases. However, the optimal source is seen 

'This pose tolerance was selected arbitrarily. It is used to 
ensure that. the optimal source yields the highest accuracy not 
only in object identification but also in pose estimation. 
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Figure 7: Device developed to obtain planning image 
sets. Each object is placed on the motorized tumtable 
and illuminated from eight different directions. 

Figure 8: Three pairs of objects used to test the illumination 
planning method. Pairs A and B are used for source direction 
planning, while pair C is used for planning illumination color. 

\"I \-I 

Figure 9: The minimum distance between parametric 
curves plotted as a function of source number for (a) 
object pair A, and (b) for the set including pairs A and B. 
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(Object Pair C) 
70 

- 2  0 2 4 6 
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Figure 1 I :  Recognition rates obtained using optimal 
(green) and sub-optimal (red and blue) illumination colors 
for object pair C. Even in the presence of noise, the 
optimal color always produces the highest recognition rate. 
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Figure IO Recognition rates obtained using optimal and sub-optimal source directions for (a) object pair A, and (b) the set including 
pairs A and B. For each object a total of 45 test images were used. As the noise level in the input images is increased, recognition rate 
decreases but the optimal source always produces the highest recognition rate. (c) Sensitivity of recognition rate to segmentation error. 
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to always produce higher recognition performance than the 
si1 b-optimal source. 

Figure 11 shows results on determining the optimal illu- 
mination color for object pair C .  We have used three filters 
(red, green. and blue) to obtain the object image sets. The  
planning system determined the green filter to be optimal. 
Note that the green filter consistently produces the highest 
recognition rate when image noise is increased 

5 Discussion 

In st ruct.ured environment.s, the performance of machine 
vision systems can be enhanced by controlling illumination. 
In this paper, we have presented a method for determining 
illumination parameters that make a set of object,s max- 
imallv different from each ot.her i n  the correlation sense. 
T h e  proposed approach was shown to be effective i n  im- 
proving the performance of a correlation-based recognit.ion 
system. Sucli recognition systenis are widely used in- the in -  
diist.rial domain for object. identification and classification. 
T h e  planning met hotlology presented here is not geared to- 
wards t.he optimizat.ion of image feat.ures, a problem that  
has been investigated by ot.lier researchers [‘I, [ I l l .  

The  planning technique uses samples of t.he object,s of in- 
t.erest. and does not require that, the geomet.ry or reflect.ance 
of the objects be known. An object. could have complex 
geometric features, varying reflectance properties, produce 
specular reflections, or even intrrreflect,ions. Since illumi- 
natioii planning is based on object appearance, uone of the 
above effects need be analyzed i n  isolation. Further, the 
parainet.ric eigenspace represent ation enables u s  t o  det,er- 
mine an illumination that, is optinial when t.he poses of the 
objects are unkuown. 

Several experinient.s were coutlucted for planuing both 
source direction as well as source color. I n  t.hese experi- 
ments, a single paramet.er was used to  represent object pose 
(rot,ation) for a given st.able configuration. For certain ap- 
plications, 3 degrees of freedom ( D O F )  may be needed to 
describe object pose. In such cases, for any given illumi- 
nat.iori, object appearance is represented in eigenspace as 
a 3 DOF manifold. This, of course, involves the acquisi- 
tion of a larger number of object images for each illumina- 
tion. Furt.lier, illumination it.self can be described using ad- 
dit.iona1 parameters, including, source size, source distance, 
a id  the number of sources. T h e  proposed met,hod can be 
used to simultaneously optimize mult.iple parameters. The  
only requirement is that. these parameters be varied dur- 
ing the acquisition of the planuing image set. Clearly, for 
multiple parameters, acquiring image set.s, computing para- 
metric eigenspaces, and determining t,he optimal parameter 
values can be very time consuming. Therefore, the planning 
method may prove impractical when more than three illu- 
mination parameters need t.o be jointly optimized. A lesser 
number of parameters, however, can be easily accommo- 
dated since illumination planning is typically done off-line 
and only once. 
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