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Figure 1: Top row: Images captured by multiview radial imaging systems. Bottom row: Scene information recovered from the images in the
top row. (a) The 3D structure of a piece of bread is recovered. (b) The analytic BRDF model parameters for red satin paint are estimated and
used to render a teapot. (c) The 3D structure of a face is recovered. (d) The texture map (top and all sides) of a cylindrical object is captured.
(e) The complete geometry of a toy head is recovered. For the results in (a-d) only a single image was used and for (e) two images were used.

Abstract
In this paper, we present a class of imaging systems, called radial
imaging systems, that capture a scene from a large number of view-
points within a single image, using a camera and a curved mirror.
These systems can recover scene properties such as geometry, re-
flectance, and texture. We derive analytic expressions that describe
the properties of a complete family of radial imaging systems, includ-
ing their loci of viewpoints, fields of view, and resolution characteris-
tics. We have built radial imaging systems that, from a single image,
recover the frontal 3D structure of an object, generate the complete
texture map of a convex object, and estimate the parameters of an
analytic BRDF model for an isotropic material. In addition, one of
our systems can recover the complete geometry of a convex object
by capturing only two images. These results show that radial imag-
ing systems are simple, effective, and convenient devices for a wide
range of applications in computer graphics and computer vision.
CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Imaging geometry,Reflectance;
I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Stereo
Keywords: radial imaging, multiview imaging, catadioptric imag-
ing, 3D reconstruction, stereo, BRDF estimation, texture mapping.

1 Multi-Viewpoint Imaging
Many applications in computer graphics and computer vision require
the same scene to be imaged from multiple viewpoints. The tradi-
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tional approach is to either move a single camera with respect to the
scene and sequentially capture multiple images [Levoy and Hanra-
han 1996; Gortler et al. 1996; Peleg and Herman 1997; Shum and
He 1999; Seitz and Kim 2002], or to simultaneously capture the
same images using multiple cameras located at different viewpoints
[Kanade et al. 1996; Kanade et al. 1997]. Using a single camera has
the advantage that the radiometric properties are the same across all
the captured images. However, this approach is only applicable to
static scenes and requires precise estimation of the camera’s motion.
Using multiple cameras alleviates these problems, but requires the
cameras to be synchronized. More importantly, the cameras must
be radiometrically and geometrically calibrated with respect to each
other. Furthermore, to achieve a dense sampling of viewpoints such
systems need a large number of cameras – an expensive proposition.
In this paper, we develop a class of imaging systems called radial
imaging systems that capture the scene from multiple viewpoints in-
stantly within a single image1. As only one camera is used, all pro-
jections of each scene point are subjected to the same radiometric
camera response. Moreover, since only a single image is captured,
there are no synchronization requirements. Radial imaging systems
consist of a conventional camera looking through a hollow rotation-
ally symmetric mirror (e.g., a truncated cone) polished on the inside.
The field of view of the camera is folded inwards and consequently
the scene is captured from multiple viewpoints within a single im-
age. As the results in Figure 1 illustrate, this simple principle enables
radial imaging systems to solve a variety of problems in computer
graphics and computer vision. In this paper, we demonstrate the use
of radial imaging systems for the following applications:
Reconstructing Scenes with Fewer Ambiguities: One type of ra-
dial imaging system captures scene points multiple times within an
image. Thus, it enables recovery of scene geometry from a single

1Although an image captured by a radial imaging system includes multiple
viewpoints, each viewpoint does not capture a ‘complete’ image of the scene,
unlike the imaging systems proposed in [Unger et al. 2003; Levoy et al. 2004].



image. We show that the epipolar lines for such a system are radial.
Hence, unlike traditional stereo systems, ambiguities occur in stereo
matching only for edges oriented along radial lines in the image –
an uncommon scenario. This inherent property enables the system to
produce high quality geometric models of both fine 3D textures and
macroscopic objects, as shown in Figures 1(a) and 1(c), respectively.
Sampling and Estimating BRDFs: Another type of radial imaging
system captures a sample point from a large number of viewpoints in
a single image. These measurements can be used to fit an analytical
Bidirectional Reflectance Distribution Function (BRDF) that repre-
sents the material properties of an isotropic sample point, as shown
in Figure 1(b).
Capturing Complete Objects: A radial imaging system can be con-
figured to look all around a convex object and capture its complete
texture map (except possibly the bottom surface) in a single image,
as shown in Figure 1(d). Capturing two such images with parallax,
by moving the object or the system, yields the complete geometry of
the object, as shown in Figure 1(e). To our knowledge, this is the first
system with such a capability.
In summary, radial imaging systems can recover useful geometric
and radiometric properties of scene objects by capturing one or at
most two images, making them simple and effective devices for a
variety of applications in graphics and vision. It must be noted that
these benefits come at the cost of spatial resolution – the multiple
views are projected onto a single image detector. Fortunately, with
the ever increasing spatial resolution of today’s cameras, this short-
coming becomes less significant. In our systems we have used 6 and
8 megapixel cameras and have found that the computed results have
adequate resolution for our applications.

