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Abstract. A large photo collection downloaded from the internet spans
a wide range of scenes, cameras, and photographers. In this paper we
introduce several novel priors for statistics of such large photo collections
that are independent of these factors. We then propose that properties of
these factors can be recovered by examining the deviation between these
statistical priors and the statistics of a slice of the overall photo collection
that holds one factor constant. Specifically, we recover the radiometric
properties of a particular camera model by collecting numerous images
captured by it, and examining the deviation of this collection’s statistics
from that of a broader photo collection whose camera-specific effects have
been removed. We show that using this approach we can recover both
a camera model’s non-linear response function and the spatially-varying
vignetting of the camera’s different lens settings. All this is achieved using
publicly available photographs, without requiring images captured under
controlled conditions or physical access to the cameras. We also apply
this concept to identify bad pixels on the detectors of specific camera
instances. We conclude with a discussion of future applications of this
general approach to other common computer vision problems.

1 Introduction

Large publicly-available photo collections such as Flickr have recently spawned
new applications such as Photo Tourism [1] and Internet Stereo [2]. They have
also been exploited for filling in holes in images [3], inserting objects into scenes
[4], and object recognition [5]. These research efforts have demonstrated the
power of using large photo collections to develop novel applications as well as to
solve hard computer vision problems.

In this paper, we examine the statistics of such a large photo collection
and develop priors that are independent of the factors that influence any one
photograph: the scene, the camera, and the photographer. Statistical priors
for single images have already been used for a wide range of computer vision
tasks [6,7,8,9,10,11]. We argue that priors on the statistics of photo collec-
tions have the potential to be similarly powerful, since the statistics of a slice of
the photo collection that holds one factor constant should yield information as
to how that factor distorts the priors. We investigate this approach to recover
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camera properties. We first compute statistical priors from a photo collection
with camera-specific effects removed; that is, we use known camera calibration
profiles to remove radiometric distortion from a photo collection. As a result,
that collection becomes camera-independent. Then, we describe and experimen-
tally validate priors for (a) the spatial distribution of average image luminances
and (b) the joint histogram of irradiances at neighboring pixels. Next, we com-
pute these same statistics for a camera-model-specific photo collection whose
images have not had their distortion removed. We can then recover that cam-
era model’s radiometric properties – its non-linear response function and the
spatially-varying vignetting for different lens settings – by minimizing the devi-
ation of these statistics from the camera-independent priors. We also show how
the same concept can be used to identify bad pixels on the detectors of specific
camera instances.

Our approach to recovering properties of specific camera models assumes that
all instances of a model have the same properties. This is a reasonable assumption
to make for point and shoot cameras [12] since they do not have the variability
that arises from attaching different lenses to SLR camera bodies. Hence, in this
paper, we restrict ourselves to only point-and-shoot cameras. Also, the camera
model properties we recover are aggregate estimates over many instances of the
model; for most applications, these estimates are more than adequate. Thus,
our approach provides an attractive alternative to traditional camera calibra-
tion methods which are typically tedious. Also, since our approach can be used
to recover a camera’s properties using existing pictures, it provides a conve-
nient means to create a database of camera properties. Such a database would
be similar in spirit to the databases available with commercial products like
DxO [13] and PTLens [14], but with the important advantage that the cost
of creating it would be effectively zero — there would be no need to buy the
cameras and manually calibrate them. A photo-sharing website could use our
approach to leverage its growing image collection to continually update and add
to its database of profiles, and allow users to either undistort their images or
make photometrically-correct edits. More importantly, our results demonstrate
that the statistics of large photo collections contain significant information about
scenes, cameras, and photographers, and our work represents a first step towards
extracting and exploiting that information.

