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Abstract. We derive the BRDF (Bidirectional Reflection Distribution Function) at the mega scale of opaque
surfaces that are rough on the macro and micro scale. The roughness at the micro scale is modeled as a uniform,
isotropically scattering, Lambertian surface. At the macro scale the roughness is modeled by way of a distribution
of spherical concavities. These pits influence the BRDF via vignetting, cast shadow, interreflection and interpo-
sition, causing it to differ markedly from Lambertian. Pitted surfaces show strong backward scattering (so called
“opposition effect”). When we assume that the macro scale can be resolved, the radiance histogram and the spatial
structure of the textons of the textured surface (at the mega scale) can be calculated. This is the main advantage of
the model over previous ones: One can do exact (numerical) calculations for a surface geometry that is physically
realizable.
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1. Introduction

1.1. The problem

Most surfaces encountered in the natural environment
are quite different from those commonly encountered
in the optics laboratory, that is to say, smoothly pol-
ished transparent dielectrics (glass) or metals (silver or
aluminum mirror coatings) deposited on smooth sur-
faces (Longhurst 1957). Many naturally occurring sur-
faces are boundaries of opaque, often inhomogeneous
bulk materials (e.g., wood, granite, paper, cloth, bread,
. . . ) with a geometrically articulated (“rough”) sur-
face (Gibson 1950, Hunter 1975). Although the re-
flection/refraction of beams of radiation by almost all

surfaces (we have to exclude true “fractal” surfaces
with structure down to the sub–wavelength scale here)
is well described by the Fresnel equations (Born and
Wolf 1980) on themicro scale, this description is essen-
tially useless on the macro or mega scale. The surface
remission of many so called “matte” surfaces is approx-
imately captured by “Lambert’s Law” (Lambert 1760,
Kortüm 1969): The radiance of the remitted beam is
independentof the viewing direction and depends only
on the irradiance. Such surfaces scatter the incident
radiation “completely” in the sense that the directional
remittance gives no clue as to their material or geomet-
rical make up. Lambert’s “Law” is not to be under-
stood in a mechanistic sense, it is simply the constant
term in a series development of the dependence of the
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scattered radiance on the directions of the incident and
scattered beams. In reality all real surfaces deviate
to some extent from this conceptually simplest model
(Kortüm 1969), thus (partly) revealing their nature in
remote sensing. One may conceive of Lambertian scat-
tering as due to roughness on the micro scale, a scale
that is not resolved by the observer (Beckmann and
Spizzichino 1963, Kerker 1969). When the scattered
radiation has been thoroughly scrambled through mul-
tiple scattering the surface may approach the Lamber-
tian limit, in fact many natural surfaces (chalk, blot-
ting paper) come close. Deviations from Lambert’s
Law may derive from many effects, the most com-
mon being shadowing (rough plaster) and regular re-
flection/refraction (glazed porcellain).

A great many natural surfaces are rough onmultiple
scales(see figure 1). The surface on the (unresolved)
micro scale can often be approximated by the Lam-
bertian model, but additional roughness on what we
call the macro scale checks the average remittance on
the mega scale (the mega scale disregards the surface
articulations on the macro scale). The macro scale ar-
ticulations lead to local photometrical and geometrical
effects like cast shadows, interreflections and interpo-
sition, thus inducing local fluctuations of the remitted
radiance. We will treat such fluctuations astexture.
The overall remittance is an average over these tex-
tural variations, whereas the fluctuations show up in
the shape of the radiance histogram and in the spatial
structure of the radiance variations. For instance, a
rough plaster on a wall can be said to remit a certain
percentage of the incident radiationon the average(its
“albedo” on the mega scale) but also displays variations
of the radiance (the visible “texture”) which shows up
in the radiance histogram. On the microscale the plas-
ter is roughly Lambertian (scatters in all directions) due
to a random packing of transparent calciumcarbonate
crystals on a “nano scale” (sub–micro scale).

Such rough surfaces are very common indeed, and
their photometrical properties are quite distinct from
those associated with the Lambertian surface. Al-
though ad hoc phenomenological models are quite
common (especially in computer graphics rendering
(Blinn 1977, Foleyet al 1990)), it is obviously prefer-
able to develop realistic models that reflect the rele-
vant physics. One advantage of such models is that
the model can also predict texture and radiance his-
tograms as a function of viewing and irradiation ge-
ometry. The common technique of “texture mapping”

megascale

micro
scale

macro
scale

Fig. 1. Surface at various scales. At the mega scale the surface
is flat, at the macro scale it is articulated. The articulations cause
vignetting, cast shadow and interreflection. At the micro scale the
surface is considered flat again, though the surface normal may de-
viate from that at the mega scale. At the micro scale the surface is
assumed to scatter radiation in the Lambertian fashion: Of course this
implies roughness at a still finer scale (“nano scale, not illustrated).

(Foleyet al1990) may be fast, but it is unsatisfactory in
many cases because leading to unrealistic results and
lacking conceptual foundation.

1.2. Major radiometric and geometrical effects

When we assume the surface to be opaque and scat-
tering radiation on a micro scale via some given bidi-
rectional (directions of incident and remitted beams)
scattering function, there are essentially only four ra-
diometric and geometrical effects to consider:
—Interpositionis a geometrical effect that causes cer-
tain parts of the surface to be invisible from a given
viewing position because occluded by other parts of
the surface. Such an effect is well known from our ex-
periences in a hilly countryside: We often fail to spot
objects because they happen to be “behind yonder hill”;
—Vignettingis a radiometric effect that causes certain
parts of the surface to be irradiated only by part of the
sources. The reason is essentially interposition: The
surface element cannot “see” part of the source because
another part of the surface is interposited;
—Cast shadowsare a result of vignetting. However,
because of their conspicuousness we mention them
here explicitly;
—Interreflectionsare due to the fact that parts of the
surface act as “secondary radiators” for other parts of
the surface. Even parts of the surface that are not irra-
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diated by the (primary) source at all (and thus would
be expected to be in total darkness) might still be irra-
diated by other (irradiated) parts of the surface. Thus
the interreflections capturemultiple scatteringon the
macro scale. (Multiple scattering on themicroscale is
described via the Lambertian property.)

