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Abstract

In this report, we provide the derivations of the speckle flow
model and additional results of ego-motion estimation using
SpeDo.

1 Camera Coordinate System

We define the camera coordinate system (CCS) as shown in
Fig. 1. The origin is at the lens center and the direction of z
axis is towards the image sensor plane. Let the 3D location of
a scene point F be given by the vector (xF , yF , zF ). Suppose
F is imaged at a pixel location (uF , vF ) on the sensor plane.
Then, (xF , yF , zF ) and (uF , vF ) are related as:
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where s is an arbitrary scale factor, and A is the camera’s 3×3
intrinsic matrix:
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a is the distance between the image sensor and the lens, (cu, cv)
are the coordinates of the principal point on the image plane,
and p is the pixel size of image sensor.
The homogeneous coordinates (x̂F , ŷF , 1) = (xF

zF
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, 1) are

related to the pixel location (uF , vF ) as:⎛
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2 Rotation Matrices For Small Rotations

In this section, we will derive the expression for the rotation
matrix that is used to express the change in coordinates of 3D
points due to rotation of the coordinate system. Consider a
point with 3D coordinates P = (Px, Py, Pz)

T
in space. Sup-

pose the coordinate system rotates so that the rotation is given
by the vector θ = (θx, θy, θz)

T
, where the amount (angle) of

rotation is equal to the magnitude |θ|, and the axis of rotation
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Figure 1: Camera Coordinate System.

is the unit vector θ
|θ| . If the amount of rotation |θ| is small,

the coordinates of P after the rotation are given by:

Prot = P + q(θ)P , (4)

where the rotation matrix q(θ) is given by:

q(θ) =

⎛
⎝ 0 −θz +θy

+θz 0 −θx
−θy +θx 0

⎞
⎠ . (5)

Note that the matrix q(θ) has the same form as a cross-
product matrix. Hence, the product q(θ)P can also be written
as a cross-product: q(θ)P = θ×P . We can replace the order
of the operators in a cross-product, and write this expression
as:

q(θ)P = θ × P = −P × θ = q(−P )θ. (6)

This is an important property, and will be used in
further derivations.

3 Coherent Light After Reflection

In this section, we will derive the Eref (S), which is the electric
field of the coherent light immediately after reflection from
point S on the surface.
Consider a surface illuminated by a coherent light source

(e.g., laser), as shown in Fig. 2. Let the location of the point
light source be L and the wavelength of the emitted light be
λ. Let the electric field of the light emitted by the source1 at
a given time instant be given by the complex number E (L),
where |E (L) | is the amplitude (square root of the source’s in-
tensity) and arg (E (L)) is the initial phase at the light source.

1For ease of exposition, we assume an isotropic light source.
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Figure 2: The Electric Field After Reflection: The point
light source at location L emits coherent light and the object
surface refrects the light. The reflected light at location S can
be calculated from the distance between L and S, and the
reflectance value α(S).

As light travels from the source to the surface, the electric
field’s amplitude decreases (due to inverse square intensity fall-
off from a point source), and the phase varies according to the
travel distance. The electric field of the light incident at a
point S on the surface (at the same time instant) is related to
the emitted light field E (L) as:

Einc (S) =
E (L)

Γ (L,S)
e(

2πi
λ Γ(L,S)) , (7)

where Γ (L,S) is the optical path length between L and S.
The electric field of the light immediately after reflection from
point S is given by:

Eref (S) = α (S)Einc (S) = α (S)
E (L)

Γ (L,S)
e(

2πi
λ Γ(L,S)) , (8)

where α (S) is the surface reflectance term at point S. It en-
capsulates the foreshortening effect and the BRDF of S.

4 Speckle Flow Due To Camera Motion

In this section, we will derive the speckle flow (motion of
speckle in captured images) due to camera motion given by
the translation and rotation vectors tC and θC . Let the co-
ordinates (in camera coordinate system) of a point F on cam-
era focus plane before camera motion be given by the vector
F = (xF , yF , zF )

T . Following Result 2 in the paper, since F
can be treated as a fixed point in space, its coordinates in the
CCS after camera motion are given by:

F ′ = F − tC + q (−θC)F , (9)

By using Eq. 6, we change the order of operators on the right
hand side of the above equation, and get:

F ′ = F − tC + q (F )θC . (10)

Next, let the vector ΔF = F ′ − F = (ΔxF , ΔyF , ΔzF )
T

denote the motion of point F in CCS due to camera motion:

ΔF = −tC + q (F )θC . (11)

Computing image locations before and after motion.
Let F be imaged at a pixel location (u, v) on the sensor plane

before camera motion. By simplifying Eq. 1, we can obtain the
relationship between (xF , yF , zF ) and (u, v) as:(

u
v

)
=

−a

p

1

zF

(
xF

yF

)
+

(
cu
cv

)
(12)

Similarly, after camera motion, let F ′ be imaged at pixel
location (u+Δu, v +Δv) which is given by:(
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Because the motion is sufficiently small such that zF � ΔzF ,

we use the following Taylor approximation:

1

zF +ΔzF
≈ 1

zF

(
1− ΔzF

zF

)
. (14)

From Eq. 12, 13 and 14, the focal speckle motion ΔF and
the speckle flow (Δu,Δv) are related as:(
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Next, we make the approximation that the term ΔxFΔzF ≈
0, because the camera motion is sufficiently small. Then, the
above can be written as:
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Then, by substituting Eq. 11 into Eq. 15, we get:
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Note that zF = b, because the point F lies on the camera
focus plane. When focal length is sufficiently long, we use
the paraxial approximation, i.e., |xF |, |yF | � |zF |. Therefore,

|x̂F |, |ŷF | � 1, and x̂2
F ≈ ŷ2F ≈ x̂F ŷF ≈ 0. Then we get the

camera speckle flow model:(
Δu
Δv

)
≈
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)
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(17)

