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Abstract--Learning can be viewed as mapping from an input space to an output space. Examples of these 
mappings are used to construct a continuous function that approximates the given data and generalizes for 
intermediate instances. Radial-basis function (RBF) networks are used to formulate this approximating 
function. A novel method is introduced that automatically constructs a generalized radial-basis function 
(GRBF) network for a given mapping and error bound. This network is shown to be the smallest network 
within the error bound for the given mapping. The integral wavelet transform is used to determine the 
parameters of the network. Simple one-dimensional examples are used to demonstrate how the network 
constructed using the transform is superior to that constructed .using standard ad hoc optimization 
techniques. The paper concludes with the automatic generation of GRBF networks for a multi-dimensional 
problem, namely, real-time 3D object recognition and pose estimation. The results of this application are 
favorable. Copyright © 1996 Pattern Recognition Society. Published by Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Often, learning can be equated to constructing a con- 
tinuous function that maps a given set of inputs to 
outputs. This function is constructed from a set of 
example mappings, namely the training data. This 
smooth function effectively interpolates the known 
data. In this context, learning is equivalent to generat- 
ing a continuous function that approximates the given 
data and generalizes for intermediary instances. A rig- 
orous formulation of this approximating function re- 
sults in a weighted sum of radial-basis functions (RBF). 
This type of approximating function can be cast as 
a class of neural networks termed RBF networks. I1) 
These networks are universal approximators, theoreti- 
cally capable of approximating any function to a rea- 
sonable degree of precision ~21 with only one layer of 
basis functions. (Neural networks with sigmoidal bases 
require two layers of basis functions to be universal 
approximators.) RBF networks have been used for 
a variety of practical applications ranging from the 
recognition of stick figures ~3~ to pricing derivative 
securities3 ~1 

Although RBF networks have a rigorous formula- 
tion, this advantage is lost in most practical implemen- 
tations. The reason is the assumption that the network 
consists of as many basis functions as training 
examples. In practice, this proves to be a severe limita- 
tion as the number of training data is typically large. 
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This is remedied by using generalized radial-basis 
function (GRBF) networks that have fewer basis func- 
tions than examples. However, the parameters of the 
GRBF network are typically set in an ad hoc manner. 
In this paper, an analytic method to construct GRBF 
networks using wavelets is introduced. The GRBF 
networks constructed using this method can be shown 
to be the smallest network for a given mapping and 
error bound. 

This result is achieved through a novel construction 
and application of the integral wavelet transform. ~5~ 
Wavelet bases are constructed from approximations of 
radial basis functions. The magnitude of the coefficient 
corresponding to each basis determines the import- 
ance to the mapping of the radial basis functions 
comprising that wavelet. The wavelet coefficients 
along with Parseval's identity are used to determine 
the number of bases required and their parameters. In 
order to compute the wavelet coefficients, we extended 
the fast wavelet algorithm ~6~ for multi-dimensional 
sparse data. 

The paper is organized as follows. The formulation 
of an input-output  mapping as a RBF network is 
described in Section 2. The relation between the inte- 
gral wavelet transform and RBF networks is presented 
in Section 3. The computational complexity and mem- 
ory requirements of the automatically generated net- 
work with respect to the dimensionalities of the input 
and output spaces and number of basis functions used 
is discussed in Section 4. Section 5 presents a simple 
example that demonstrates the advantage of the 
transform approach. Finally, the transform approach 
is applied to a multi-dimensional problem, namely 
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real-time 3D (three-dimensional) object recognition 
and pose estimation. The paper is concluded with 
a discussion of a variety of issues related to the pro- 
posed scheme. 

2. RADIAL-BASIS  F U N C T I O N  N E T W O R K S  

At the heart of all neural network schemes is the 
question of whether a multivariate function can be 
represented exactly by sums and products of univari- 
ate functions. In the case of RBF networks, this repre- 
sentation is formulated using approximation theory 
and regularization techniques, tT) The first part of this 
section is a brief overview of RBF and GRBF networks 
[see reference (1) for details]. 

Learning a mapping between an input and output 
space is often viewed as determining a function that 
performs the mapping. It can be posed as the problem 
of approximating a continuous multivariate function 
f(x) by an approximating function F(W,x) that has 
a fixed set of parameters W. The approximation prob- 
lem can be stated as follows: 

I f  f (x) is a continuous function defined on x, and 
F(W, x) is an approximating function that depends con- 
tinuously on W ~ P and x, then the approximation prob- 
lem is to define the parameters W* such that: 

p IF(W*, x), f (x)]  ~< p [F(W, x),f(x)], 

for all W in the set P. p [ . , .]  is a distance function that 
evaluates a norm between two functions. W* are the 
optimal parameter values of  the approximating func- 
tion. 

When p is the L 2 norm, the above corresponds to 
minimizing the cost functional: 

H [F(W, x)] = (f(x) - F(W, x))2 dx, (1) 

with respect to W. In the above formulation of the 
approximation problem, the function f(x) is conti- 
nuous. However, in the case of learning a smooth 
mapping from a discrete set of examples, there exists 
no continuous functionf(x). For this reason, the ap- 
proximation problem is ill-posed for discrete data; the 
data does not contain sufficient information for a 
unique mapping. 