Notice that these effects depend on theglobalstruc-
ture of the rough surface. For instance, a hill may cast
an arbitrarily long shadow on a plane. This makes the
problem a very hard one. The conventional treatment
of reflection/refraction at a planar interface (the Fres-
nel equations) is so simple exactly because it is purely
local.

1.3. The Bidirectional Reflection Distribution Func-
tion (BRDF)

In radiometry one simplyaddscontributions from var-
ious beamslinearly because they can be treated as
mutually “incoherent” (Born and Wolf 1980): Thus
the superposition leads to simple addition (of radiant
power spectra). As a consequence we can evaluate
the effect ofextended sourcesvia integration once we
know the scattering ofdirected beams (Fock 1924,
Gershun 1939, Moon and Spencer 1981). Thus we
need only consider incident beams of vanishing angu-
lar spread. Because this is really a singular case (beams
of vanishing angular spread have zero “throughput” or
étendue (Gershun 1939, Moon and Spencer 1981) we
will specify the strength of the incident beams in terms
of their “normal irradiance”,i.e., the irradiance caused
by the beam on a surface element placed orthogonal
to the beam. Then the direction and normal irradi-
ance completely specify the incident beams and thus
the source geometry.

We consider a surface element with (mega scale!)
outward surface normaln. Let the incident beam be
froma directioni. We consider the radiance of a beam
scattered in the directione. Let the vectorsa andb be
a positively oriented, orthonormal basis for the (mega
scale) surface. Letn = a× b. We will typically ex-
press the incident and exit directions in terms of the
basis {a, b, n}. The incident beam causes an irradi-
anceH⊥ n · i, whereH⊥ denotes the normal irradiance
caused by the beam. Let the radiance of the exit beam
be N(e), then one defines the “Bidirectional Reflec-
tion Distribution Function” or BRDF (Gershun 1939,
Moon and Spencer 1981, Nicodemuset al1977) as the
ratio of the radiance of the exit beam to the irradiance

caused by the incident beam, that is to say

BRDF(i, e) = N(e)
H⊥ i · n . (1)

This is a useful definition because it essentially repre-
sents a way of “bookkeeping of rays”. Thus we have
the fundamental symmetry (“Helmholtz reciprocity”,
see Minnaert 1941) BRDF(i, e) = BRDF(e, i), which
merely expresses the fact that—in geometrical optics—
rays can bereversed, that is to say, if one reverses each
single ray in some optical ray field, the reversed field
again represents a possible physical situation.

Once the BRDF of a surface is known we can cal-
culate the radiance in arbitrary viewing geometries for
arbitrary source geometries (extended sources) via in-
tegration.

Notice that for a Lambertian surface the BRDF is a
constant (by definition the radiance doesn’t depend on
the direction of the exit beam). When thealbedois %,
that is to say, a fraction% of the incident radiation is
remitted (the remainder being absorbed by the surface
material), conservation of rays enables us to find the
BRDF:

BRDFLambertian(i, e, %) = %

π
. (2)

1.4. Existing models

We confine the discussion to models with a ba-
sis in physics (Beckmann and Spizzichino 1963,
Kerker 1969, Kort¨um 1969, Nayaret al 1991, Koen-
derink and van Doorn 1996), disregarding the purely
phenomenological models (such as—among many—
Öpik 1924). We limit the discussion to surfaces with a
Lambertian BRDF on the micro scale.

Our main interest is a better understanding of the
relative contributions of cast shadow, vignetting and
interreflection for rough surfaces. Thus we will con-
sider only geometrically and physically realistic mod-
els: In this sense the present treatment is primarily of
academic interest. From a mere applications oriented
perspective the phenomenological methods have much
to recommend them. They yield no insight into the
essential optics though. Of course a keen insight as to
the relative importance of the primary optical effects is
a great asset in the formulation of novel phenomeno-
logical models.

Models of this type that have been proposed in the
literature are thegrooved surfaceand theGaussian ran-
dom surface.
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Although the Gaussian random surface is concep-
tually an important generic case, it suffers from the
drawback that no exact solutions are forthcoming. The
global nature of the geometrical and radiometrical ef-
fects make it virtually impossible to frame anything
but approximate statistical models (Beckmann 1965,
Smith 1967, Torrance and Sparrow 1967, Wagner 1967,
Kerker 1969, Beckmann and Spizzichino 1963). Thus
we are stuck with either approximate analytical mod-
els or with Monte Carlo simulations. The latter are
also important as a check on the various approxima-
tions. Approximations that work reasonably well can
of course be highly relevant in practice. However, in
this paper we restrict ourselves to models that can—at
least in principle—be treated with exact methods.

The idea of the grooved surface model is simple and
attractive: If the surface articulations are such that the
global interactions are at least confined to finite (and
known) regions the chances of obtaining an exact solu-
tion are much improved. Oren and Nayar (Nayar and
Oren 1995, Oren and Nayar 1995) consider concavities
in the form of infinitely extended V–grooves. In this
case the interactions are confined to the grooves. In
particular the treatment of the vignetting (shadowing)
becomes rather simple, whereas vignetting presents al-
most insurmountable difficulties in case of the Gaus-
sian random surface. Interreflections are still compli-
cated and Oren and Nayar treat them only in approxi-
mate fashion. However, fair approximations are com-
paratively easy to find. In order to obtain an isotropic
surface Oren and Nayar assume the surface to be cov-
ered with V–grooves of infinite extentin all directions.
This is clearly a geometrical impossibility, thus this
model is ill suited to investigate any textural properties.
The BRDF for the Oren–Nayar model shows the back
scattering characteristic of rough surfaces (rough on the
macro scale that is) and has been shown to describe the
properties of many realistic surfaces remarkably well.
Since these BRDF’s are quite distinct from Lambertian
(a common assumption), the model— apart from its
conceptual value—has important applications in com-
puter vision and graphics rendering.