2 Related Work
Several mirror-based imaging systems have been developed that cap-
ture a scene from multiple viewpoints within a single image [South-
well et al. 1996; Nene and Nayar 1998; Gluckman et al. 1998; Gluck-
man and Nayar 1999; Han and Perlin 2003]. These are specialized
systems designed to acquire a specific characteristic of the scene; ei-
ther geometry or appearance. In this paper, we present a complete
family of radial imaging systems. Specific members of this family
have different characteristics and hence are suited to recover different
properties of a scene, including, geometry, reflectance, and texture.
One application of multiview imaging is to recover scene geometry.
Mirror-based, single-camera stereo systems [Nene and Nayar 1998;
Gluckman and Nayar 1999] instantly capture the scene from multiple
viewpoints within an image. Similar to conventional stereo systems,
they measure disparities along a single direction, for example along
image scan-lines. As a result, ambiguities arise for scene features
that project as edges parallel to this direction. The panoramic stereo
systems in [Southwell et al. 1996; Gluckman et al. 1998; Lin and
Bajcsy 2003] have radial epipolar geometry for two outward looking
views; i.e., they measure disparities along radial lines in the image.
However, they suffer from ambiguities when reconstructing vertical
scene edges as these features are mapped onto radial image lines. In
comparison, our systems do not have such large panoramic fields
of view. Their epipolar lines are radial but the only ambiguities
that arise in matching and reconstruction are for scene features that
project as edges oriented along radial lines in the image, a highly un-
usual occurrence2. Thus, radial imaging systems are able to compute
the structures of scenes with less ambiguity than previous methods.
Sampling the appearance of a material requires a large number of
images to be taken under different viewing and lighting conditions.
Mirrors have been used to expedite this sampling process. For ex-
ample, Ward [1992] and Dana [2001] have used curved mirrors to
capture in a single image multiple reflections of a sample point that

2In our systems, ambiguities arise for vertical scene edges only if they
project onto the vertical radial line in the image.

correspond to different viewing directions for a single lighting con-
dition. We show that one of our radial imaging systems achieves the
same goal. It should be noted that a dense sampling of viewing direc-
tions is needed to characterize the appearance of specular materials.
Our system uses multiple reflections within the curved mirror to ob-
tain dense sampling along multiple closed curves in the 2D space
of viewing directions. Compared to [Ward 1992; Dana 2001], this
system captures fewer viewing directions. However, the manner in
which it samples the space of viewing directions is sufficient to fit
analytic BRDF models for a large variety of isotropic materials, as
we will show. Han and Perlin [2003] also use multiple reflections in
a mirror to capture a number of discrete views of a surface with the
aim of estimating its Bidirectional Texture Function (BTF). Since the
sampling of viewing directions is coarse and discrete, the data from
a single image is insufficient to estimate the BRDFs of points or the
continuous BTF of the surface. Consequently, multiple images are
taken under different lighting conditions to obtain a large number
of view-light pairs. In comparison, we restrict ourselves to estimat-
ing the parameters of an analytic BRDF model for an isotropic sam-
ple point, but can achieve this goal by capturing just a single image.
Our system is similar in spirit to the conical mirror system used by
Hawkins et al. [2005] to estimate the phase function of a participat-
ing medium. In fact, the system of Hawkins et al. [2005] is a specific
instance of the class of imaging systems we present.
Some applications require imaging all sides of an object. Peripheral
photography [Davidhazy 1987] does so in a single photograph by
imaging a rotating object through a narrow slit placed in front of a
moving film. The captured images, called periphotographs or cyclo-
graphs [Seitz and Kim 2002], provide an inward looking panoramic
view of the object. We show how radial imaging systems can capture
the top view as well as the peripheral view of a convex object in a
single image, without using any moving parts. We also show how
the complete 3D structure of a convex object can be recovered by
capturing two such images, by translating the object or the imaging
system in between the two images.

3 Radial Imaging Systems
To understand the basic principle underlying radial imaging systems,
consider the example configuration shown in Figure 2(a). It con-
sists of a camera looking through a hollow cone that is mirrored on
the inside. The axis of the cone and the camera’s optical axis are
coincident. The camera images scene points both directly and after
reflection by the mirror. As a result, scene points are imaged from
different viewpoints within a single image.
The imaging system in Figure 2(a) captures the scene from the real
viewpoint of the camera as well as a circular locus of virtual view-
points produced by the mirror. To see this consider a radial slice of
the imaging system that passes through the optical axis of the camera,
as shown in Figure 2(b). The real viewpoint of the camera is located
at O. The mirrors m1 and m2 (that are straight lines in a radial slice)
produce the two virtual viewpoints V1 and V2, respectively, which are
reflections of the real viewpoint O. Therefore, each radial slice of the
system has two virtual viewpoints that are symmetric with respect to
the optical axis. Since the complete imaging system includes a con-
tinuum of radial slices, it has a circular locus of virtual viewpoints
whose center lies on the camera’s optical axis.
Figure 2(c) shows the structure of an image captured by a radial
imaging system. The three viewpoints O, V1, and V2 in a radial slice
project the scene onto a radial line in the image, which is the intersec-
tion of the image plane with that particular slice. This radial image
line has three segments – JK, KL, and LM, as shown in Figure 2(c).
The real viewpoint O of the camera projects the scene onto the cen-
tral part KL of the radial line, while the virtual viewpoints V1 and V2
project the scene onto JK and LM, respectively. The three viewpoints
(real and virtual) capture only scene points that lie on that particular
radial slice. If P is such a scene point, it is imaged thrice (if visible
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Figure 2: (a) Radial imaging system with a cone mirrored on the in-
side that images the scene from a circular locus of virtual viewpoints
in addition to the real viewpoint of the camera. The axis of the cone
and the camera’s optical axis are coincident. (b) A radial slice of
the system shown in (a). (c) Structure of the image captured by the
system shown in (a). (d) Radial imaging system with a cylinder mir-
rored on the inside. (e) Radial imaging system with a cone mirrored
on the inside. In this case, the apex of the cone lies on the other side
of the camera compared to the system in (a).