The approximation problem is made well-posed by 
introducing a priori assumptions about the mapping. 
Normally the assumptions pertain to the smoothness 
ofthe mapping. Regularization techniques are invoked 
to introduce smoothness constraints into the approxi- 
mation problem. The resulting cost functional has the 
form: 

N 

H[F(W, x)] = ~ ( f ( x l ) -  F(W, xi)) 2 
i=l  

÷ ;t II PF(W, x)I[ 2, (2) 

where  P is a differential operator, xl are the N discrete 
points for whichf(x) is known and 2 is the regulariz- 
ation parameter that represents the tradeoff between 

enforcing the smoothness constraint and fitting the 
known data. Minimizing this functional using varia- 
tional calculus leads to the Euler-Lagrange equations: 

1 N 
P*PF(W,x )  = ~- ~ (f(xi) - F(W, xl))~(x - xi), (3) 

A i _ l  

where P* is the adjoint of the operator P. 
The above is a partial differential equation whose 

solution can be written as the integral transform of the 
right side with a kernel given by the Green's function of 
P ' P :  

1 N 
F(W, X) = ~ ~ (f(x~) -- F(W, xi))G(x; x~), (4) 

i = 1  

where 

P* PG(x, y) = ~(x - y). 

The Green's functions, G(x; x~), serve as the bases for 
the approximation scheme. When: 

c i = (f(xl) - F(W, xi))/2, 

the approximating function is: 

N 

F(W,x)= ~ ciG(x;xi). (5) 
i = 1  

The parameters, W, include the coefficients, q,  and the 
centers, x i, of the Green's functions. 

It is apparent from equation (3) the basis functions 
depend on the operator P*P. This operator is typically 
chosen to be both translationally and rotationally 
invariant. For this reason, the basis functions are 
rotationally and translationally invariant: 

G(x; xi) = G( II x - x~ II )- 

These functions are radial basis functions. Equation (5) 
can be rewritten as: 

N 

F(W,x)= ~ qG( l lx -x~ l l ) .  (6) 
i=l  

The coefficients, c~, can be calculated by solving the 
following linear system: 

s,,,, o,x! xN, / cl 

Let: 

There exists a solution for e as long as G is invertible: 

e = G - l y .  (7) 

This invertibility of G restricts the type of basis func- 
tions that can be used. If G is a positive definite matrix 
then it is invertible. Two theorems by Micchelli ~s) 
exploit this property to impose sufficient conditions 
for the basis functions. The following are a few basis 
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F{W,x ) 

Fig. 1. The RBF network has three layers. The first is the input vector, x. The second layer consists of the 
radial basis functions G(x; xl) to G(x; xu). The c~ values are the weights between the ith basis function and the 

output, F(W, x), which is the third layer. 

functions that satisfy Micchelli's condition: tl) 

G(r) = e -:/.2 

1 
G(r) = - -  ~ > 0  

(0 -2 + r2)" 

G(r)=(c 2+r2)  # 0 < f l < l  

G(r) = r (8) 

where r = fl x - x i If. 
Once the type of basis function has been selected, 

casting the approximating function, equation (6), as 
a network is straightforward. The RBF network has 
three layers, each fully connected to the next layer (see 
Fig. 1). The first layer consists of a single input unit, the 
vector x. The second layer is composed of the series 
of multi-dimensional radial basis functions G(x;xi). 
There exists one basis function for each data point x v 
The third layer is the output, which is a weighted sum 
of the basis functions. 

The above RBF network has as many basis func- 
tions as examples. This becomes a problem in most 
applications, since typically a large number of exam- 
pies are given. For  this reason, RBF networks are 
generally implemented with fewer basis functions than 
examples. RBF networks with fewer basis functions 
than examples are termed generalized radial basis 
function (GRBF) networks. The approximating func- 
tion, however, is no longer an exact representation of 
f(x)  and the approximation becomes worse as the 
number of basis functions is reduced. The approxi- 
mating function for the GRBF network is: 

F(W, x) = ~ cjG(x;zj), (9) 
j = l  

where n < N (n is the number of basis functions and 
N is the number of data points) and z. are the centers of 

J 
the new basis functions (the centers of the basis func- 
tions no longer have to be at data points). The center 
positions and coefficients is equation (9) are computed 
by minimizing the cost functional: 

N 

H[F(W,x) ]  = ~ (F(W, x i ) - f ( x i ) )  2. (10) 
i=1 

This cost functional is traditionally minimized in the 
following ad hoc manner. A user provides initial values 
for the number n of basis functions, their positions 
zj and their spans. Optimization techniques are to 
used to adjust the center values and the spans. The 
pseudoinverse is then used to compute the coefficients 
c r If the approximation is not within the desired 
bound, the user increases the number of basis functions 
and repeats the procedure. 

This process is cumbersome. It also sacrifices the 
theoretical structure that makes RBF networks ap- 
pealing. The disadvantage here is that given a data set 
and a specified error bound, the number of basis 
functions, as well as their parameters, required to 
perform the mapping cannot be determined analyti- 
cally. 

3. INTEGRAL WAVELET TRANSFORMS AND RBF 
NETWORKS 

In this section the use of an integral wavelet trans- 
form to set the parameters of a GRBF network is 
described. It shall be shown that, by using the trans- 
form, the number of basis functions required for 
a given mapping and error bound can be determined 
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analytically. In addition, the parameters of the basis 
functions are directly computed as a result of the 
transform. 