1.5. The pitted surface model

We propose a “thoroughly pitted surface” model in the
following sense: Much of the surface is assumed to be
covered (100% is geometrically possible, hence “thor-
oughly pitted”) with spherical concavities. The di-

ameter of the concavities is arbitrary (there could be a
distribution of sizes) and plays no role for the BRDF. (It
doesplay a role for the spatial structure of the texture
of course!) The depth to diameter ratio of the con-
cavities is an important parameter, the BRDF depends
critically on it. We may assume some distribution of
this parameter. Another parameter is the albedo of the
Lambertian surface on the micro scale. We consider
such a model because:
—Different from the V–groove model, this model is
geometricallypossible. Thus it can be used with con-
fidence to investigate not just the BRDF, but also the
radiance histogram and varieties of texture;
—Like the V–groove model (but unlike the Gaussian
random surface, see Smith 1967, Wagner 1967) the vi-
gnetting can be exactly solved and the result is fairly
simple;
—Unlike either the V–groove or the Gaussian random
surface, the interreflection problem is very easily (al-
most trivially) solved in closed form;
—Many natural surfaces can be expected to belong to
this general class. The class should be very similar to
that covered by the V–groove model.

Notice that the pitted surface model (like the V–
groove model) strictly confines the global interactions
to a finite region, in this case the interior surfaces of the
concavities (Buhlet al1968). This makes these models
viable in the first place. In the case of the thoroughly
pitted surface this means that we need only treat the
case of asingleconcavity: More general cases (distri-
butions of sizes and/or depths) can then be handled via
simple averaging.

The pitted surface model has been discussed in the
quest for a model of the lunar surface suffiently re-
alistic to explain the photometric “lunation curve”.
Van Diggelen (1959) gives a convenient review of the
literature up to the fifties, with critical discussions and
augmented with novel calculations and even model
measurements. Earliest models date from the twen-
ties, but van Diggelen stresses Bennet’s work of 1938:
This theory is well presented in van Diggelen’s paper.
In this theory interreflections are ignored, and it is as-
sumed that the remitted radiance is proportional to the
(projected) irradiated and visible area. (The approx-
imation is thus that the interior surface of the cavity
is assumed to be uniformly irradiated.) Van Diggelen
quotes the formulas that express the fraction of visible
and irradiated area in terms of the angular parameters.
Van Diggelen then improves on this (very coarse) ap-
proximation by estimating the average irradiance. He
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uses an approximation and remarks that the calcula-
tions are so complicated that it makes more sense to
obtain numerical results through model measurements
in the laboratory. These measurements show strong de-
viations from Lambert’s Law, especially a strong back
scatter lobe.

2. Radiometric properties of the spherical pit

We will characterize the shape of the cavity (see fig-
ure 2) via its “aperture”, an angle9 such that the di-
ameter of the orifice isd = 2r = 2Rsin9, where
R denotes the radius of the spherical surface,r the
radius of the planar disk of the orifice and the depth
h = R(1− cos9). We will not regard “overhangs”,
that is to say, the aperture is restricted to the range9 ≤
π/2. The deepest pits are thus hemispherical cavi-
ties (9 = π/2). For very small apertures the cavities
are almost flat, in the limit for zero aperture we obtain
the Lambertian surface of the micro scale.

Notice that the surface area of the (planar!) orifice
is πr 2 = πR2 sin29, whereas the area of the surface
of the concavity is 4πR2 sin29/2. Thus the surface
area of the hemispherical concavity is twice that of its
orifice.

2.1. Effects of vignetting: Cast shadow and interpo-
sition

The problems of the cast shadow and interposition are
very similar: A surface element of the cavity is in
shadow if no (“light”) ray can reach it and is invisi-
ble if no “visual ray” can reach it. Thus we need only
discuss one of these cases, the case of the cast shadow
say.

It is a matter of simple geometry to see that the edge
of the cast shadow is a planar curve, thus a small circle
on the spherical surface. Simple symmetry arguments
reveal that the radius of this small circle equals that of
the orifice of the cavity.

2.2. Primary irradiation

For those surface elements of the cavity that don’t lie
in the cast shadow region the primary irradiance is sim-
ply the normal irradiance of the beam times the scalar
product of the outward surface normal (at the macro
scale!) and the direction from which the beam is ar-

Ψ
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r

Fig. 2. Parameters of the spherical concavity. The radius of the
sphere isR, of the orificer . The “aperture” of the concavity is char-
acterized by the angle9. We assume 0≤ 9,≤ π/2 throughout,
thus avoiding “overhang”. For9 = π/2 we have the “hemispherical
cavity”.

riving. (It is easy to check that the scalar product is
invariably non–negative, thus we need not worry about
“body shadow”. The details are explained in figure 3.)

2.3. Effects of interreflections

The spherical cavity is an especially convenient case
because the interreflection problem can be solved
algebraically: In general one has to solve an (of-
ten nasty) Fredholm integral equation (Buckley 1927,
Moon 1940, Koenderink and van Doorn 1983). The
reason is that the ´etendue of the beam defined by two
surface elements on the cavity does not depend on
the location of the surface elements at all! In fact,
theétendue is (Jacquez and Kuppenheim 1955, Koen-
derink and van Doorn 1983)

ε(p1, p2) = da1da2

4R2
, (3)

here (p1, p2) are two positions on the surface,
(da1, da2) infinitesimal surface elements at these po-
sitions, andR the radius of the sphere.

The radiance balance equation for the cavity is
(Koenderink and van Doorn 1983)

H(p) = H prim(p)+
∫

cavity

N(q)
1

4R2
daq, (4)
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Fig. 3. Geometry of vignetting and the cast shadow. These cases
are essentially identical, we discuss the cast shadow here. The inci-
dent beam has co–elevationα. The edge of the cast shadow is at Q,
which is an angle 2α from the edge of the concavity. The directions
is the normal to the plane of the shadow boundary. At P the incident
beam impinges normally on the surface of the cavity. The irradiance
vanishes on the bisectrix of A and Q which is orthogonal to the di-
rection of incidence. Thus the irradiance is non–negative throughout
the part of the cavity BPQ that falls outside the cast shadow region.

here H(p) denotes the irradiance of the surface (in
the presence of interreflection) at a generic pointp,
H prim(p) the primary irradiance atp (taking only the
primary sources into account), andN(q) the radiance
(taking interreflections into account) of the beam from
the surface elementdaq (at q) that throws “secondary
irradiation” on the surface atp. Because the surface is
assumed Lambertian on the micro scale the radiance is
simply related to the irradiance as

N(q) = %H(q)

π
, (5)

where% denotes the albedo on the micro scale and
we have applied the expression for the BRDF of the
Lambertian surface discussed above. Since the albedo
is assumed constant we may carry various factors in
front of the integral sign and obtain

H(p) = H prim(p)+ %

4πR2

∫
cavity

H(q) daq. (6)

We define the average irradiance

〈H〉 = 1

4πR2 sin29/2

∫
cavity

H(q) daq, (7)

where we have used the expression for the surface area
of the cavity introduced above.