2 Related Work

A number of image priors have been proposed to describe the statistics of in-
dividual photographs, such as the sparsity of outputs of band-pass filters (e.g.
derivative filters) [6,7], biases in the distribution of gradient orientations [8,9],
and 1/f fall-off of the amplitude spectrum [10,11]. These priors have been ex-
ploited for applications such as deriving intrinsic images from image sequences
[15], super-resolution and image demosaicing [16], removing effects of camera
shake [17], and classifying images as belonging to different scene categories [9,18].
We focus on the aggregate statistics of large photo collections, which tend to have
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less variability than the statistics of a single image. We thus propose two new
priors for aggregate statistics of large photo collections and describe how they
can be exploited to recover radiometric properties of cameras.

The most popular method for estimating the camera response function in-
volves taking multiple registered images of a static scene with varying camera
exposures [19,20]. Grossberg and Nayar [21] relax the need for spatial corre-
spondences by using histograms of images at different exposures. If the exposure
cannot be varied, but can be locked, the response can be estimated by capturing
multiple registered images of a static scene illuminated by different combina-
tions of light sources [22]. All these methods require significant user effort and
physical access to the camera. Farid [23] assumes that the response function
has the form of a gamma curve and estimates it from a single image. However,
in practice response functions can differ significantly from gamma curves. Lin
et al. [24] also estimate the response from a single image by exploiting intensity
statistics at edges. Their results depend on the kinds of edges detected, and their
method employs a non-linear optimization which needs multiple initial guesses
for robustness. In contrast, we automatically and robustly estimate the response
function using numerous existing photographs.

Vignetting can be estimated by imaging a uniformly illuminated flat texture-
less Lambertian surface, and comparing the intensity of every pixel with that
of the center pixel (which is assumed to have no vignetting) [25,26]. Unfortu-
nately, realizing such capture conditions is difficult. One approach is to use a
device called an “integrating sphere,” but this specialized hardware is expen-
sive. Stumpfel et al. [27] capture many images of a known illuminant at different
locations in the image and fit a polynomial to the measured irradiances. The
same principle has been used to estimate vignetting from overlapping images
of an arbitrary scene [28,29,30] using measured irradiances of the same scene
point at different image locations. All these methods require the user to acquire
new images under controlled conditions. Some of the above approaches [28,29]
can be used to simultaneously estimate the vignetting and the response function
of a camera, but there are typically ambiguities in recovering this information.
Since we recover both properties independently, we do not have any ambigu-
ities. Recently, Zheng et al. [31] have proposed estimating vignetting from a
single image by assuming that a vignette-corrected image will yield an image
segmentation with larger segments. Their optimization algorithm, which con-
sists of many alternating image segmentation and vignetting estimation steps,
is highly non-linear and hence is likely to have local minima issues. In contrast,
we estimate vignetting linearly and efficiently.

During manufacturing, bad pixels are typically identified by exposing image
detectors to uniform illuminations. However, some pixels develop defects later
and it is difficult for consumers to create uniform environments to detect them.
Dudas et al. [32] detect such pixels by analyzing a set of images in a Bayesian
framework. However, they only show simulation results. We propose a simple
technique that is able to detect bad pixels, albeit using many images.
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3 Aggregate Statistics of Photo Collections

We now describe how we collect various internet photo collections and how we
use them to form and experimentally validate two statistical priors that are
independent of specific scenes, cameras, and photographers. We form image col-
lections by downloading images from Flickr. Flickr supports searching for images
from a particular camera model; we chose five popular models and downloaded
thousands of images for each. We also manually calibrated these cameras using
HDRShop [19] for response functions and an integrating sphere for vignetting
(across different lens settings). To validate our approach, we then used the col-
lection of one camera model – Canon S1IS – as a training set to undistort its cor-
responding downloaded images and form camera-independent priors;1 the other
camera models and their downloaded images were used to test our hypotheses.