3.1, The wavelet transform 

The integral wavelet transform (IWT) can be viewed 
as a generalization of the principle underlying the 
Fourier transform. The IWT allows us to construct 
orthonormal or biorthonormal basis functions that 
are localized in space and decompose a function in 
terms of these bases. For  the case of a 1D function,f (x) 
(~1~_+~1), the IWT has the basic form: (5) 

( Tof)(b, a) = Ob,.(x)f(x)dx, 
- ct~ 

where 

~b.a(X)= lal- X/2~b (~----~a b ) 

are the wavelet bases and (Tt f ) (b ,  a) are the transform 
coefficients. The function f(~) is characterized by the 
following: (a) The location of a change inf(x)  in terms 
of a position parameter b; (b) the rate of change inf(x) 
in terms of a span parameter a; (c) the amount of this 
change in terms of(T,f)(b, a). If the wavelet bases are 
orthonormal, the function f(x) can be reconstructed 
from the basis functions using: 

f (x) -~ ~ ~ ( T,f)(b,a)la I - 1/2~ (__._~ - b 
a b 

The IWT allows us to decompose functions at differ- 
ent resolution levels, from fine to coarse. The accuracy 
in reconstructing the original function decreases on 
going to coarser resolution levels. The basis functions 
at all resolution levels are either orthonormal or bior- 
thonormal to each other. Two functions are involved 
in a wavelet transform, a scaling function and 
a wavelet. The a and b parameters of the wavelet are 
discretized: a---1/2 r and b=k/2Ji, j~Z,  where j is 
a scale parameter and k is a position parameter. The 
scaling function is written as: 

~br.k (x) = 2 jI2 (k (2 - rx -- k). 

These scaling functions need not be orthogonal (in 
most cases the scaling functions are not orthogonal) 
and are used to construct the wavelet bases and scaling 
functions at a coarser resolution level: 

~b j_ x,k = ~ q(k) dp j,t, 
k 

c~ r- ,,k = ~. P(k)q~ j.k" 

(11) 

(12) 
k 

The q(k) values are chosen such that: 

< 0r,k(x), 4,j,k(x)> = 0. 

This forces the wavelet bases to be orthonormal across 
scale. If the q(k) values are selected carefully, the 
wavelet bases can be made orthonormal across posi- 
tion as well. Alternatively, the bases can be made 

biorthonormal. The result is a set of orthonormal 
bases: 

An approximation to a functionf(x) exists at differ- 
ent resolution levels. At the resolution level j, the 
approximating function has the form: (s) 

f r(x) = ~ cj+ , (k)~b(2-rx - k) + E dr+x (k)0(2 -rx - k). 
k k 

(13) 

From the above, it can be shown that the exact repre- 
sentation of the functionf(x) has the form: (s) 

f(x) = ~ ~ dr(k ) 0(2-Jx - k), (14) 
j k 

where 
dj(k) = ( f (k), qJ(2- rx - k)). 

The decomposition in equation (14) is equivalent to 
a weighted sum of scaling functions at the finest resol- 
ution level: 

N 

fo(X)= ~ c(k)(%(x-k). (15) 
k = l  

If we use a scaling function that approximates 
a radial basis function, then equation (15) is identical to 
the approximating function of equation (5) in Section 
2. One group of scaling functions that approximate 
radial basis functions are B-splines of order greater 
than one (see Appendix A for details), Our approach is 
to apply the IWT to the training data of the input-  
output mapping problem and to use the transform 
ciefficients and the wavelet bases to construct a GRBF 
network. 

3.2. Calculatin9 the wavelet coefficients 

The training data given, xi~-+f(xl), can be consider- 
ed a discrete signal. In this case, a discrete integral 
wavelet transform is implemented to calculate the 
wavelet coefficients. The input space is discretized into 
2 J bins, where J typically ranges from 9 to 11. Thef(x~) 
values are then placed into the appropriate bin by 
rounding off x c The result is a signal of the formf(k), 
where k eZ.  Since the bins are small, we assume that 
any error introduced from the rounding off is negligible. 

The next step involves calculating the transform 
coefficients, d . . ,  for the wavelet bases, ~kj, k. The fast 
wavelet algont]am (6) is extended to unevenly sampled 
data to calculate these coefficients. This algorithm 
allows one to compute the coefficients recursively from 
finer levels to coarser levels by convolving the signal at 
a finer level with two filters. The specific algorithm is as 
follows: 

cj_ l(k) = [b*ej]12(k ) (16) 

d r_ l(k) = [fflcr]~E(k ), (17) 

where $2 denotes downsampling by two, keeping 
every other term. The c r values correspond to an 
approximation of the signal at the resolution levelj. At 
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the finest resolution level c o is the signal f(k).  The 
formulae for t) and ~ for the Battle-Lamari6 basis 
constructed from cubic B-splines are given in Appen- 
dix B. This algorithm is iterated for j = 0 to 1 -  J, 
wherej = 0 is the finest resolution level andj  = 1 - J is 
the coarsest level. 

Since little is known about the training data, we 
assume that f (k)  need not be evenly sampled. This 
brings up the question of how to implement: 

a (x) = f ( x )  * g (x), (18) 

whenf(x) is an unevenly sampled discrete signal and 
g(x) is a continuous function. 

Spectral analysis of unevenly sampled data has been 
explored by astronomers. A popular approach is the 
Lomb periodogram. (9) The periodogram performs 
a least-mean-square fit of the data to sines and cosines 
under the assumption that the error in the fit decreases 
with the addition of frequency terms. We use it to help 
define the operation in equation (18). In our implemen- 
tation, the data was sampled at Np frequencies, where 
Np = (fff2)N, f ,  = fh,f~, f~ = 1/2axons, f , ,  = 1/2ax, . . ,  
Ax=~. is the smallest distance between two data points 
and A x g  is the average distance between data points. 
The decomposition off(x)  by the periodogram has the 
form: 

N ,  

f ( x ) =  ~ q,e  i . . . .  , (19) 
m = 0  

where, q,, = ( f (x ) ,  e-i . . . .  ), co ° = 7r/T and T is the 
total length of the discrete data. The Lomb periodo- 
gram reduces to the discrete Fourier transform when 
f (x )  is evenly sampled. 