When we proceed to average the balance equation
over the surface of the cavity we obtain

〈H〉 = 〈H prim〉 + %〈H〉 sin29/2, (8)

analgebraicequation instead of the Fredholm integral
equation: We may immediately solve for the average
radiance:

〈H〉 = 〈H prim〉
1− % sin29/2

. (9)

In order to find the average irradiance we need to find
the average primary irradiance. The flux that enters the
cavity is the irradiance of the plane (at the macro level!)
times the area of the orifice. The average primary irra-
diance is this flux divided by the area of the surface of
the cavity. Thus we have

〈H prim〉 = π(Rsin9)2H⊥ n · i
4πR2 sin2 9

2

= cos2
9

2
H⊥ n · i.

(10)
Combining results we find an expression for the aver-
age irradiance.

Because of the constancy of the mutual ´etendue for
surface elements of the sphere the contribution to the
irradiance due to secondary radiation is the same for
all surface elements. We call it the “diffuse irradi-
ance”H diff . We have thatH diff = 〈H diff〉.The irradiance
is thus simply the primary irradiance plus the diffuse
irradiance:H(p) = H prim(p)+ H diff . Thus it is easy to
find the diffuse irradiance:H diff = 〈H〉 − 〈H prim(p)〉.
We find

H diff = % sin29

4(1− % sin2 9
2 )

H⊥ n · i. (11)

In the region of the cast shadow the irradiance is just
the diffuse irradiance, in the remaining region the ir-
radiance is the sum of the primary irradiance and the
diffuse irradiance.

Finally then, the diffuse radiance is

Ndiff = %2 sin29

4π(1− % sin2 9
2 )

H⊥ n · i, (12)

or, approximately

H⊥ n·i sin29
4π (

%2+ %3 sin2 9
2 + %4 sin4 9

2+
%5 sin6 9

2 + %6 sin8 9
2 + O(%7)

).
(13)
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Notice that a series development with respect to% starts
with the quadratic term: This indicates multiple (at
least twice) scattering. The terms in such a series de-
velopment explicitly represent the contributions due to
2, 3,. . . ,∞ fold scattering.

3. The hemispherical cavity

The special case of the hemispherical cavity is espe-
cially simple because the boundary of the cast shadow
area and of the visible area aregreat circleson the
sphere. This much simplifies the regions of integration
in the expressions for the BRDF. The case of the plane
of incidence is especially simple since then the bound-
ary of the orifice, of the cast shadow, and of the visible
region have common intersections. We can immedi-
ately perform one integration and the required integra-
tions become one–dimensional.

3.1. General solution

Notice that the contributions to the radiance of the re-
mitted beam are due to two distinct regions of the sur-
face of the cavity:
— the (directly) irradiated and visible area;
— the visible region of the cast shadow area.
However, it is often more convenient to conceptually
distinguish the contributions due to
— the primary irradiance, single scattering. This con-
tribution is remitted from the directly irradiated and
visible surface;
— the diffuse radiance which is due to the visible sur-
face (either directly illuminated or in shadow).
Here we use the latter method. We need merely to write
down the integrals representing these contributions.

In order to find the BRDF (at the mega scale) we need
to find the ratio of the radiance remitted into the direc-
tion e (due to surface elements at the macro scale) to
the irradiance of the plane (at the megascale). (Nicode-
muset al 1977) The latter is simplyH⊥ i · n. The
former can be found in the following way: The radiant
flux remitted by the cavity into a solid angle1Ä into
the directione isπr 21Ä n ·e〈N〉, that is the ´etendue of
the beam (area of the orifice times the solid angle times
the obliquety factor) times the required radiance. The
radiance can alternatively be computed as an integral
over the visible area of the cavity. The integral is∫

visible

m · e1ÄN(p) dap, (14)

under the integral sign we find the ´etendue (area of the
infinitesimal surface element times solid angle, times
obliquety factor) times the local radiance. Notice that
the obliquety factor at the macro scalem · e (m the
surface normal at the macro scale) differs from that at
the mega scale! We see that

〈N〉 = 1

πr 2n · e
∫

visible

N(p)m(p) · edap. (15)

Thus we can simply find the BRDF through integration
over the local (macro scale) radiance, which is again
simply related (via the BRDF at the micro scale) to the
local irradiance.

In order to be able to perform the necessary integra-
tions we have to find the regions of integration. The
required boundaries are the orifice of the cavity, the
edge of the cast shadow, and the boundary of the visible
region. The integrations are over spherical triangles.
Simplest expressions are obtained in suitable chosen
coordinate systems. We define a Cartesian system and
a polar coordinate system:

Since the pitted surface isisotropicno generality is
lost if we take the first surface vectora in the plane of
incidence.

The Cartesian system(ξ, η, ζ ) is adapted to the
viewing and source geometries. We let theζ–axis coin-
cide with the direction of the outer (mega scale) surface
normaln. Theξ–direction is chosen to lie in the plane
of incidence, the direction ofa. Finally, we let theη–
axis coincide with theb– direction, thuseξ × eη = eζ .

The polar system(ϑ, ϕ) is related to the(ξ, η, ζ )–
system in the following way:

ξ = sinϑ cosϕ (16)

η = − cosϑ (17)

ζ = sinϑ sinϕ (18)

Thus the vectorb is the “south pole” of the spherical
coordinates. The plane of the orifice of the cavity coin-
cides with the planeϕ = 0 orπ , 0≤ ϑ ≤ π . Thus the
surface of the cavity is the azimuth range 0≤ ϕ ≤ π .

We represent the incident beam asi = (sinα, 0,
cosα), and the viewing direction ase = (sinβ cosε,
sinβ sinε, cosβ). Thusα is the co–elevation of the so-
urce andβ the co–elevation of the eye. The azimuth
of the viewing direction isε. The primary irradiance is
H⊥ sinϑ sin(α−ϕ). The expression for the obliquety
factor is more complicated, it is:

µ = sinϑ(cosβ sinϕ − cosε cosϕ sinβ)
− cosϑ sinβ sinε.