Internet photo collections can contain outliers that corrupt our aggregate
statistics. For example, images captured with flash, edited in Photoshop, or
cropped would add distortion beyond the radiometric properties that we are re-
covering. Fortunately, EXIF tags allow us to cull most outliers; we remove flash
images, images with certain Software fields, portrait-mode images, and images
that are not full resolution. Our resultant collections contain about 40,000 images
per camera model, which we then group using lens settings since camera prop-
erties vary with aperture and focal length. We would like to point out that since
Flickr does not support searching for all images with a particular camera-lens set-
ting, there are configurations for which we could not collect enough photographs
to compute robust statistics. However, as we will show, for configurations with
sufficient photographs, our approach gives uniformly good results.

3.1 Spatial Distribution of Average Image Luminances

Torralba and Oliva [18] and artist Jason Salavon (salavon.com) have made an
interesting observation: the average of a set of photographs of similar scenes is
not spatially stationary, but has a certain structure to it. So we ask: does the
average photograph obtained by pixel-by-pixel averaging of many photographs
captured with the same lens setting have a particular structure? To investigate
this question we computed the average of the log-luminance of the photographs
in the undistorted training set photo collection with the same lens setting.
Figures 1 (a,b) show the average log-luminance of two groups of photographs
captured with the same focal length, but different f-number. One can see that we
have averaged out particular scenes, but the average image is not uniform. This
is illustrated in Figures 1 (c) and (d) which show the contrast enhanced versions
of the images in Figures 1 (a) and (b), respectively. We can immediately make
two interesting observations. (i) The average images have a vertical gradient as
can also be seen in Figure 1 (e) which shows log-luminances along a column of the
1 We assume that undistortion is enough to make an image collection camera-

independent for the purpose of training priors. While this may not be true in all
cases, we have experimentally verified that our priors are accurate across all five
camera models (from four different manufacturers) that we used in our experiments.
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Fig. 1. (a) Average log-luminance of 15,550 photographs captured by Canon S1IS
cameras with focal length 5.8 mm and f-number 4.5. The photographs, all 2048×1536,
were linearized and vignette corrected before averaging. (b) Average log-luminance of
13,874 photographs captured by Canon S1IS cameras with focal length 5.8 mm and
f-number 2.8. (c,d) Contrast-enhanced versions (for illustration only) of the images in
(a) and (b), respectively. (e,f) Plots of the average log-luminances of respectively the
1000th column and 1000th row for the two settings in (a) and (b). Response functions
were normalized so that luminance values were in the range (0,255) prior to averaging.

average images. This is possibly because illumination sources are typically above
– outdoors, from the sun and sky, while indoors, from ceiling-mounted light fix-
tures. (ii) The average images do not have a horizontal gradient, illustrated by
Figure 1 (f) which shows log-luminances along a row. We have found that these
two observations are general and they hold true for all camera models and lens
settings. In summary, in the absence of vignetting, average log-luminance images
have a vertical gradient, but no horizontal gradient. This observation serves as
the prior, which we exploit to recover vignetting in Section 4.2.

3.2 Joint Histogram of Irradiances at Neighboring Pixels

A prior on the distribution of gradients in a single image is commonly used in
computer vision estimation tasks [16,17]. However, the larger data set of a photo
collection allows us to measure how this gradient distribution varies as a function
of irradiance values. Therefore, we compute the joint histogram of irradiances at
neighboring pixels (where neighborhood is defined as 4-connected). Note that we
characterize the joint histogram only for a small block of pixels, since we know
from Section 3.1 that this statistic would also vary spatially.

We now describe how we compute the joint histogram of irradiances for a
color channel of a camera model. We assume that we know the inverse response
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Fig. 2. Log of the joint histograms of (a) red, (b) green, and (c) blue irradiances
computed from 15,550 photographs captured by Canon S1IS cameras with the extreme
lens setting – smallest focal length (5.8 mm) and largest f-number (4.5). The inverse
camera response functions used were normalized so that irradiance values were in the
range (0,255). When computing the histograms we ignored irradiances less than 5 and
greater than 250 to avoid the effects of under-exposure and saturation, respectively.