Using the periodogram we can map f(x)w+F(o~), 
where F(~n) are the values q,, determined by the per- 
iodogram. An assumption is then made that there 
exists a unique continuous function h(x) which has 
the same spectral properties asf(x), i.e. H(co) = F(co). 
The two functionsf(x) and h(x) have identical values 
at all x~ for which f(x~) is given. This equivalence 
of the functions in both spatial and frequency 
domains is a result of the oversampling off(x) in the 
periodogram. The continuous function h(x) can be 
derived: 

h(x) = ~ J _  o0 Hgo)d~°Xdm 

1 t ÷~ = ~ J - oo f(m)ei~Xd°° 

1 I% 

qra = 2-~ ~-- o ei . . . .  (20) 

The continuous function h(x) replaces f (x )  in the 
convolution in equation (18) so that the operation 
a(x) = h(x)* o(x) can be performed. 

In the fast wavelet algorithm, the above technique 
can be used to perform the convolutions in equations 
(16) and (17). The unevenly sampled cj(k) is replaced by 

the continuous c)(x) and Cj((o) = C~(ro). Since: 
o 

b(k)* c'~(k) ~ V(e~) C'j(o~), 

we can calculate a continuous function c'~_ 1 (x): 

N~ 
o 

' (D c~_,( )= ~ v(%)c'j(%) 
m = O  

1 N, o 

c)_,(x) = ~ - ~  V(c%,)C)(%,)e . . . .  . (21) 
m =  = 0  

This continuous function c'j_ l(x) is sampled at the 
resolution level 2 i and then downsampled by 2 to 
obtain c j_ 1 (k): 

c j_ , (k )=[c)_ ,] i2=c;_ , (k /2) ,  (22) 

where k = 1-m (where m is the maximum index minus 
the minimum index at which there exits a known signal 
value). The same procedure is used to calculate dj_ 1 (k). 

This variation of the fast wavelet algorithm allows 
the decomposition of unevenly sampled data. The 
weakness in this approach is the assumption inherent 
in the periodogram that the sampling rate exceeds 
what would be the Nyquist frequency if the data were 
evenly sampled. A discussion of what approximations 
are introduced due to this oversampling assumption is 
beyond the scope of this paper. Alternative approaches 
to performing wavelet transforms on non-uniform 
data have been developed by Buhmann and Mic- 
chelli(:o,11) and Sweldens. "2) We did not use the ap- 
proach of Buhmann and Micchelli for two reasons. 
First, extending their approach to multi-dimensional 
problems results in an enormous number of computa- 
tions. Secondly, they introduce an extra spline space of 
radial basis functions called prewavelets to perform 
the transform. This extra space makes it difficult to 
construct a network once the parameters are com- 
puted. Sweldens construction of second generation 
wavelets would allow us to perform the wavelet trans- 
form on multi-dimensional unevenly sampled data 
very efficiently. In future research this approach needs 
to be investigated. At this point, it is not clear if this 
approach would preserve the smoothness properties of 
GRBF networks. 

The mappings considered so far in this section have 
been ~ t l ~  1. To extend the transform to multi- 
dimensional functions, ~ , , ~ m ,  (l)(x) and Ud(x), are 
introduced for both the scaling and wavelet functions. 
Both Ud(x) and (I)(x) are tensor product splines separ- 
able with respect to each dimension xa: 

• (x)  = 4,(x 1)(/,(x 2) . . . .  ~ ( x )  

't '(x) = ~ ( x  1)¢ , (x~)  . . . .  ¢,(x ). 

The decomposition off(x) becomes: 

f ( x ) = Z  ~ -.- ~ dj.k(X)@(2-Jxi-kx) . . . .  
j kl~Kx(j) k.~K,(j) 

~k(2-Jx - k) ,  (23) 

where k corresponds to the vector [kxkm...k] and 
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Ka(j) is the set of all position parameters at scalej and 
dimension d. Since q~(x) and @(x) are separable, the 
coefficients d j, k can be calculated by applying the fast 
wavelet algorithm across each dimension. The func- 
tion f(x) is equivalent to the vector If1 (x) ..... ft(x) . . . . .  
fro(x)], where each fi(x ) can be considered a separate 
signal. The transform is applied to each signal. The 
decomposition of a function f(x) has the form: 

coefficients and the error bound specified, a GRBF 
network is constructed. If the L 2 norm between a func- 
tion f(x) and its approximating function F(W, x) must 
be less than the error bound, e, then: 

N 

e > ~ if(Xl) - F(W, xl)) 2, (25) 
i = 1  

where N is the number of known values of f(x). Using 

f ~ ( x ) = ~  ~ ... ~ d j , k . ] ( x ) $ ( 2 - ~ x ; - k ; )  . . . .  $(2- ;x  - k )  
j kteK~(j) k.~K.(j) 

f2(x) = 2  ~ "'" 2 d ~ . k , 2 ( x ) O ( 2 - j x , - k ~ )  . . . .  O(2-Jx - k )  
j kt¢Kt(j) k.¢K.(j) 

f.(x)=Y~ 2 ' Y. dj,~,.(x)O(2-J~-k~) ..... O(2-J~-k) ,  
j kteKllj) k.eK.lj) 

(24) 

where di.k, t is the transform coefficient for the lth 
output at the 2jth resolution level for the kth basis. The 
result of the transform applied to a mapping from 
:~%__,:~m are the coefficients dj.k, r The magnitudes of 
these coefficients tells us how important the wavelet 
corresponding to the coefficient is in approximating 
the function. 