to all three viewpoints) along the corresponding radial image line at
locations p, p1, and p2, as shown in Figure 2(c). Since this is true for
every radial slice, the epipolar lines of such a system are radial. Since
all radial image lines have three segments (JK, KL, and LM) and the
lengths of these segments are independent of the chosen radial im-
age line, the captured image has the form of a donut. The camera’s
real viewpoint captures the scene directly in the inner circle, while
the annulus corresponds to reflection of the scene – the scene as seen
from the circular locus of virtual viewpoints.
Varying the parameters of the conical mirror in Figure 2(a) and its
distance from the camera, we obtain a continuous family of radial
imaging systems, two instances of which are shown in Figures 2(d)
and 2(e). The system in Figure 2(d) has a cylindrical mirror. The
system in Figure 2(e) has a conical mirror whose apex lies on the
other side of the camera compared to the one in Figure 2(a). These
systems differ in the geometric properties of their viewpoint loci and
their fields of view, making them suitable for different applications.
However, the images that they all capture have the same structure as
in Figure 2(c).
Multiple circular loci of virtual viewpoints can be generated by
choosing a mirror that reflects light rays multiple times before be-
ing captured by the camera. For instance, two circular loci of vir-
tual viewpoints are obtained by allowing light rays from the scene

to reflect atmost twice before entering the camera. In this case, the
captured image will have an inner circle, where the scene is directly
imaged by the camera’s viewpoint, surrounded by two annuli, one for
each circular locus of virtual viewpoints. Later we show how such a
system with multiple circular loci of virtual viewpoints can be used.
In this paper, for the sake of simplicity, we restrict ourselves to radial
imaging systems with conical and cylindrical (which is just a special
case) mirrors, which appear as lines in the radial slices. It should be
noted that in general the mirrors only have to be rotationally sym-
metric; they can have more complex cross-sections.

4 Properties of a Radial Imaging System

We now analyze the properties of a radial imaging system. For sim-
plicity, we restrict ourselves to the case where light rays from the
scene reflect at most once in the mirror before being captured by the
camera. In Section 5.3, we will analyze a system with multiple reflec-
tions. For illustration, we will use Figure 3 which shows a radial slice
of the system shown in Figure 2(a). However, the expressions we de-
rive hold for all radial imaging systems including the ones shown in
Figures 2(d) and 2(e). A cone can be described using three parame-
ters – the radius r of one end (in our case, the end near the camera),
its length l, and the half-angle β at its apex, as shown in Figure 3(a).
The complete system can be described using one more parameter –
the field of view (fov) 2θ of the camera3. To differentiate between
the configurations in Figures 2(a) and 2(e), we use the following con-
vention: if the cone’s apex and the camera lie on the same side of the
cone, β ≥ 0; else β < 0. Therefore, for the systems shown in Figures
2(a), (d), and (e), β > 0, β = 0, and β < 0, respectively.
The near end of the cone should be placed at a distance d = r cot(θ)
from the camera’s real viewpoint so that the extreme rays of the cam-
era’s fov graze the near end, as shown in Figure 3(a). Such a d would
ensure that the entire fov of the camera is utilized.
4.1 Viewpoint Locus
In Section 3 we saw that radial imaging systems have a circular locus
of virtual viewpoints. We now examine how the size and location
of this circular locus varies with the parameters of the system. Since
the system is rotationally symmetric, we can do this analysis in 2D by
determining the location of the virtual viewpoints in the radial slice
shown in Figure 3(a). The virtual viewpoints V1 and V2 in a radial
slice are the reflections of the camera’s real viewpoint O produced
by the mirrors m1 and m2, respectively. The distance of the virtual
viewpoints from the optical axis gives the radius vr of the circular
locus of virtual viewpoints, which can be shown to be

vr = 2r cos(β )sin(θ −β )csc(θ). (1)
The distance (along the optical axis) of the virtual viewpoints from
the real viewpoint of the camera is the distance vd between the circu-
lar locus of virtual viewpoints and the camera’s real viewpoint:

vd = −2r sin(β )sin(θ −β )csc(θ). (2)
It is interesting to note that when β > 0, as in the system shown in
Figure 2(a), vd < 0, implying that the virtual viewpoint locus is lo-
cated behind the real viewpoint of the camera. In configurations with
β = 0, as in Figure 2(d), the center of the circular virtual viewpoint
locus is at the real viewpoint of the camera. Finally, the circular locus
moves in front of the camera’s real viewpoint for configurations with
β < 0, as in the one shown in Figure 2(e).
The length of the cone determines how many times light rays from
the scene reflect in the mirror before being captured by the camera.
Since in this section we consider systems that allow light rays from
the scene to be reflected at most once, from Figure 3(a) it can be
shown that the length l of the cone should be less than l ′, where

l′ = 2r cos(β )cos(θ −2β )csc(θ −3β ). (3)
For ease of analysis, from this point onwards we assume that l = l ′.