function, R, for that channel, where R(i) is the irradiance value corresponding
to intensity i. Using R we linearize that channel in photographs from that model
and compute a joint histogram, JH , where JH(i, j), gives the number of times
irradiances R(i) and R(j) occur in neighboring pixels in a desired pixel block. We
interpret the joint histogram as the joint probability distribution of irradiances
by assuming that the distribution is piecewise uniform within each bin. However,
since the values of R are typically non-uniformly spaced, the bins have different
areas. Therefore, to convert the joint histogram to a probability distribution, we
divide the value of each bin by its area. Note that the values of R determine the
sampling lattice, so to enable comparisons between joint histograms for different
response functions we resample the histogram on a regular grid in irradiance
space. Finally, we normalize the resampled distribution so that it sums to one.

We computed joint histograms of red, green, and blue irradiances for several
camera models using 31× 31 pixel blocks at the center of photographs. Figure 3
shows the joint histograms for the Canon S1IS camera model computed from
photographs with the smallest focal length and largest f-number. These his-
tograms show that the probability of any two irradiances being incident on
neighboring pixels varies depending on the values of the irradiances. Also, the
probability of the same irradiance occuring at neighboring pixels is greater for
low irradiance values and decreases slowly as the irradiance value increases.
Finally, note that the histograms for different color channels differ slightly, il-
lustrating that the visual world has different distributions for different colors.
We have empirically observed that for any particular color channel, the joint
histogram looks very similar across camera models, especially when computed
for the extreme lens setting – smallest focal length and largest f-number. This is
not surprising, because the extreme setting is chosen by different camera models
for similar types of scenes. We quantified this similarity using the symmetric
Kullback-Leibler (KL) divergence between corresponding histograms. The sym-
metric KL divergence between distributions p and q is defined as
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KLDivSym(p, q) = Σiq(i) log(
q(i)
p(i)

) + Σip(i) log(
p(i)
q(i)

), (1)

where p(i) and q(i) are the samples. For the Canon S1IS and Sony W1 camera
models, the symmetric KL divergence between corresponding joint histograms
for the extreme lens setting were 0.059 (red channel), 0.081 (green channel),
and 0.068 (blue channel). These small numbers illustrate that the histograms are
very similar across camera models. Therefore, we can use the joint histograms
computed for any one camera model as non-parametric priors on these statistics.

4 Using the Priors for Radiometric Calibration

In this section we use these camera-independent statistical priors to recover
the response function of a camera model, the vignetting of a camera model for
different lens settings, and the bad pixels on the detector of a specific camera. We
use the same basic approach for all three applications; given a photo collection,
we estimate camera properties that minimize the difference between the statistics
of the photo collection and the priors defined in the previous section.

4.1 Estimating Camera Response Function

We estimate a camera model response function by minimizing the difference be-
tween the joint histogram of irradiances (Section 3.2) for the camera model and
the camera-independent prior joint histogram. To estimate the response for a
color channel of a camera model, we first compute the joint histogram, JH , of
intensities in a 31 × 31 pixel block at the center of photographs from a collec-
tion with the smallest focal length and largest f-number. Say R is an estimate
of the inverse response function. Since R is a one-to-one mapping from image
intensities to irradiances, JH can be used to compute the joint histogram of irra-
diances, as described in Section 3.2. We can then determine the ‘goodness’ of the
estimate R by computing the symmetric KL Divergence (Equation 1) between
this histogram and the prior histogram for that color channel. Therefore, we can
estimate the response function using an optimization over R that minimizes this
divergence. We use a simple polynomial [20] as the parametric representation
of R, and optimize over its coefficients. We define R(i) = 255 ∗ ∑N

k=1 αk( i
255 )k,

where R(i) is the irradiance corresponding to intensity i, αk are the coefficients,
and N is the degree of the polynomial. We normalize R(.) such that R(255) =
255. We have used N = 5 in our experiments, since we found it to be a good
fit for all inverse response functions in our data set; the mean RMS fitting error
was 0.41%. We use the Nelder-Mead Simplex method [33] for the optimization.
Note that the joint histogram of image intensities has to be computed only
once, though a resampling and normalization step must be performed at each
iteration.