3.3 Using the transform to construct a G R B F  network 

The result of applying the transform to a mapping 
from ~ . ~ , m  is the coefficients dj,k. r Using these 

Parseval's identity: 

N m J - I  

e , =  E I}f(x,)ll 2= E E E ' "  E a2 j,k.l' 
i = 0  l =  1 j = O  kleK,(j) k.eK.(j) 

where m is the dimensionality of the output, J - 1 is the 
coarsest resolution level and P, is the total energy in 
the function f(x). The energy in the approximating 
function F(W, x) is: 

m J - 1  

IIF(W,x)ll 2= E E ~ "'" E d2,~j, (26) 
l =  1 j = 0  k~eK'(j) k.eK~(j) 

X 

+ 

F(W,x ) 

Fig. 2. The GRBF network derived using the wavelet transform. The first layer is the input vector, x. The 
second layer consists of the wavelet bases hu~(~).k~z) to h°j(u,).k~,). The gj,).k,) are the weights between the ith 

wavelet basis and the output, F(W, x). 
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where K'n(j) c Kd(j).  This is equivalent to setting the 
coefficients for some of the wavelet bases to 0. Using 
equation (26), equation (25) can be rewritten as: 

1 ~ s - 1  
e Z > l - p  - .  2 Y', "'" )-'. d2i.k.r (27) 

l= I j=O ki~K',(j) k.~K'(j) 

The number of wavelet bases used in the approxima- 
tion for a given e is determined by finding KiD) at each 
resolution levelj and each dimension x n until the above 
condition is met. One way of doing this is by calculat- 
ing sums of the coefficients over the output dimen- 
sions: 

= ~ ' d  2 Sj,k j,k,! • 
l=l  

The sums s~, k are then ordered from 1 to M so that 
sj(~),k(~ ~ >1 sj<2).kt2 ) >1 "" Sj(M),k(M), where M is the number 
of wavelet bases in the decomposition off(x). Equation 
(27) can now be expressed as: 

1 M' 

e2> 1 - ~  i=~l SJ(i)'k(i)' (28) 

where M' is the smallest integer that satisfies the above 
condition. It is calculated by adding the sit0,kt o terms 
until the inequality in equation (28) is satisfied. The 
resulting approximating function is: 

M' 
F(W, x) = ~ 9j(i),kti)kPj(i),k(ij(X), (29) 

i=1 
where 

/ 
dj(i):kli),l 

~j(i),k(i) = ( 
\dj(i),k(1), m 

The expression in equation (29) can he easily be 
mapped to a network as shown in Fig. 2. The wavelet 
bases, ~j(i~.k(~), are not radial basis functions. However, 
each wavelet basis is a weighted sum of scaling func- 
tions at a finer level. For this reason, we can consider 
this network to be a GRBF network. 

In this section we demonstrate how the integral 
wavelet transform can be used to generate a GRBF 
network. This method replaces the ad hoc and cumber- 
some optimization techniques to set GRBF network 
parameters in standard approaches. With this ap- 
proach, the number of basis functions required to 
satisfy a given error bound is determined analytically. 
In addition, the parameters of the network are also 
obtained directly from the transform. The result is 
a more efficient network with respect to speed and 
storage memory. 

4. COMPUTATIONAL COMPLEXITY AND MEMORY 
REQUIREMENTS 

The two main factors that determine the usefulness 
ofa GRBF network is the time required to perform the 
mapping and the memory required to store the net- 
work. The speed of the mapping depends on the 
number of computations involved which, in turn, is 

determined by the dimensionality of the input and 
output spaces and the number of basis functions in the 
approximating function. The number of computa- 
tions required to evaluate the output of the wavelet 
basis also effects the speed of the mapping. For this 
reason, the wavelet bases are stored as a look-up table, 
avoiding the need for numerous calculations. The 
number of computations for a GRBF network can be 
expressed as follows: 

Cne t ~- 6n ° n i N,  (30) 

where C e , is the number of additions and multiplica- 
tions performed by the network, n i is the dimensional- 
ity of the input space, n o is the dimensionality of the 
output space and N is the number of basis functions in 
the network. The complexity is O(mN),  where m is the 
dimensionality of the mapping, m = nl x n o. 

The second issue is the amount of memory required 
to store the mapping. This depends again on the 
dimensionality of the input and output spaces, the 
number of basis functions and the resolution of the 
look-up table used for the basis functions. All the basis 
functions in the network are translations and dilations 
of an orthonormal or biorthonormal wavelet. This 
allows us to use a single look-up table and two sets of 
normalization factors (one set for translation and one 
set for scaling) for each basis. For each basis function, 
n~ + 1 integers (n i integers for the position of the basis 
in each input dimension and an extra integer for the 
scaling factor) and n o real numbers (the weights for the 
basis function) are stored. In addition, the look-up 
table needs to be stored. The memory required in 
storing the look-up table is determined by the resolu- 
tion of look-up table, n e s. For a Spare IPX (where 
a double is 8 bytes and an integer is 4 bytes) the amount 
of memory, M e :  required to store network par- 
ameters is: 

M t = 4 × N x ( n  i + l ) + 8 x N x n  o + 8 x n r e b y t e s .  
(31) 

5. A SIMPLE EXAMPLE 

In this section, a simple ID example is used to 
demonstrate the advantage of using the transform 
technique over traditional optimization methods. For 
this demonstration we use the following two functions: 

f~(n)  = s in(2~n/64)  and f 2 ( n  + 1) = 3f2(n)(1 - f  2(n)), 
f2(0)=0.4467, where 0~<n~<63 and n s Z  [see 
Figs 3(a) and (b)]. The GRBF networks constructed 
for these two functions using the transform approach 
will be referred to as wavele t -based networks .  For 
comparison, GRBF networks are also constructed 
using a traditional algorithm, these are referred to as 
convent ional  networks .  The specific algorithm used 
to construct the conventional networks is outlined 
below: 

(1) Initialize the number of basis functions, n. 
(2) Set the values for the centers of the n basis 

functions to an arbitrary subset of the N data points. 
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Fig. 3. (a) f l  (n) = sin(2nn/64)); (b) f2(n + 1) = 3f2(n)(1 -f2(n)), f2(0) = 0.4467; (c) reconstruction of f l  by 
a wavelet-based network with eight bases; (d) reconstruction off2 by a wavelet-based network with 32 bases; 
(e) reconstruction offl by a conventional network with eight bases; (0 reconstruction off2 by a conventional 

network with 32 bases. 
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(3) Set the spans of the basis functions to Ax/n, 
where Ax is the span of the input space. 