3The field of view of a camera in a radial imaging system is the minimum
of the camera’s horizontal and vertical fields of view.
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Figure 3: Properties of a Radial Imaging System. (a) Radial slice of the imaging system shown in Figure 2(a). (b) The fields of view of the
viewpoints in a radial slice. (c) The orientation of a virtual viewpoint in a radial slice. (d) The tangential resolution of an image captured by
an imaging system with β = 12◦, r = 3.5 cm, and θ = 45◦ for a scene plane parallel to the image plane located at a distance of 50 cm from
the camera’s real viewpoint. The radial distance is measured on the image plane at unit distance from the camera’s real viewpoint.

4.2 Field of View
We now analyze how the fov of the viewpoints in a radial slice de-
pend on the parameters of the imaging system. Consider the radial
slice shown in Figure 3(b). As we can see, the fov φ of a virtual
viewpoint is the portion of the fov of the camera that is incident on
the corresponding mirror and is given by

φ = arctan(
2cos(θ −2β )sin(θ)sin(θ −β )

sin(θ −3β )+2sin(θ)cos(θ −2β )cos(θ −β )
). (4)

Therefore, the effective fov ψ of the real viewpoint of the camera is
the remaining portion of the camera’s fov, which is

ψ = 2(θ −φ). (5)
The number of image projections of any given scene point equals the
number of viewpoints in the corresponding radial slice that can ‘see’
it. This in turn depends on where the scene point lies. If a scene
point lies in the trinocular space – area common to the fovs of all
viewpoints in a radial slice – it is imaged thrice. On the other hand,
if a point lies in the binocular space – area common to the fovs of at
least two viewpoints – it is imaged at least twice. Figure 3(b) shows
the trinocular and binocular spaces. The scene point in the trinocular
space closest to O is obtained by intersecting the fovs of the virtual
viewpoints. This point lies at a distance

dt = r sin(2θ −2β )csc(θ)csc(θ −2β ) (6)
from O. Similarly, by intersecting the effective fov of the camera’s
real viewpoint and the fov of a virtual viewpoint, we obtain the dis-
tance of the two scene points in the binocular space closest to O as

db = r sin(2θ −2β )cos(θ −φ)csc(θ)csc(2θ −2β −φ). (7)
Examining the expression for dt tells us that for systems with β > 0
(Figure 2(a)), the trinocular space exists only if θ > 2β . On the
other hand, in configurations with β ≤ 0 (Figures 2(d) and 2(e)), the
fovs of all viewpoints in a radial slice always overlap. Note that the
binocular space exists in all cases.
We define the orientation of a virtual viewpoint as the angle δ made
by the central ray in its fov with the optical axis, as shown in Figure
3(c). It can be shown, using simple geometry, that δ is given by

δ = (θ −
φ
2 −2β )t. (8)

Here, t = 1, if the central rays of the virtual viewpoint fovs meet in
front of the camera’s real viewpoint, i.e., the fovs converge, and t =
−1 otherwise. It can be shown that when β ≤ 0, the virtual viewpoint
fovs always converge. When β > 0, the fovs converge only if θ > 3β .

4.3 Resolution
We now examine the resolution characteristics of radial imaging sys-
tems. For simplicity, we analyze resolutions along the radial and
tangential directions of a captured image separately. As described
in Section 3, a radial line in the image has three segments – one for
each viewpoint in the corresponding radial slice. Therefore, in a ra-
dial line the spatial resolution of the camera is split among the three
viewpoints. Using simple geometry, it can be shown that on a radial

image line, the ratio of the lengths of the line segments belonging to
the camera’s real viewpoint and a virtual viewpoint is cos(θ)

cos(θ−2β )
.

We now study resolution in the tangential direction. Consider a scene
plane Πs parallel to the image plane located at a distance w from the
camera’s real viewpoint. Let a circle of pixels of radius ρi on the
image plane image a circle of radius ρs on the scene plane Πs; the
centers of both circles lie on the optical axis of the camera. We then
define tangential resolution, for the circle on the image plane, as the
ratio of the perimeters of the two circles = ρi/ρs. If a circle of pixels
on the image plane does not see the mirror, its tangential resolution is
1/w (assuming focal length is 1). To determine the tangential resolu-
tion for a circle of pixels that sees the mirror, we need to compute the
mapping between a pixel on the image plane and the point it images
on the scene plane. This can be derived using the geometry shown
in Figure 3(a). From this mapping we can determine the radius ρs of
the circle on the scene plane Πs that is imaged by a circle of pixels of
radius ρi on the image plane. Then, tangential resolution is ρi/ρs =

ρi sin(θ)(cos(2β )+ρi sin(2β ))

2r sin(θ −β )(cos(β )+ρi sin(β ))−wsin(θ)(ρi cos(2β )− sin(2β ))
.