We used the priors obtained from the Canon S1IS model to estimate the
inverse response functions of Sony W1, Canon G5, Casio Z120, and Minolta Z2
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Sony W1 Canon G5 Casio Z120 Minolta Z2
Proposed [24] Proposed [24] Proposed [24] Proposed [24]

Red Channel 1.344% 2.587% 1.759% 2.553% 2.269% 1.518% 2.226% 4.914%
Green Channel 1.993% 1.243% 0.865% 3.396% 2.521% 1.155% 2.743% 3.237%
Blue Channel 1.164% 1.783% 2.523% 2.154% 2.051% 3.053% 2.653% 3.292%

(e)

Fig. 3. Estimated and ground truth inverse response functions of one channel for four
camera models – (a) Sony W1, (b) Canon G5, (c) Casio Z120, and (d) Minolta Z2. For
these estimates we used 17,819, 9,529, 1,315, and 3,600 photographs, respectively. (a)
also shows the initial guess used by our optimization. (e) RMS percentage errors of the
estimated inverse response functions for camera models from four different manufac-
turers obtained using our proposed method and the method of [24].

camera models. Due to space constraints, we only show the inverse responses of
one of their channels in Figures 3(a-d). For comparison we also show the ground
truth inverse response functions obtained using HDRShop [19]2. As we can see,
the estimated curves are very close to the ground truth curves. The difference
between the two sets of curves is greater at higher image intensities, for which
HDRShop typically provides very noisy estimates.

The RMS estimation errors are shown in Figure 3(e). Even though our esti-
mation process uses a non-linear optimization, we have found it to be robust to

2 Inverse response functions can only be estimated up to scale. To compare the inverse
responses produced by our technique and HDRShop, we scaled the results from
HDRShop by a factor that minimizes the RMS error between the two curves.
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(a) (d)(c)(b)

Fig. 4. (a) Average log-luminance of 15,550 photographs captured by Canon S1IS
cameras with focal length 5.8 mm and f-number 4.5. (b) Average log-luminance of
13,874 photographs captured by Canon S1IS cameras with focal length 5.8 mm and f-
number 2.8. (c,d) Contrast enhanced versions of the images in (a) and (b), respectively.

choices of the initial guess. For all our results we used the mean inverse response
from the EMoR database [34], shown in Figure 3(a), as the initial guess. For
comparison, Figure 3(e) also shows the estimation errors obtained when using
the method of Lin et al. [24] on large image sets (the same ones used by our
method) for robustness; the overall mean RMS error of their estimates is 28%
greater than ours. An interesting question to ask is: How many photographs
does our technique need to get a good estimate? We have found that only around
200 photographs are required to get an estimate with RMS error of about 2%.
In some cases, as few as 25 photographs are required. (See [35] for details.)

4.2 Determining Vignetting for a Lens Setting

Vignetting in a photograph depends on the lens setting – the focal length and the
f-number – used to capture it. In Section 3.1, we have seen that the average log-
luminance of a group of linearized and vignette-corrected photographs captured
with the same lens setting has a vertical gradient but no horizontal gradient.
Using the technique in Section 4.1, we can recover response functions, linearize
photographs and compute average log-luminance images. Figures 4 (a, b) show
the average log-luminances for two groups of linearized photographs captured
by Canon S1IS cameras with the same focal length, but different f-number. The
photographs used were not vignette-corrected. The contrast-enhanced versions of
these images are shown in Figures 4 (c) and (d), respectively. Note the darkening
of the corners, which suggests that vignetting information is embedded in the
average images. The average images now have a horizontal gradient in addition
to a vertical gradient. This observation coupled with our prior model (Section
3.1) leads to a simple vignetting estimation algorithm: find a vignetting function
that yields a corrected average log-luminance image with no horizontal gradient.