(19)



136 Koenderink et al

The integration boundaries for the cavity itself and
the irradiated region become simplyϕ–limits. The
region of the visible area is also specified via the func-
tionϑlimit(ϕ). It is not hard to find an explicit expression
from elementary geometry:

ϑlimit = arctan
sin 2β sinε

cos 2β sinϕ − cosε cosϕ sin 2β
(20)

The integration overϑ can immediately be carried
out and we end up with the result:

BRDF=
%

π2 cosα cosβ (

sinβ sinε
∫

sin(α − ϕ) f1(ϑlimit(ϕ)) dϕ +
sinβ cosε

∫
cosϕ f2(ϑlimit(ϕ)) dϕ +

cosβ
∫

sin(α − ϕ) sinϕ f2(ϑlimit(ϕ)) dϕ
) +
%2

2π2(2−%) cosβ (

− sinβ sinε
∫

f3(ϑlimit(ϕ)) dϕ +
sinβ cosε

∫
cosϕ f4(ϑlimit(ϕ)) dϕ +

cosβ
∫

sinϕ f4(ϑlimit(ϕ)) dϕ
)

(21)
where the first term (the contribution due to direct illu-
mination and single scattering) is over the visible and
illuminated area and the second term (the contribution
due to multiple scattering) over the visible region. We
have introduced the auxiliary functions

f1(ϑ) = −1

3
sin3 ϑ (22)

f2(ϑ) = 2
3 + 3

4 cosϑ − 1
12 cos3 ϑ

+ 1
4 cosϑ sin2 ϑ

(23)

f3(ϑ) = −1

2
+ 1

2
cos2 ϑ (24)

f4(ϑ) = π

2
− ϑ

2
+ 1

2
cosϑ sinϑ (25)

for convenience.
We have not been able to do the integrals in terms

of elementary functions (notice that the integrands are
nasty: One has to substituteϑlimit (equation 20) into the
fi (equations 22– 25) and these again in the integral for-
mulations of equations 21). However, it is easy enough
to evaluate the integrals to any required level of preci-
sion (in radiometry these requirements tend to be rather
modest anyway, however, this is not an issue). Thus
we are able to find the BRDF for arbitrary spherical
cavitiesexactly(that is to say: taking the effects of vi-

gnetting, cast shadow, interposition and interreflection
exactly into account).

3.2. Analytical relations for the plane of incidence

It is an easy exercise to express the general result in
terms of elementary functions when we limit the inves-
tigation to visual directions in the plane of incidence,
that is to say,ε = 0 orπ . This is more of a physicist’s
delight than anything else, however, at times it may be
convenient to have analytical expressions even though
these are not particularly simple. It is convenient to let
the sign ofβ reflect forward, or backward scattering,
i.e., we reckonβ positive whenε = 0 and negative
whenε = π .

The results are best expressed in terms of the auxil-
iary functionsA, B,C, D:

A = 2% cos(α − |β|)
3π2 cosα cos|β| (π − 2α + sin 2α) (26)

B = 2% cos(α − |β|)
3π2 cosα cos|β| (π − 2|β| + sin 2|β|) (27)

C = 2% cos(α+|β|)
3π2 cosα cos|β|

(π − 2α − 2|β| + sin 2α + sin 2|β|) (28)

D = %2

2π(2− %) (29)

In terms of these expressions the BRDF is:
— in the case of forward scattering, illuminated part
visible (α + β < π/2): C+D;
— in the case of forward scattering, only shadow part
visible (α + β > π/2): D;
— in the case of backward scattering, illuminated part
visible (β < α): A+D;
— in the case of backward scattering, only shadow part
visible (β > α): B+D;
The contribution D describes the multiply scattered ra-
diation.

3.2.1. Relations in the plane of incidenceBRDF’s
for the plane of incidence are presented in figure 4 and
remitted radiances in figure 5. These results have been
calculated for a white (% = 1) surface. The pitted
surface is typically lighter than a Lambertian surface
except for views in the oblique forward scattering re-
gion. It is much lighter in the backscatter direction.
This is intuitively obvious, because in the backscat-
ter condition an appreciable fraction of the surface is
effectively illuminated and viewed from thenormaldi-
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Fig. 4. BRDF’s for viewing directions in the plane of incidence.
The co–elevation of the source is 0◦ through 75◦ in steps of 15◦.
The co–elevation of the viewing direction (horizontal axis) is nega-
tive in the forward, positive in the backward scattering region. The
horizontal dashed line denotes the Lambertian BRDF. The dashed
curve going off to infinity for the backward scattering denotes the
theoretical maximum due to the attitude effect.

rection. Intuitively, such an effect would be maximal
for a one–dimensional “saw tooth surface” (figure 6)
with surface strips along and orthogonal to the incident
beam where the “boost” with respect to the Lambertian
surface could be as high as 1/i ·n. We may call this the
“attitude effect”: For a rough surface a large percent-
age of the surface may receive normal irradiance on the
macro scale, even for oblique incidence on the mega
scale. It can be seen that the boost yielded by the pit-
ted surface is indeed close to the theoretical maximum.
For rather normal incidence it is even higher due to the
effect of interreflection. In the oblique forward scatter-
ing region one sees almost only the multiply scattered
radiation.

Notice that the qualitative shape of the curves in fig-
ure 4 is well captured via the following two asymptotic
limits: For extreme forward scattering the diffuse flux
dominates and the BRDF is half that of the Lamber-
tian BRDF. For shallower cavities this factor will be
less than one half: It follows immediately from the
expression for the diffuse radiance. (In the limit for al-
most flat cavities the diffuse contribution tends to zero,
but the directions for which only the diffuse contribu-
tion can be seen crowd near grazing incidence.) For
backward scattering the attitude effect dominates the
BRDF. For shallower cavities the attitude effect will be
less effective because the required surface orientations
are lacking.