Note that tangential resolution is depth dependent – it depends on
the distance w of the scene plane Πs. For a given w, there exists a
circle of radius ρi on the image plane, which makes the denominator
of the above expression zero. Consequently, that circle on the im-
age plane has infinite tangential resolution4, as it is imaging a single
scene point – the scene point on Πs that lies on the optical axis. This
property can be seen in all the images captured by radial imaging
systems shown in Figure 1. In Section 5.3 we exploit this property
to estimate the BRDF of a material using a single image. The tan-
gential resolution for a particular radial imaging system and a chosen
scene plane is shown in Figure 3(d).
We have built several radial imaging systems which we describe next.
The mirrors in these systems were custom-made by Quintesco, Inc.
The camera and the mirror were aligned manually by checking that
in a captured image the circles corresponding to the two ends of the
mirror are approximately concentric. In our experiments, we found
that very small errors in alignment did not affect our results in any
significant way.

5 Cylindrical Mirror
We now present a radial imaging system that consists of a cylinder
mirrored on the inside. Such a system is shown in Figure 2(d). In
this case, the half-angle β = 0.
5.1 Properties
Let us examine the properties of this specific imaging system. Putting
β = 0 in Equations 1 and 2, we get vr = 2r and vd = 0. Therefore,
the virtual viewpoints of the system form a circle of radius 2r around
the optical axis centered at the real viewpoint of the camera. It can
be shown from Equations 4 and 5 that, in this system, the fov φ of

4In practice, tangential resolution is always finite as it is limited by the
resolution of the image detector.
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Figure 4: Two radial imaging systems that use a cylindrical mirror
of radius 3.5 cm and length 16.89 cm. (a) System used for recon-
structing 3D textures that has a Kodak DCS760 camera with a Sigma
20mm lens. (b) System used to estimate the BRDF of a sample point
that has a Canon 20D camera with a Sigma 8mm Fish-eye lens.

(a) (b) (c)
Figure 5: The left (a), central (b), and right (c) view images con-
structed from the captured image shown in Figure 1(a).

the virtual viewpoints is always smaller than the effective fov ψ of
the real viewpoint of the camera. Another interesting characteristic
of the system is that the fovs of its viewpoints always converge. As
a result, it is useful for recovering properties of small nearby objects.
Specifically, we use the system to reconstruct 3D textures and esti-
mate the BRDFs of materials.
5.2 3D Texture Reconstruction and Synthesis
A radial imaging system can be used to recover, from a single im-
age, the depth of scene points that lie in its binocular or trinocular
space, as these points are imaged from multiple viewpoints. We use
a radial imaging system with a cylindrical mirror to recover the ge-
ometry of 3D texture samples. Figure 4(a) shows the prototype we
built. The camera captures 3032×2008 pixel images. The radial im-
age lies within a 1791×1791 pixel square in the captured image. In
this configuration, the fovs of the three viewpoints in a radial slice
intercept line segments of equal length i.e., 597 pixels on the corre-
sponding radial image line. An image of a slice of bread captured by
this system is shown in Figure 1(a). Observe that the structure of this
image is identical to that shown in Figure 2(c).
Let us now see how we can recover the structure of the scene from a
single image. To determine the depth of a particular scene point, its
projections in the image, i.e., corresponding points, have to be iden-
tified via stereo matching. As the epipolar lines are radial, the search
for corresponding points needs to be restricted to a radial line in the
image. However, most stereo matching techniques reported in litera-
ture deal with image pairs with horizontal epipolar lines [Scharstein
and Szeliski 2002]. Therefore, it would be desirable to convert the in-
formation captured in the image into a form where the epipolar lines
are horizontal. Recall that a radial line in the image has three parts
– JK, KL, and LM, one for each viewpoint in the corresponding ra-
dial slice (See Figure 2(c)). We create a new image called the central
view image by stacking the KL parts of successive radial lines. This
view image corresponds to the central viewpoint in the radial slices.
We create similar view images for the virtual viewpoints in the radial
slices – the left view image by stacking the LM parts of successive
radial lines and the right view image by stacking the JK parts. To
account for the reflection of the scene by the mirror the contents of
each JK and LM lines are flipped. Figure 5 shows the three 597×
900 view images constructed from the captured image shown in Fig-
ure 1(a). Observe that the epipolar lines are now horizontal. Thus,
traditional stereo matching algorithms can now be directly applied.
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Figure 6: Determining the reconstruction accuracy of the cylindrical
mirror system shown in Fig 4(a). (a) Captured image of the inside of
a section of a hollow cylinder. (b) Some reconstructed points and the
best fit circle corresponding to the vertical radial line in the image.
(See text for details.)
For the 3D reconstruction results in this paper, we used a window-
based method for stereo matching with normalized cross-correlation
as the similarity metric [Scharstein and Szeliski 2002]. The central
view image (Figure 5(b)) was the reference with which we matched
the left and right view images (Figures 5(a) and 5(c)). The left
and right view images look blurry in regions that correspond to the
peripheral areas of the captured image, due to optical aberrations in-
troduced by the curvature of the mirror. To compensate for this, we
took an image of a planar scene with a large number of dots. We
then computed the blur kernels for different columns in the central
view image that transform the ‘dot’ features to the corresponding
features in the left and right view images. The central view image
was blurred with these blur kernels prior to matching. This transfor-
mation, though an approximation, makes the images similar thereby
making the matching process more robust. Once correspondences
are obtained, the depths of scene points can be computed. The re-
constructed 3D texture of the bread sample – a disk of diameter 390
pixels – is shown in Figure 1(a).
To determine the accuracy of the reconstructions obtained, we im-
aged an object of known geometry – the inside of a section of a hol-
low cylinder of radius 3.739 cm. The captured image is shown in
Figure 6(a), in which the curvature of the object is along the vertical
direction. We reconstructed 145 points along the vertical radial im-
age line and fit a circle to them, as shown in Figure 6(b). The radius
of the best-fit circle is 3.557 cm and the rms error of the fit is 0.263
mm, indicating very good reconstruction accuracy.
Figures 7 (a,b) show another example of 3D texture reconstruction
– of the bark of a tree. Since we now have both the texture and the
geometry, we can synthesize novel 3D texture samples. This part of
our work is inspired by 2D texture synthesis methods [Efros and Le-
ung 1999; Efros and Freeman 2001; Kwatra et al. 2003] that, starting
from an RGB texture patch, create novel 2D texture patches. To cre-
ate novel 3D texture samples, we extended the simple image quilting
algorithm of Efros and Freeman [2001] to operate on texture patches
that in addition to having the three (RGB) color channels have an-
other channel – the z value at every pixel5.
The 3D texture shown in Figure 7(b) was quilted to obtain a large 3D
texture patch, which we then wrapped around a cylinder to create a
tree trunk. This trunk was then rendered under a moving point light
source and inserted into an existing picture to create the images in
Figures 7(c) and 7(d). The light source moves from left to right as
one goes from (c) to (d). Notice how the cast shadows within the