(4) Calculate the coefficients, ci, using the pseudo 
inverse. 

(5) Use conjugate gradient decent to adjust the 
center values. 

(6) Return to (4) until the change in the error func- 
tional between two iterations is negligible. 

(7) If the error functional is greater than the speci- 
fied error bound, e, increment n and return to step (2). 

In the above algorithm, the spans of the basis func- 
tions are equal and not allowed to vary due to the 
amount  of time required to search both the position 
and span parameter spaces for minima. 

The accuracy of the wavelet-based and conven- 
tional networks as a function of the number  of bases, 
for both functions, is shown in Fig. 4. In both cases, the 
error functional decays faster and monotonically for 
the wavelet-based networks. In the case of the first 
function f1 the improvement is negligible. The per- 

formance of the wavelet-based network is dramati- 
cally superior for the second function, f2 '  The error 
functional for the conventional network does not even 
decrease monotonically for this case. The improve- 
ment seen in the performance of the wavelet-based 
network is due to the fact that the problem of local 
minima in the parameter space is avoided with the use 
of the transform approach. Figure 4 shows the recon- 
struction of the two example functions using the two 
types of networks. Again, the performance of the 
wavelet-based network is superior to that of the con- 
ventional network for the second function. For  the first 
function the results are almost identical. 

The parameters of the wavelet-based network are 
calculated much quicker than those of the conven- 
tional network. For the example functions above, the 
parameters for the wavelet-based network are deter- 
mined within 9.06s, independent of the number  of 
basis functions required. In contrast, it can take be- 
tween 10.04s and 20min to set the parameters of the 
conventional network, depending on the number  of 
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Fig. 4. The decay in the L 2 error in approximation for functionfl(n) = sin(2nn/64) as the number of basis 
functions increases for (a) the wavelet-based network and (b) the conventional network. The decay in the 
approximation error forf2(n + 1) = 3fz (n)(1 - f2 (n)),f2 (0) = 0.4467 for (c) the wavelet-based network and (d) 

the conventional network. 
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basis function s used. The conjugate gradient decent 
method has a computational complexity of the order 
O(n2), where n is the number of basis functions. The 
wavelet transform is of the order O(dlogzd), where d is 
the number of known samples of the function. Both 
networks have the same computational complexity for 
recognition. However, the wavelet-based network 
takes less memory and is faster than the conventional 
network since it generally requires fewer basis func- 
tions for any given accuracy. In summary, the wavelet- 
based network is constructed more accurately and 
performs faster than the conventional network. 

6. A MULTI-DIMENSIONAL PROBLEM 

3D object recognition was chosen as a high- dimen- 
sional application of GRBF networks. This applica- 
tion involves a network that recognizes an object and 
estimates its pose in a scene. These networks take as 
input a compact representation that uses principal 
component analysis to parameterize object appear- 
ance by pose, introduced by Murase and Nayar. 1131 
A brief overview of this representation is in order. 

For each object, a large image set is acquired by 
varying pose. The eigenvectors of the correlation 
matrix of this image set, corresponding to the largest 
eigenvalues, make up the dimensions of a subspace 
(typically 10 20 dimensions) termed the eigenspace. 
When such a subspace is computed using image sets of 

all objects, it is referred to as the universal eigenspace. 
Each image of an object is projected to the universal 
eigenspace, by taking the dot product of the image with 
the eigenvectors. This results in a single point in eigen- 
space. The projections of all images of an object results 
in a set of points (corresponding to the different dis- 
crete poses), that is referred to as a discrete manifold. In 
reference (13) the discrete manifold is interpolated 
using biquadratic splines to obtain a continuous mani- 
fold that is parameterized by object pose. The manifold 
is then densely resampled to obtain a large number of 
manifold points. This large point set represents that 
object's appearance model. The above process is re- 
peated for all objects of interest to the recognition 
system. 

Given a novel object image, the object region is 
segmented, normalized in scale and projected to uni- 
versal eigenspace. The closest manifold determines the 
identity of the object in the image and the exact 
position of the new projection on the manifold yields 
the pose of the object. In reference (13) the closest 
manifold point is determined either by exhaustive 
search (which is inefficient in time and memory) or by 
binary search (which is inefficient in memory). 

Our objective is not to interpolate and resample 
discrete manifolds of the objects, but rather to generate 
a GRBF network (for each object as shown in Fig. 5) 
that performs a continuous mapping from a discrete 
manifold point to a confidence value Cp, which repre- 

Jt(U')a 

c,, s n(o )  os(O,) 
Fig. 5. Awavelet-basednetwork for a particular object, p. The input is a pointin eigenspace and the outputs 

are the object confidence, Cp, and the pose parameters sin(0p) and cos(0p). 
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Fig. 6. The 20 objects in the object recognition and pose estimation system (from Murase and Nayar ~13)). 
The image set for each object includes 72 images corresponding to uniformly sampled discrete poses between 
0 and 360 °. Half of the corresponding eigenspace projections were used as training data to generate GRBF 

networks and the other half for testing the networks. 

sents the likelihood that the novel image is that of the 
object for which the network has been developed, and 
the pose Op of the object. This network is generated 
automatically from the discrete manifold of an object 
using the transform technique developed in this paper. 
The result is a set of P wavelet-based networks, where 
P is the total number of objects. During recognition, 
the input, which is an eigenspace projection, is mapped 
by each of the networks. The network that produces 
the highest confidence value reveals the identity of the 
object and its pose. 