From the radiance plots (figure 5) we see that the
radiance in the forward scattering direction is roughly
independent of the direction of the incident beam: The

Fig. 5. Polar plot of the remitted radiance for various directions of
the incident beam, all in the plane of incidence. The dashed circle
represents the radiance for a Lambertian surface of the same albedo
(at the micro scale). Notice the radiance “boost” and the strong
back scattering. The back scattering increases as the incident beam
impinges on the surface more obliquely.

surface roughly behaves as a normally irradiated Lam-
bertian surface. The diffuse component in the forward
scattering direction behaves like due to a Lambertian
surface of albedo 0.5. In this case the value of the
BRDF is simply

BRDFforward = %2

2π(2− %) , (30)

or, approximately,

1

4π
(%2+ %

3

2
+ %

4

4
+ %

5

8
+ %

6

16
+ %

7

32
+ O(%8)). (31)

Notice that this is a very nonlinear relation (see fig-
ure 7). When the material is somewhat colored (% a
function of the wavelength), the remission spectrum
from the pit will thus differ markedly from that of the
plane: The remitted beam suffers acolor shift. The
effect is to boost high albedo, thus a yellowish mate-
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Fig. 6. A “sawtooth” surface “tuned” to a backscattering direction
of 60◦. Notice that for the indicated directions of the incident and
remitted beams the surface behaves like a Lambertian surface at
normal incidence.
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Fig. 7. The diffuse BRDF (forward scattering) as a function of the
albedo of the substrate. Notice the nonlinear relation favouring the
high albedo’s.
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Fig. 8. On the left the BRDF according to the model of Oren and
Nayar (% = 1), and on the right the BRDF for a surface that is for
40% covered with hemispherical pits (% = 1). (On the horizontal
axis the viewing direction, parameter is the direction of incidence.)

rial (% increases with increasing wavelength) will be-
come more reddish. Such effects have been observed
by painters (e.g., the French academic school): In the
human nude one often sees the navel treated as a uni-
form reddish blotch. The uniformity is due to the inter-
reflection (no gradients due to shading) and the reddish
color to the nonlinearity mentioned above.

In figure 8 we present a comparison with the
V–groove model of Oren and Nayar (Nayar and
Oren 1995, Oren and Nayar 1995). For the Oren–
Nayar model (left) we set an albedo of unity (perfectly
white substrate) andσ (roughness parameter) of 40◦.
The figure on the right is for a white substrate for 40%
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Fig. 9. BRDF’s for the hemispherical cavity and for various merid-
ional sections ranging from the plane of incidence to orthogonally to
it. The co–elevation of the source is 60◦. (Viewing direction along
the horizontal axis, parameter is the azimuth.)

0˚ 30˚ 60˚

Fig. 10. Plots of the remitted radiance for the hemispherical cavity
and for directions of incidence of 0◦ (left), 30◦ (middle) and 60◦
(right). The backscatter direction is towards the right, the plane of
incidence is the horizontal cross section.

covered with hemispherical pits. It is probably possible
to obtain a better fit by selecting some distribution of
apertures. We didn’t bother because it will already be
difficult to distinguish on the basis of actual measure-
ments. Clearly the predictions of these (geometrically
quite dissimilar) models are very similar. This is of
course to be expected since the physical processes that
cause the deviations from the Lambertian BRDF are
the same and depend only little on theprecisegeome-
try. The result thus also demonstrates that such ideal
models of rough surfaces will be applicable to a rather
wide range of actual surface geometries.

These relations appear to be in reasonable agree-
ment with the empirical results obtained by van Digge-
len (1959). The major difference is that the effect of
interreflections seems to be absent in van Diggelen’s
result, even for the case of the white (magnesium ox-
ide coated) surface. This is hard to explain since the
effect easily exceeds the instrumental tolerances. In-
deed, the effect is immediately obvious visually in an
informal set up. The strong backscattering is a domi-
nant feature in van Diggelen’s results. In the theoretical
lunation curves the backscatter peak is strongly under-
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Fig. 11. Geometry of vignetting in the case of the shallow pit. The
surface of the cavity is the arc AEB. Only the part CB of the edge of
the cast shadow falls into the cavity. The pole of the small circle that
is the cast shadow area is D. This small circle has the same radius as
the orifice of the cavity. Seen from the deepest point of the pit (E)
it lies in the direction of the incident beam: This makes it very easy
to calculate the pole D. Given D it is a simple matter to find whether
any point of the cavity is in shadow: Simply check the projection of
its radius vector on OD.

estimated, no doubt because of the irrealistic neglect
of the attitude effect.

3.2.2 Relations outside of the plane of incidenceIn
figure 9 we show meridional sections for planes out-
side of the plane of incidence. Both the boost due to
the attitude effect and the effect of cast shadow and
interreflection become much less conspicuous: For a
section at right angles to the plane of incidence we find
that the BRDF almost coincides with the Lambertian
case.

In figure 10 we illustrate the distribution of the remit-
ted radiance in a more graphical manner. (These fig-
ures have been calculated with the method discussed
in the next section.) One sees that the boost due to
the attitude effect is largely confined to the backward
scattering direction, both in elevation and in azimuth.

4. The shallow pit

The case of the shallow cavity (9 < π/2) is not much
more complicated than that of the hemispherical cavity
in principle. However, the boundary of the region of
integration is more involved (spherical triangular and
biangular regions bounded by small circular arcs), so
the expressions (even without evaluation of the inte-
grals) are complicated. In this case any expression in
terms of elementary functions (even if it proves pos-

sible) would almost certainly be so complicated as to
be practically worthless. Even the expression involv-
ing unevaluated definite integrals is less useful than in
the hemispherical case because numerical evaluation
of these integrals (given the unpleasant boundaries) is
bound to be a slow process. In this case it is much
more convenient to solve the integrals numerically via
Monte Carlo methods. Since arbitrarily close approx-
imation of the exact numerical values is guaranteed
(because an exactly stated problem is being solved via
statistical sampling) such a solution is—from a prag-
matic point of view—as good as any.

4.1. Numerical calculation of the radiance for an
elementary beam

A simple method uses the following algorithm:

Firstly, we provide methods that allow us to find the
point on the surface of the cavity that corresponds to a
given viewing direction and a certain position inside the
planar disk of the orifice of the concavity.Secondly, we
provide a method that allows us to decide whether any
point on the surface of the cavity is located in the region
of the cast shadow.Thirdly, we provide a method to
find the irradiance for any point on the surface of the
cavity: This allows us to specify the radiance of the
remitted beam from that location. (See figure 11.)