5To incorporate the z channel, we made the following changes to [Efros
and Freeman 2001]: (a) When computing the similarity of two regions, for the
RGB intensity channels, we use Sum-of-Squared Differences (SSD), while
for the z channel, the z values in each region are made zero-mean and then
SSD is computed. The final error is a linear combination of intensity and z-
channel errors. (b) To ensure that no depth discontinuities are created when
pasting a new block into the texture, we do the following. We compute the
difference of the means of the z values in the overlapping regions of the texture
and the new block. This difference is used to offset z values in the new block.



(a) (b) (c) (d)
Figure 7: 3D Texture Reconstruction and Synthesis. (a) Image of a 3D texture – a piece of the bark of a tree – captured by the cylindrical
mirror imaging system shown in Figure 4(a). (b) Shaded and texture mapped views of the reconstructed piece of bark. (c-d) The reconstructed
3D texture was used to synthesize a large 3D texture sample which was then wrapped around a cylinder to create a tree trunk. This trunk was
rendered under a moving point light source (left to right as one goes from c to d) and then inserted into another image.
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Figure 8: BRDF Sampling and Estimation. (a) Image of a metal-
lic paint sample captured by the cylindrical imaging system shown in
Figure 4(b). (b) A model rendered with the metallic paint BRDF esti-
mated from (a). (c) Plot showing the sample normal, light source di-
rection, and the viewing directions for the image in (a). (d) Plot com-
paring the measured radiances in the red channel for different view-
ing directions, with those predicted by the fitted analytical model.
bark of the tree differ in the two images.
To recover the geometry of 3D textures Liu et al. [2001] apply shape-
from-shading techniques to a number of images taken under different
illumination conditions. These images also come in handy at the time
of texture synthesis as they can be used to impart view dependent
effects to the appearance of the new texture. In contrast, we capture
both the texture and the geometry of a 3D texture in a single image.
However, since we have only one image of the sample and do not
know its material properties, we implicitly make the assumption that
the sample is Lambertian when we perform 3D texture synthesis.
5.3 BRDF Sampling and Estimation

We now show how a radial imaging system can be used to estimate
the parameters of an analytic BRDF model for an isotropic material.
We make the observation that points on the optical axis of a radial
imaging system lie on all radial slices. Hence, if we place a sample
point on the optical axis of the system, it is imaged by all viewpoints.
In fact, such a point is imaged along a circle on the image plane – the