Note that the pose of each object has a discontinuity 
at 0p = 360 °. The size of a GRBF network is clearly 
related to the continuity of the function it seeks to 
approximate (this topic will be revisited in Section 7). 
Therefore, judicious selection of data representation 
can dramatically reduce the size of the network. In the 
present application, we benefited by using sin(0p) and 
cos(0p) as outputs, instead of using 0p. This eliminates 
the ill-conditioning that results from the discontinuity 
in 0p at 360 °. During recognition, the network with the 
highest confidence value Cp is first identified and if this 
value exceeds a threshold level (i.e. if the projection is 
close enough to the object's manifold), then pose is 
computed from sin(0p) and cos(0p) using arctan. 

In our experiments, wavelet-based networks were 
constructed for each the 20 objects in the object 
database (see Fig. 6). The input space, a 15-dimen- 
sional eigenspace, was discretized into 1024 boxes in 
each of its dimensions. Clearly, it is impossible to store 
and process 102415 entries. Instead, a sparse tensor [an 
extension of the concept of a sparse matrix II'~J] was 
constructed with only the entries for whichf(xi) were 

known. The networks ability to learn and generalize 
examples presented to it was tested using two data sets. 
The training set includes 36 discrete manifold points 
(poses) for each object and was used to generate the 
networks. The test data includes a different set of 36 
manifold points and was used to test the accuracy of 
the networks and their ability to generalize to data not 
seen before. 

The most important task of the set of networks 
is to correctly recognize objects in the test set. In our 
experiments, every point in both the training and 
test sets was correctly recognized yielding a 100% 
recognition rate. We found that for any object v, 
0.842~<Cp~< 1.217 when v = p  and 0.0~<Cp~<0.211 
when v ~ p, leading to robust object identification. 

The networks' accuracy in pose estimation was also 
studied. For each object, two networks were construc- 
ted using the data in the training set. One using the 
wavelet-based approach the other using the conven- 
tional approach. The accuracy of pose estimation is 
defined as the absolute difference between the known 
pose and the pose estimated by the network. It is 
computed for both the test set and the training set and 
the results are summarized in Fig. 7. It is clear from 
these results that the wavelet-based network signifi- 
cantly outperforms the conventional network. A com- 
parison of the performance of the two networks is 
summarized in Table 1. 

In multi-dimensional learning problems, it is stan- 
dard practice to examine the effect of the dimensional- 
ity of the input space on the accuracy of the mapping. 
Four wavelet-based networks corresponding to object 
number 10 (the jar  of Vaseline) were constructed from 
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Table 1. T h e p e r f o r m a n c e o f G R B F n e t w o r k s f o r  all objects in terms of the  time, accuracy and 
memory involved in recognition and pose estimation 

Time Accuracy over Accuracy over Network Number  
(ms) test set(°) training set (°) storage (kbytes) bases 

ne twor k  . . . . . .  150 1.42 ° 1.23 54 18 36 
n e t w o r k  . . . .  let 89 1.13 ° 0.85 23 I1 

Table 2. The  effect of the dimensionality of the input space on the accuracy, recognition time 
and learning time for wavelet-based networks 

Mapping  Learning time Recognition time Average accuracy Average accuracy 
(S) (ms) over test set (e) over training set (e) 

~ s  ~__,.~3 72 ~ 1 5.37 4.21 
~ l  o~._,~3 145 ~ 2 4.21 3.11 
~15~_,~3 214 ~ 3 1.92 1.66 
~2°F--,~3 289 ~ 4 1.43 1.32 
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its training set. The input spaces for these networks 
were 5, 10, 15 and 20-dimensional, respectively. As 
before, the output of each network is 3D, including the 
parameters Cp, sin(0p) and cos(0p). For  the error 
bounds specified, each network required 11 wavelet 
bases. The accuracy of all four networks in addition to 
time required for learning and recognition are sum- 
marized in Table 2. As expected, the average error in 
pose estimation increases as the dimensionality of the 
input space decreases. The recognition time is linear 
with respect to the dimensionality of the input space, as 
predicted by the complexity analysis in Section 4. The 
learning time for wavelet-based networks seems to 
increase as a polynomial function of the input dimen- 
sionality, however, further investigation is needed to 
state anything more definitive. 

7. D I S C U S S I O N  

We have introduced a novel approach for setting 
GRBF network parameters using the integral wavelet 
transform. This approach allows the automatic gener- 
ation of a GRBF network given an error bound. In 
addition, the network generated is the smallest net- 
work that performs the mapping for the error bound. 
The advantage of the transform approach over con- 
ventional optimization based techniques is demon- 
strated using two 1D functions as well as the multi- 
dimensional problem of real-time recognition and 
pose estimation of 3D objects. The networks generated 
by the transform approach outperformed networks 
generated by conventional approaches. The difference 
in performance was often significant. 