One easily checks that all three methods are essen-
tially trivial. Given these we are in a position to find
the radiance for any point in the planar disk of the
orifice. When we sample the projection of the planar
disk of the orifice on a plane orthogonal to the viewing
direction uniformly, we can find the average radiance
immediately and thus obtain the BRDF. (See figure 12.)
Because we have also obtained the radiance distribu-
tion this method also yields the radiance histogram and
the spatial structure of the “texton” corresponding to a
single cavity. By repeating such textons according to
the distribution of pits we find thetextureof the pitted
surface as a function of source and viewing geometries.

This is a practical method that (in the case of the
hemispherical cavity off the plane of incidence) is al-
most as fast as the numerical integration. It is much
faster than simulation via (exact) ray tracing or radios-
ity calculations because the interreflection problem has
already been solved exactly.



140 Koenderink et al

- 90 - 45 0 45 90

0

0.2

0.4

0.6

- 90 - 45 0 45 90

0

0.2

0.4

0.6

0˚ incidence 60˚ incidence

Fig. 12. Effect of variation of the aperture9 on the BRDF. We
illustrate apertures of 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. On the left
normal incidence, on the right 60◦ incidence. Both graphs represent
the BRDF in the plane of incidence. Notice that the BRDF’s for the
shallow pits are in between those for the hemispherical pit and the
Lambertian surface. However, they are not linear combinations (like
a Lambertian plane sparsely covered with hemispherical pits). For
the shallow pits the shadow geometry is different from that of the
hemispherical pit and interreflection plays a lesser role. (Viewing
direction along the horizontal axis, parameter is the aperture.)

4.2. Textons and radiance histograms

In figure 13 we illustrate views of the cavity for vari-
ous source and viewing geometries. These examples
have been computed for the case of the hemispherical
cavity in order to make it convenient to relate these pic-
tures to the BRDF results discussed above. Of course
the method allows us to obtain such results for pits of
arbitrary apertures. In figure 14 we present radiance
histograms for these same cases.

The lay out of figure 13 is as follows: Each sub-
panel is a picture of the surface from the viewing di-
rectionβ (co–elevation),ε (azimuth) and direction of
incidenceα (co–elevation). The subpanels correspond
to the triples(α, β, ε) (the value ofε is omitted when
irrelevant):

(0◦, 0◦) (0◦, 30◦) (0◦, 60◦)

(30◦, 30◦, 0◦) (30◦, 60◦, 0◦)
(30◦, 0◦)

(30◦, 30◦, 180◦) (30◦, 60◦, 180◦)

(60◦, 30◦, 0◦) (60◦, 60◦, 0◦)
(60◦, 0◦)

(60◦, 30◦, 180◦) (60◦, 60◦, 180◦)

For the case of normal incidence (α = 0◦, top row in
figures 13 and 14) the relations are easily understood
intuitively. For normal viewing (β = 0◦) the texton
shows a light center with a dark edge. This is largely
due to the variation of surface attitudes: At the center
the surface is normally illuminated, at the edge the
(primary) irradiance vanishes.

Due to interreflections the center is actually lighter
than the plane. The corresponding radiance histogram

Fig. 13. “Textons” for the hemispherical pit, that are views of the pit
for various viewing and source geometries. For illustrative purposes
the maximum radiance is represented by the paper white in each
picture. The lay out of the panel is explained in the text.

reflects the fact that the area covered with lighter pix-
els is relatively large compared to that for the darker
pixels: In this case it is not hard to find an analytical
expression for the histogram. As a result the histogram
is strongly skewed towards the high radiance end.

Due to interreflections the radiance nowhere van-
ishes and the histogram starts at a finite radiance value
(equal to the diffuse radiance). For oblique view-
ing (β = 30◦ and β = 60◦) effects of perspective
change the texton and the histogram: This is indeed
a purely perspective effect since the radiance (on the
micro scale) doesn’t depend on direction (the surface
is Lambertian at the micro scale). As a result the
histogram becomes less skewed (the oblique viewing
works to the advantage of the dark parts and the dis-
advantage of the light parts), and atβ = 60◦ is indeed
more symmetric.
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Fig. 14. Radiance histograms for the textons illustrated in figure 13.
The lay out of figure 13 and 14 is identical.

For the case of somewhat oblique incidence (α =
30◦, middle row(s) in figures 13 and 14) the effect of
the cast shadow already becomes conspicuous. For
normal viewing (β = 0◦) we see that the pattern from
the previous case is somewhat shifted, whereas the cast
shadow somewhat invades the cavity. In the histogram
we still find the basic structure from normal viewing,
but also an additional mode due to the shadow: Thus
the histogram is bimodal. The mode due to the cast
shadow is a narrow peak because the diffuse radiance
is constant over the surface of the cavity. It is located
exactly at the toe of the mode due to single scatter-
ing. For somewhat oblique viewing (β = 30◦) we see
a dramatic difference between the forward and back-
ward scattering conditions. In the backward scatter-
ing (ε = 0◦) condition both the textons and the his-
tograms are rather similar to those of the case of nor-
mal incidence. Indeed, the cast shadow is not visible
from this direction. However, for the forward scatter-
ing direction (ε = 180◦) the cast shadow completely
changes the texton, which becomes a light–dark dipole
pattern, and the histogram is strongly bimodal. For
even more oblique viewing (β = 60◦) in the forward
scattering condition the (directly) irradiated area is not
visible, thus the texton has degenerated to a dark blob,
and the histogram contains only the narrow mode due
to multiple scattering. Notice that the mode is located

at a finite radiance, thus the texton is not ablackblob,
but is grayish.

For the case of very oblique incidence(α = 60◦,
lowest row(s) in figures 13 and 14) the cast shadow
dominates the view, even in the case of normal view-
ing (β = 0◦). The histogram is strongly bimodal
and due to both perspective and photometric effects
the shape of the single scattering mode is somewhat
different from the case of normal incidence discussed
above. For the backward scattering direction (ε = 0◦)
we see that only the single scattering peak remains for
very oblique viewing (β = 60◦). The texton is almost
uniformly light andmuchlighter than the plane (com-
pare the case of normal incidence!), clearly showing
the boost due to the attitude effect. For the forward
scattering direction (ε = 180◦) both the texton and the
histogram are dominated by the cast shadow and the in-
terreflection. The cavity shows up as a uniform grayish
blob and the histogram is unimodal with a very narrow
peak.