tangential resolution for that circle is infinite. We can get more view-
points by letting light rays from the sample point reflect in the mirror
multiple times before being captured by the camera. As discussed
earlier, this would result in the sample point being imaged from sev-
eral circular loci of virtual viewpoints. It can be shown that the mini-
mum length of the cylinder that is needed for realizing n circular loci
of virtual viewpoints is given by ln = 2(n− 1)r cot(θ), n > 1. The
virtual viewpoints of this system form concentric circles of radii 2r,
4r, ··, 2nr.
Our prototype system, whose camera captures 3504×2336 pixel
images, is shown in Figure 4(b). The radial image lies within a
2261×2261 pixel square in the captured image. Figure 8(a) shows
an image of a metallic paint sample taken by this system. As one can
see, the sample is imaged along four concentric circles, implying that
it is viewed from four circular loci of virtual viewpoints. We placed
the sample and a distant point light source such that the radiance
along the specular angle was measured by at least one viewpoint6.
To understand the viewing directions that image the sample point,
consider Figure 8(c), which shows the hemisphere of directions cen-
tered around the normal of the sample point. The four virtual view-
point circles map to concentric circles on this hemisphere. Note that
one of the viewing circles intersects the specular angle. The radi-
ance measurements for these viewing directions and the fixed light-
ing direction are then used to fit an analytical BRDF model. We use
the Oren-Nayar model for the diffuse component and the Torrance-
Sparrow model for the specular component. Due to space constraints
we are only showing the fit of the computed analytical model to the
red channel of the measured data, in Figure 8(d). The plots for the
green and blue channels are similar. We can now render objects with
the estimated BRDF, as shown in Figure 8(b). Figure 1(b) shows
another example. It should be noted that our approach to sampling
appearance cannot be used if the material has a very sharp specular
component as then the specularity might not be captured by any of
the four virtual viewpoint circles.

6 Conical Mirror
In this section, we present radial imaging systems with cones of dif-
ferent parameters. Having unequal radii at the ends allows for greater
flexibility in selecting the size and location of the viewpoint locus and
the fields of view.
6.1 Properties
As we discussed in Section 4, β is one of the parameters that defines a
radial imaging system. Let us consider separately the cases of β > 0
and β < 0. For systems with β > 0, depending on the application’s
needs, the virtual viewpoint locus can be varied to lie in between the

6For the geometry of our prototype this was achieved by rotating the sam-
ple by 27◦ about the vertical axis and positioning a distant point light source
at an angle of 45◦ with the normal to the sample in the horizontal plane.



real viewpoint of the camera and vd = −r tan(θ/2). There is also
flexibility in terms of fields of view – the virtual viewpoint fovs can
be lesser than, equal to, or greater than the effective fov of the real
viewpoint of the camera. Also, the viewpoint fovs may converge
or diverge. For systems with β < 0, the locus of virtual viewpoints
can be varied to lie in between the camera’s real viewpoint and vd =
r cot(θ/2). Unlike configurations with β > 0, in these systems the
virtual viewpoint fovs are smaller than the effective fov of the real
viewpoint of the camera. Also, the viewpoint fovs always converge.

6.2 Reconstruction of 3D Objects

We now describe how to reconstruct 3D objects using a radial imag-
ing system with β > 0 – like the one shown in Figure 2(a). Using a
cylindrical mirror, as in the previous section, causes the fovs of the
viewpoints of the system to converge. Consequently, such a system
is suited for recovering the properties of small nearby objects. In
order to realize a system that can be used for larger and more dis-
tant objects, we would like the fovs of the virtual viewpoints to ‘look
straight’, i.e., we would like the central ray of each virtual view-
point’s fov to be parallel to the optical axis. This implies that δ –
the angle made by the central ray in a virtual viewpoint’s fov with
the optical axis – should be zero. Examining Equations 3 and 8 tells
us that for this to be true the length of the cone has to be infinite –
clearly an impractical solution. Therefore, we pose the following
problem: Given the fov of the camera, the radius of the near end
of the cone, and the ratio γ of the effective fovs of the real and vir-
tual viewpoints, determine the cone’s half-angle β at its apex and its
length l. A simple geometrical analysis yields the following solution:

β =
θ(γ +1)

2(γ +2)
, l =

r sin(2θ/(γ +2))cos(β )

sin(θ)sin(θ(γ −1)/(2(γ +2)))
, γ > 1. (9)

The prototype we built based on the above solution is shown in Figure
9(a). The radial image lies within a 2158×2158 pixel square of the
3504×2336 pixel captured image. The effective fov of the camera’s
real viewpoint intercepts 1078 pixels along a radial line in the image.
The fovs of the two virtual viewpoints intercept 540 pixels each. We
have used this system to compute the 3D structures of faces, a prob-
lem that has attracted much interest in recent years. Commercial face
scanning systems are now available, such as those from Cyberware
and Eyetronics, which produce high quality face models. However,
these use sophisticated hardware and are expensive.
Figures 1(c) and 10(a) show two images captured by the system in
Figure 9(a). Since these images are identical in structure to those
taken by the system in Section 5.2, we can create the three view
images, perform stereo matching and do reconstruction as before.
However, there is one small difference. In a radial slice, the effective
image line (analogous to the image plane) for a virtual viewpoint is
the reflection of the real image line. Since the mirrors are not or-
thogonal to the real image line in this case, for any two viewpoints
in a slice their effective image lines would not be parallel to the line
joining the two viewpoints. Therefore, before matching7two view
images, they must be rectified.
A view of the 470×610 pixel face model reconstructed from the im-
age in Figure 10(a) is shown in Figure 10(b). Figure 1(c) shows
another example. To determine the accuracy of reconstructions pro-
duced by this system, we imaged a plane placed 40 cm from the
camera’s real viewpoint and computed its geometry. The captured
image is shown in Figure 11(a). The rms error obtained by fitting a
plane to the reconstructed points is 0.83 mm, indicating high accu-
racy. Figure 11(b) shows the slice of the best-fit plane and some of
the reconstructed points corresponding to the vertical radial line in
the captured image.