Since vignetting affects all color channels equally, we only need to analyze its
effect on luminance. The measured luminance m at pixel (x, y) in photograph i
can be written as:

mi(x, y) = v(x, y) ∗ li(x, y), (2)

where v(x, y) is the vignetting at that pixel and li(x, y) is the luminance that
would have been measured in the absence of vignetting. Taking the log on both
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sides of Equation 2 and computing the average log-luminance in N photographs
with the same lens setting, we get

1
N

Σi log(mi(x, y)) = log(v(x, y)) +
1
N

Σi log(li(x, y)). (3)

Writing the measured average log-luminance, 1
N Σi log(mi(x, y)), as M(x, y),

log(v(x, y)) as V (x, y), and the average log-luminance in the absence of vi-
gnetting, 1

N Σi log(li(x, y)), as L(x, y), Equation 3 becomes

M(x, y) = V (x, y) + L(x, y). (4)

According to our prior model, in the absence of vignetting an average log-
luminance image does not have a horizontal gradient, i.e., all values in a row
are equal. This implies that Equation 4 can be rewritten as

M(x, y) = V (x, y) + L(y). (5)

Note that M is known, while V and L are unknown. We assume that vignetting
is radially symmetric about the center of the image. Therefore, vignetting at
pixel (x, y) can be expressed as a function of the distance, r, of the pixel from
the image center. We model the log of the vignetting as a polynomial in r:
V (x, y) =

∑N
k=1 βkrk, where βk are the coefficients and N is the degree of the

polynomial. In our experiments we have used N = 9. Note that the value of V
is zero at the center of the image, modeling the fact that there is no vignetting
there. This model reduces Equation 5 to a set of linear equations in the unknowns
L(y) and the vignetting coefficients βk, which we can solve for efficiently.

The average log-luminance images in Figures 4 (a) and (b) can be used to esti-
mate vignetting. However, we have observed that the top halves of photographs
contain many saturated pixels, especially photographs taken with small focal
lengths and large f-numbers (typically used for outdoor scenes with lots of light).
For instance, photographs in our data set captured by Canon S1IS cameras with
such a setting had pixels in the top half that were saturated approximately 30%
of the time. This means that we significantly underestimate the average value
for pixels in the top half. Since statistics of the top half of the average images
are unreliable, we have used the bottom half to recover vignetting. Figures 5
(a-f) show the estimated vignetting curves obtained using this approach for two
lens settings each of three camera models – Canon S1IS, Sony W1, and Canon
G5. For comparison, ground truth vignetting curves obtained from photographs
captured in an integrating sphere are also shown. As one can see, the estimated
vignetting and ground truth curves are very close to each other. Figure 5(g)
shows the RMS and mean estimation errors. We have found that our technique
needs around 3000 photographs to get an estimate with RMS error of about 2%.
(See [35] for details.)

We have observed that statistics at the center of photographs differ slightly
from those of other portions of the image. We believe that this is due to a com-
positional bias – faces are usually captured in the center region. This deviation
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Fig. 5. (a-f) Vignetting estimated for two lens settings each of Canon S1IS, Sony W1,
and Canon G5 cameras, using the bottom half of their respective average log-luminance
images. 15,550, 13,874, 17,819, 15,434, 12,153, and 6,324 photographs, respectively were
used for these estimates. (f and N stand for focal length and f-number respectively.)
(g) RMS and mean percentage errors of the estimated vignetting for two lens settings
each of three camera models; estimation errors are typically less than 2%.

in statistics sometimes causes relative illuminance near the image center to be
incorrectly estimated as greater than one. We have handled this by clamping
the curves to have a maximum value of one. Note that for lens settings with
smaller f-numbers, the estimation is slightly poorer for a larger region near the
image center. Such a setting is usually chosen for indoor scenes, where people
are typically closer to the camera and their faces occupy a larger region near the
image center, thus accentuating this compositional bias.