This general behavior (textons similar to light blobs
with dark border, light–dark dipole and uniform dark
blobs, unimodal and bimodal histograms with narrow
multiple scattering mode at low radiances and broad
single scattering modes (shape much dependent on ge-
ometry of the cavity and viewing perspective) at high
radiance) can be retraced in measurements of many nat-
ural materials. Close study of the changes in the modal
structure of the histogram may be expected to be use-
ful in remote sensing applications. (Richards 1982 has
a rather interesting discussion. Although his model
is quite different from the present one the predicted
histograms are similar. His data on the histogram of
foliage is remarkably like the histogram for a pitted
surface.) The dipole structure of textons is an imme-
diate cue to the source direction and is likely to be so
used in human visual perception.

Notice how the textons change dramatically with
both the source and the viewing geometry. This
illustrates the fact that the commonly used tech-
nique of “texture mapping” in computer graphics (Fo-
ley et al1990) can only yield results that are far off the
mark. Texture mapping works only for a given source
and viewing geometry, but that evidently defeats its
very purpose.

4.2.1. Illustrative example: Rough plasterBecause
the generic physical phenomena are essentially the
same for all rough surfaces that are approximately
Lambertian on a microscale (vignetting, interreflec-
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Fig. 15. BRDF’s for sample no. 11 from the database (rough plas-
ter) for viewing and incident directions in the plane of incidence.
(Along the horizontal axis the viewing direction, parameter is the
direction of incidence.)

tion, shadowing and the attitude effect), one may in-
fer that the pattern identified above (rather roughly of
course) will predict the qualitative behavior. (A more
precise description would involve a number of parame-
ters characterizing the nature of the relief and the exact
surface properties.) This turns out to be the case, in
thecuret database (Columbia and Utrecht universi-
tieshttp://www.cs.columbia.edu/CAVE/
curet/ , see Danaet al. 1996 and 1997) most sur-
faces in this general category seem to fit the pattern, at
least qualitatively. As an example we pick sample #11
(“rough plaster”). We limit the discussion to the plane
of incidence. Co–elevations available in the data base
are±11.25◦, ±33.75◦, ±56.25◦ and±78.75◦. Since
the camera and the source could not be on the same
direction some combinations are not available though.
In total we have 28 combinations.

The BRDF (figure 15) is probably most insensitive
with respect to the precise parameters since it is merely
an overall measure and indeed is seen to fit the pat-
tern quite well: Apparently the surface is not unlike a
somewhat greyish surface pitted with shallow spheri-
cal concavities. The texture images (figure 16) show
most of the generic effects though perhaps the effects
of interreflection are not evident due to the low albedo
and shallowness of the concavities. The texture images
indeed change dramatically with both the source and
the viewing geometry. In the histograms (figure 17)
we notice the expected modes and their expected shifts
with changes of directions, though it is hard to evalu-
ate the shape and strength of the modes precisely. At
least the qualitative pattern is the expected one for a
surface covered with shallow pits. The major excep-
tion (though it is a small effect) is athird mode at the

Fig. 16. Textures for sample no. 11 from the database (rough plas-
ter) for viewing and incident directions in the plane of incidence.
The layout is the same as in the next figure (figure 17).

high radiances. This mode is apparently due to surface
features that stick out and catch light where the ideal
pitted surface would be dark, so much can be gleaned
from the texture images.

5. Conclusion

The problem of finding the BRDF for a rough surface is
much simplified when the various global geometrical
and radiometrical effects are confined to finite regions.
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Fig. 17. Histograms for sample no. 11 from the database (rough
plaster) for viewing and incident directions in the plane of incidence.
The angles of incidence are indicated over the top row, the viewing
angles at the left of the first column.

This limits the viable models to “pitted surfaces”,i.e.,
distributions of concavities in the plane. The global
effects are then confined to the concavities and there can
be no “cross talk” between remote parts of the surface.
Examples are the V–groove surface (the Oren–Nayar
model) and the model of spherical pits investigated in
this paper.

The analysis is much simplified when both the vi-
gnetting and the interreflection problems are tractable.
The vignetting problem involves global geometry. It is
especially simple for the V–grooves and proves to be
reasonably simple for the case of spherical concavities.
The interreflection problem involves the solution of a

Fredholm integral equation. The kernel is the mutual
étendue for any two infinitesimal surface elements of
the cavity. Here the spherical pit model is singularly
trivial because the kernel is a constant. Thus the inte-
gral equation can be reduced to an algebraic one.

The spherical concavities can be used to form a va-
riety of “thoroughly pitted surfaces”. The free param-
eters are:
— the albedo on the micro scale;
— the distribution of apertures;
— the distribution of diameters;
— the fraction of the surface area covered with pits.
The fraction of the surface area covered with pits may
vary from very little (cheese with a few holes) to al-
most unity (sliced bread, pumice stone). The distribu-
tion of apertures makes it possible to construct BRDF’s
that are linear combinations (weighed averages) of the
BRDF’s for pits of various diameter–depth ratios. The
distribution of diameters has no effect on the BRDF:
It affects only the texture. The albedo (on the micro
scale) of course affects the overall albedo (scaling of
the BRDF), but it also affects theshapeof the BRDF
because it affects the influence of the interreflections.
These degrees of freedom make it possible to represent
a wide class of rough surfaces. It may be expected that
the BRDF may be well represented, the histogram of
radiance values at least semi– quantitatively well, and
the texture to some extent, mainly in a qualitative sense
(because most actual surfaces will fail to betruly pitted
surfaces in the ideal sense). (Stavridiet al1997.)

Notice that the pitted surface model can be adapted
to represent a large class of textures since there is com-
plete freedom in the statistical distribution of orifice
diameters and apertures and also in the geometrical
configuration in which the pits are placed.

The advantage of the present model is that it yields
exactresults for a type of surface that is both reason-
able and geometrically possible (the V–grooves model
fails on this issue). Thus it is especially useful from a
conceptual point of view. The fact that it also yields
histograms and texture maps makes it especially attrac-
tive. From a pragmatic point of view one often wants
a simple expression for the BRDF of rough surfaces
with some natural degrees of freedom. Here both the
present model and the V–grooves model work OK. In
many cases it will be preferable to use (analytically
much simpler and faster to compute) developments of
these expressions in terms of a truncated series of scat-
tering modes (Koenderinket al 1996). The fact that
such expressions have been obtained from exact mod-
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els gives them some additional credibility, but that is
not the main point.
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