7Correspondence matches in specular regions (eyes and nose tip, identified
manually) and texture-less regions are discarded. The depth at such a pixel is
obtained by interpolating the depths at neighboring pixels with valid matches.

Camera Mirror Subject Camera MirrorObject

(a) (b)
Figure 9: Radial imaging systems comprised of a cone of length 12.7
cm and radii 3.4 cm and 7.4 cm at the two ends. The half-angle
at the apex of the cone is 17.48◦. Both systems use a Canon 20D
camera. (a) System used for reconstructing objects such as faces. A
Sigma 8mm fish-eye lens was used in this system. (b) System used
to capture the complete texture and geometry of a convex object. A
Canon 18-55 mm lens was used in this system.

(a) (b)
Figure 10: Recovering the Geometry of a Face. (a) Image of a face
captured by the conical mirror imaging system shown in Figure 9(a).
(b) A view of the reconstructed face.
6.3 Capturing Complete Texture Maps

We now show how a radial imaging system can be used to capture,
in a single image, the entire texture map of a convex object – its
top and all sides (the bottom surface is not always captured). To do
so, the object must be imaged from a locus of viewpoints that goes
all around it. Therefore, the radius of the circular locus of virtual
viewpoints should be greater than the radius of the smallest cylinder
that encloses the object; the cylinder’s axis being coincident with the
optical axis of the camera. Since radial imaging systems with β < 0,
like the one in Figure 2(e), have virtual viewpoint loci of larger radii,
they are best suited for this application. While the real viewpoint of
the camera captures the top view of the object, the circular locus of
virtual viewpoints images the side views. Thus, the captured images
have more information than the cyclographs presented in [Seitz and
Kim 2002]. Figure 9(b) shows our prototype system. The radial
image lies within a 2113×2113 pixel square of the 3504×2336 pixel
captured image. In a radial slice, the effective fov of the camera’s real
viewpoint intercepts 675 pixels on the corresponding radial image
line, while the virtual viewpoints each intercept 719 pixels. An image
of a conical object captured by this system is shown in Figure 12(a).
Figure 12(b) shows a cone texture-mapped with this image. Another
example, of a cylindrical object, is shown in Figure 1(d).

6.4 Recovering Complete Object Geometry

We have shown above how the complete texture map of a convex ob-
ject can be captured in a single image using a radial imaging system
with β < 0. If we take two such images, with parallax, we can com-
pute the complete 3D structure of the object. Figures 1(e) and 13(a)
show two images obtained by translating a toy head along the opti-
cal axis of the system by 0.5 cm8. Due to this motion of the object,
the epipolar lines for the two images are radial. In order to use con-
ventional stereo matching algorithms, we need to map radial lines to

8To move the object accurately, we placed it on a linear translation stage
that was oriented to move approximately parallel to the camera’s optical axis.



−6 −4 −2 0 2 4 6

36

38

40

42

44

46

Y (in cm)

Z
 (

in
 c

m
)

Slice of the Reconstructed Plane
Reconstructed Points

(a) (b)
Figure 11: Determining the reconstruction accuracy of the system
shown in Figure 9(a). (a) Captured image of a plane. (b) Some re-
constructed points and the slice of the best-fit plane corresponding to
the vertical radial line in the image. (See text for details.)

(a) (b)
Figure 12: Capturing the Complete Texture Map of a Convex
Object. (a) Image of a conical object captured by the system shown
in Figure 9(b). (b) A cone texture-mapped with the image in (a).
horizontal lines. Therefore, we transform the captured images from
Cartesian to polar coordinates – the radial coordinate maps to the
horizontal axis9. As before, the two images are rectified. We then
perform stereo matching on them and compute the 3D structure of
the object. Figure 13(b) shows a view of the complete geometry of
the object shown in Figure 13(a). To our knowledge, this is the first
system capable of recovering the complete geometry of convex ob-
jects by capturing just two images.

7 Conclusion
In this paper, we have introduced a class of imaging systems called
radial imaging systems that capture a scene from the real viewpoint
of the camera as well as one or more circular loci of virtual view-
points, instantly, within a single image. We have derived analytic
expressions that describe the properties of a complete class of ra-
dial imaging systems. As we have shown, these systems can recover
geometry, reflectance, and texture by capturing one or at most two
images. In this work, we have focused on the use of conical mir-
rors for radial imaging. In future work, we would like to explore the
benefits of using more complex mirror profiles. Another interesting
direction is the use of multiple mirrors within a system. We believe
that the use of multiple mirrors would yield even greater flexibility in
terms of the imaging properties of the system, and at the same time
enable us to optically fold the system to make it more compact.
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