It is interesting to note from Figure 5 that for these camera models, at lens
settings with small f-numbers (large apertures), the corners of the photograph
get about 40% less light than the center! This large difference becomes very no-
ticeable if overlapping photographs are stitched together without vignette correc-
tion. If photographs are corrected for vignetting, then the overlap seams become
barely visible as was shown by [28,29].
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Camera Camera Mean Median
Model Instances Bad Pixels Bad Pixels

Canon G5 15 2.2 1
Canon SD 300 13 1.1 1

Sony W1 13 0.384 0

(a) (b) (c)

Fig. 6. (a) Contrast enhanced luminance of the average of 1,186 photographs from a
particular Canon S1IS camera. (b) Zoomed in portions of the image in (a) in which
we can clearly see bad pixels that have very different intensities from their neighbors.
(c) A comparative study of the number of bad detector pixels in a particular camera
instance for three different camera models.

4.3 Identifying Bad Pixels on a Camera Detector

During manufacturing, camera detectors are exposed to uniform illuminations
so that bad pixels – pixels with abnormal sensitivities and biases – stand out
and can be easily identified. However, some pixels develop defects later and it
is difficult for consumers to create uniform environments to detect them. In
Section 3.1 we saw that by averaging a large number of photographs, we average
out particular scenes and noise to get a smoothly varying image. Thus, a simple
prior for bad pixel detection is that the average image should be smooth; bad
pixels should be identifiable as causing discontinuities in the average image.

We grouped photographs by the Flickr users who uploaded them, so that
each group has pictures from the same camera instance. We then computed the
average of each group. Figure 6 (a) shows the contrast enhanced luminance of
the average of 1,186 photographs from a particular Canon S1IS camera. In this
image, bad pixels clearly stand out, as can be seen in the zoomed-in portions
shown in Figure 6 (b). We identify a pixel as bad if the difference between its
average value and the median of the average values in a neighborhood around
it is greater than a threshold (7 gray-levels). This technique can also be used
to rank camera models by the number of bad pixels in each instance. The table
in Figure 6(c) presents results from such a study, for which we picked camera
instances which had at least 500 photographs in our collection.

5 Conclusion

In this paper, we have presented priors on two aggregate statistics of large photo
collections, and exploited these statistics to recover the radiometric properties
of camera models entirely from publicly available photographs, without physi-
cal access to the cameras themselves. In future work, we would like to develop
statistics that reveal other camera properties such as radial distortion, chromatic
aberration, spatially varying lens softness, etc.. There are, of course, a number
of powerful and accurate approaches to camera calibration, and these existing
techniques have both advantages and disadvantages relative to ours. In that
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light, our primary contribution is a new approach to exploiting the statistics of
large photo collections to reveal information about scenes, cameras, and photog-
raphers. Recovering camera properties is only one possible application, and we
hope that our work inspires others to exploit this approach in new and interesting
ways. For example, differences in scene-specific statistics and scene-independent
priors could yield information about a scene’s geometry, lighting, weather, and
motion. A photographer’s photo collection could yield information on propensity
for camera shake, typical field of view, and preferred camera orientation.

Statistical priors for single images have been useful for a number of computer
vision tasks [16,17]. We argue that priors on the statistics of photo collections
have the potential to be similarly powerful, since the deviation from these priors
of a slice of the photo collection that holds one factor constant should reveal
information about that factor. Computer vision problems that operate on a
single image are often ill-posed because they must tease apart the influence of
several confounding factors of the scene, the camera, and the photographer.
For example, vignetting calibration is challenging because it is hard to know
if darkening is caused by vignetting or changes in the scene. In effect, a photo
collection allows us to marginalize over the factors that confound the task at
hand. We believe that our work is only the first step in this exciting direction.

Acknowledgements. Thanks to William Freeman, Sylvain Paris, Anat Levin,
Antonio Torralba, and Brian Curless for helpful discussions and comments.
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