5 Speckle Flow Due To Source Motion

In this section, we derive the speckle flow due to light source
motion. Following the notation from the main paper, the elec-
tric field at camera pixels I and I′ before and after light source
movement, respectively, can be expressed as:

E (I) = c

∫∫
Ω

α (Sδ) e
2πi
λ Γ(L,Sδ,F )dSδ, (18)
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Figure 3: Movement Of Speckle Flow Due To Light
Source Motion: The small light source movement from L
to L′ creates speckle flow.
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Figure 4: Estimated Error Vs. Scene Depth.

E′ (I ′) = c′
∫∫

Ω′
α (Sδ) e

2πi
λ Γ(L′,Sδ,F

′)dSδ, (19)

where S is the surface point on the line joining camera center
and original focus point F , and Sδ is a point in the neigh-
borhood of S defined by the blur kernel Ω. F ′ is a point
on the camera focus plane that is conjugate to pixel I′ after
light source motion. This is illustrated in Figure 3. Note that,

c ≈ c′ ≈ ν E(L)
Γ(L,S) . This is because the distance between source

and surface Γ(L, S) is assumed to be significantly large, and
approximately constant over the surface points.
If the optical path lengths Γ (L,Sδ,F ) and Γ

(
L′,Sδ,F

′)
satisfy the following condition:

ΔΓ (L,Sδ,F ) = Γ (L′,Sδ,F
′)− Γ (L,Sδ,F ) = Constant

(20)
for all points Sδ, then the observed speckle brightness before
and will be the same, i.e., |E (I) |2 = |E′ (I ′) |2.

Next, note that Γ (L,Sδ,F ) = |SδL| + |SδF |, and |SδL|
can be approximated using Taylor expansion as:

|SδL| = |SL|
(
1− 2

SL · δ
|SL|2 +

�
�
�

|δ|2
|SL|2

) 1
2

,

≈ |SL| − sl · δ, (21)

where sl is the unit vector along SL such that sl = SL
|SL| . The

other path lengths |SδF |, |SδL
′|, |SδF

′| can be given in the
same way. Therefore, ΔΓ (L,Sδ,F ) can be expressed as:

ΔΓ (L,Sδ,F ) = Δ |SF |+Δ |SL| − (Δsf +Δsl) · δ. (22)

In order to satisfy Eq. 20 at all point Sδ, the following equation
must hold:

∂

∂δ
ΔD (L,Sδ,F ) = Δsf +Δsl = 0 (23)

Let the vector ΔF = F ′ − F = (ΔxF , ΔyF , ΔzF )
T de-

note the motion of point F in CCS due to light source mo-
tion. Then, from Eq. 23, the light source movement tL =
(ΔxL, ΔyL, ΔzL)

T and the vector ΔF are related as:(
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We write Eq. 24 into matrix form as:
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)
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⎛
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⎞
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⎞
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Multiplying the pseudo-inverse matrix of PSF, the speckle flow
in sensor plane is calculated as:(

Δu
Δv

)
= −−a

bp
P†

SFPSLtL. (28)

Under the paraxial approximation and assuming laser po-
sition is closer to the camera, x2

sf ≈ y2sf ≈ xsfysf ≈ 0,

xsfzsf ≈ xsf . In addition, 1
|SF | ≈ 1

b−d and 1
|SL| ≈ 1

−d . Then,

sl can be approximated as:
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SL

|SL| ≈ −1

d
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(
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ŷF − 1
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)
. (29)

Note that, S
d = F

b = (x̂F , ŷF , 1)
T , because S, F and the lens

center are on the same line. Then, the PSF
† will be,

P†
SF ≈ |SF |

(
1 0 0
0 1 0

)
. (30)

From Eq. 27 to 30, the speckle flow model is obtained as:(
Δu
Δv

)
=

−a

p

(
1

b
− 1

d

)( −1 0 x̂F − xL

d
0 −1 ŷF − yL

d

)
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6 Quasi-Invariance To Scene Depth

We conducted precise measurements of ego-motion estimation
errors for different scene depth. we performed ego-motion es-
timation with the scene (a single fronto-parallel plane) placed
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Figure 5: More Ego-Motion Estimation Results Using Spedo For Complex Trajectories.

at different scene depths between 1.5 meters and 0.125 meters,
and measured the mean absolute error (MAE) for each scene
depth.
Fig. 4 shows the example error plots for six different trajec-

tories (translations and rotations along three axes). For each
trajectory, the corresponding sub-figure shows six error plots,
one each for one degree of motion (e.g. blue plots means MAE
of x-translation estimation). When scene depth is larger than
0.5 meters, the error is less than 0.05 mm and 0.05◦. However,
errors are larger if the depth is smaller than 0.5 meters. The
plots shows that z translation tz and z-rotation θz have larger
errors, as discussed in the main paper.

7 More Ego-Motion Estimation Results

SpeDo system can measure ego-motion on complex scenes with
or without textures with a range of depths. Fig. 5 (b) shows
ego-motion estimation results using SpeDo on the scene shown
in Fig. 5 (a) for several trajectories, including motion along
roman numerals 2 and 3. For more and video results,
please see the supplementary video.
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