The use of RBF networks is not limited to high-level 
vision processes such as recognition. These types of 
networks can be used to predict chaotic time series, 
recognize and synthesize speech signals and control 
robot manipulators. Any supervised learning problem 
that can be formulated from variational and regulariz- 
ation principles is well suited for the automatic net- 
work generation approach introduced in this paper. 
Therefore, the ideas presented here have far-reaching 
implications. Some of the issues that arose in develop- 
ing this method that need further investigation are 
discussed below: 

• Continuity conditions of the basis and the map- 
ping: if the continuity conditions of a mapping are 
known, there should be a way to find the scaling 
function that gives the best approximation to the 
mapping. Continuity conditions are normally ex- 
pressed in terms of the function spaces C", where n is 
the largest derivative that exists for the function. It 
seems intuitive that a function of the order C" should 
be best approximated by scaling functions of the order 
C". For  example, it would seem that a mapping that is 
once differentiable, C 1, would be best approximated 
using a first-order spline as the scaling function. 

The scaling function used in the approximation can be 
related to the continuity conditions of the mapping 

from the regularization term in equation (3): 

1 N 
P*PF(W, x) = ~ Y~ Of (x ) -  F(W, x))6(x - x,). 

i = I  

The differential operator P in the above equation can 
be set to the known continuity condition of the map- 
ping. The Green's function solution to the differential 
equation could then calculated. The scaling function in 
the wavelet construction can then be chosen to closely 
approximate the Green's function. 

• Representation: one of the key issues that this 
paper has not addressed is how data must be represen- 
ted to achieve high network performance. A simple 
illustration of the importance of representation arose 
in pose estimation. For pose estimation the network 
was presented a mapping from a point in the input 
space (eigenspace) to sin(P) and cos(P) rather than 0. 
This greatly reduced the number of basis functions 
required to perform the mapping accurately. Since 
a function can be represented in a variety of ways, 
a methodology to evaluate representations is necess- 
ary. Using such a methodology, the appropriate repre- 
sentation for a function can be determined. This is 
helpful because the appropriate representation reduc- 
es the size of the network required to perform the 
mapping. 

There exist many transforms, such as conformal 
mappings, transcendental mappings and other ap- 
proaches, for representing a function. Suppose a 
function f (x )  can be represented in terms of any 
two of the above techniques, where f ( x )  and f ( x )  
are the two representations of f (x) .  One needs a 
quantative method of judging which representation 
is better. Approximation spaces such as the Besov 
space offer possibilities ~15) to quantitatively measure 
representa- tions. For  the representationf(x) an error 
function: 

aN(f)  = Ill(x) - f '  (x)rl 2 

is defined wheref '  (x) is a decomposition off(x) into 
N orthonormal basis. Given two representations with 
respective errors aN and aN, the class of functionsf(x) 
can be catalogued for which a N and aN decays at a set 
rate as N gets large. A representation has a class ~ for 
the set of functionsf(x) that satisfy: 

a N = O(N 5). 

The best representation is the one for which a given 
c~ contains a larger class of functions. It has been 
shown that the a-class and Besov spaces are closely 
related:~ 16) 

O (N -  ~/2)'~f ~B~, 

when the error function is L z. Here, B~ is a Besov 
space. In addition, the relation between Besov spaces 
and continuity conditions of the class of functions in 
the space have been explored in approximation theory. 
It may be useful to examine study results. 
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• Discrete wavelet transforms on unevenly sampled 
data: The issue of performing the wavelet t ransform 
on unevenly sampled da ta  has  been side s tepped by 
using the L o m b  per iodogram.  The  assumpt ions  made  
in using the pe r iodogram and  the errors  in t roduced  
in going between con t inuous  and  discrete repre- 
senta t ions  need to be explored. Second generat ion 
wavelets tl 2) offer an efficient and  elegant a l ternat ive  to 
the L o m b  per iodogram and  future work must  explore 
this possibility. 
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APPENDIX A 

Orthogonal spline wavelets can be written as: 

~,(x/2) = ~ q(k)fl"(x - k), (32) 
k e Z  

where 
q(k)=([- lkb2"+l*b2"+l] t2*bZ"+l)- l /2  (33) 

and b"(k) = fl"(x)lx-k. This shows that wavelets can be con- 
structed from B-splines. In addition, it has been shown that 
B-splines asymptotically approach Gaussians for a sufficient- 
ly large n: ~17) 

fl"(x) ~ exp( -  6x /n + 1). (34) 

The basis functions in higher dimensions are separable 
B-splines, which are very similar to a product of Gaussian 
and, therefore, radial basis functions. (Note that the Gaussian 
is the only function that is both separable and circular.) 
Thus, one can conclude that all spline wavelets can be repre- 
sented as sums of functions that are almost radial basis 
functions. 

APPENDIX B 

There exist several ways to construct wavelet bases using 
B-splines as scaling functions. The wavelet basis used in our 

Table 3. The components of the transfer functions b(k) and if(k) O8A9~ 

Function Frequency response 

u~ff) 

1 
5---~(2416 + 1191 [e2"f + e -2":] + 120[e4"Y + e  -4~f] + e 6": + e  6,:) 

1 " 2 ~  4 n  ~ ( e 4 " : + 4 e 2 ~ : + 6 + 4 e  : + e  :) 
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work was the Battle-Lamari6 orthonormal basisJ 6) The scal- 
ing functions are cubic B-splines: 

4 j - 1  
fl3(X) = j-~O - '~ - '  (4)(X + 2 --j)3p(X + 2 - j ) ,  

where/~ is tht; unit step function. 
The filter fornvdae, b(k) and ~,(k), that were used in Section 

3.2 to calculate the wavelet coefficients, dj.k, are given in 
Tables 3 and 4. These formulae were derived by Unser, 
Aldroubi and Eden. (ls'19) 

Table 4. The filter formulae for the transfer functions 
b(k) and if(k) (is't9) 

Filter Frequency response 

,°(k) ~} ½U~(f) 

B7 1 
w°(k) , 2,~:.,3 . . . .  , ,  / l ( f  + i )  

, e  t;2tJ ~ : '  4 Bq~l(2-f) 
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