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Abstract 

A fast and general method to extract “anomalies ’’ in an 
arbitrary iniage is proposed. The basic idea is to compute 
a probability density f o r  sub-regions in an image, condi- 
tioned upon the areas surrounding the sub-regions. Lin- 
ear estimation and Independent Component Analysis ( ICA) 
are combined to obtain the probability estimates. Pseudo 
non-parametric correlation is used to group sets of simi- 
lar surrounding patterns, from which a probability f o r  the 
occurrence of a given sub-region is derived. A carefully de- 
signed multi-dimensional histogram, based on compressed 
vector representations, enables eficient and high-resolution 
extraction of anonlalies from the image. Our current (un- 
optimized) implementation performs anomaly extraction in 
about 30 seconds f o r  a 640x480 image using a 700 M H z  
PC. Experimental results are included that demonstrate the 
perforniance of the proposed method. 

1 What is an Image “Anomaly”? 

Humans have a knack for quickly finding portions of a 
scene that are in some sense anomalous. This is true even 
when the scene is complex and includes multiple patterns 
or textures. Consider the examples shown in Figure 1. The 
coffee stain on the table cloth and the squirrel perched in the 
hole in the brick wall very quickly draw our attention. We 
refer to such “unusual” or “unexpected” portions of an im- 
age as anomalies. One might consider segmenting the im- 
age and analyzing each segmented portion to infer anoma- 
lies. However, automatic segmentation of complex scenes 
remains an open problem and cannot be relied upon as a 
general solution to anomaly extraction. In short, the prob- 
lem is a hard one from the perspective of computer vision. 

This paper proposes a fast and general technique for ex- 
tracting anomalies in images. It should be mentioned that 
anomaly detection can be approached in two ways. The 
first is contextual, where an anomaly is an unexpected event, 
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(a) (b) 
Figure 1. Some examples of image anomalies (within cir- 
cles). (a) A coffee stain on a tablecloth. (b) A squirrel in a 
hole in a brick wall. 

given the high-level context of the scene. This is very hard 
perceptual problem and is not the goal of our work. The 
second approach, which is the one we take, operates at a 
lower level by looking for unexpected local patterns in an 
image. This too is a challenging problem. For instance, in 
our tablecloth example in Figure 1, one sees different tex- 
tures at different scales of resolution. Some of the patches 
(texels) appear frequently while others do not. Therefore, 
we cannot define anomalies as merely image patterns that 
occur rarely and hence have low probability. Instead, we 
characterize “anomalies” using conditional probability den- 
sities. A region that is “normal” can be expected from its 
neighbohood, or is highly probable given its surrounding. 
In contrast, an area that is “abnormal” has little in common 
with its neighbohood, and its likelihood, conditioned on its 
neighborhood, should be relatively small. 

Related work on texture synthesis and recognition has 
used joint probability distributions of local image frequency 
measures. The specific representations used include steer- 
able pyramids [71, textons [ 101, and multi-resolution his- 
tograms [l]. These representations, however, are not appro- 
priate for anomaly detection. This is because the anoma- 
lies themselves serve to corrupt the representations used to 
recognize them. Another drawback is that these representa- 
tions cannot adequately capture the joint probability distri- 
bution of an image region based on a neighborhood that has 
high frequencies (see 151 for supporting arguments). 
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Manduchi and Portilla [ I  11 proposed a novel representa- 
tion based on Independent Component Analysis (ICA) for 
texture synthesis and clustering. The local texture is repre- 
sented as a set of filter responses, each filter being a linear 
combination of steerable filters. ICA is used to ensure that 
the filters are statistically as independent as possible. This 
representation makes the calculation of region probabilities 
simple, but it shares the problems inherent to all frequency- 
based joint distributions; the lower frequencies may be in- 
fluenced by portions of the image we seek to extract. 

Finally, Efros and Leung [51 proposed a texture synthesis 
method that computes the probability of a pixel value based 
on its surrounding. Their algorithm calculates a conditional 
probability to synthesize new pixels. This is done by finding 
areas in a sample texture that are similar to the area around 
the pixel to be synthesized. This approach works well but 
its computational cost is great, making it too slow for many 
real-world applications. Moreover, it is not suitable for our 
task as anomalies generally include more than a single pixel 
and have arbitrary shapes. 

Here, we propose a method that detects anomalies in an 
arbitrary image. We calculate the probability of a region’s 
occurrence, conditioned on its neighborhood. Several tech- 
niques and representations are used make the algorithm ef- 
ficient and robust. These include ICA for representing lo- 
cal regions, non-parametric correlation to suppress the ef- 
fects of anomalies on our representations, the Discrete Co- 
sine transform (DCT) and the Karhunen-Loeve transform 
(KLT) to represent neighborhoods, and multi-dimensional 
histograms for classification. The current implementation 
of our algorithm extracts anomalies from a 640x480 image 
in about 30 seconds using a 700 MHz PC. Several exper- 
imental results are included that show the performance of 
our method. 

Anomaly detection is a problem with wide implications. 
In an inspection task, it provides a powerful means to “flag” 
visual defects without prior knowledge. This information is 
valuable for process control. In the context of image edit- 
ing, a user can input an image or a part of it, and have the 
algorithm find anomalies. The anomalies can then be re- 
moved from the image and their areas filled using texture 
synthesis based on data available in the rest of the image. 

’ 

2 Representation of Patterns 

Consider an arbitrary image I consisting of various pat- 
terns. Each small region (sub-region) in the image bears a 
relationship to its immediate neighborhood. We begin by 
defining what we mean by sub-regions and their neighbor- 
hoods (see Figure 2). A vector composed of the brightness 
values within a sub-region centered at a point x is denoted 
by the “evaluation vector” e(.) = (el(z), e2(z) ... eN(z)) .  
The vector representation of the surrounding brightness Val- 

Figure 2. For a point 5 ,  the subregion and its neighbor- 
hood are represented by the evaluation vector e(.) and the 
conditional vector w ( z ) ,  respectively. 

ues is called the “conditional vector” and is denoted by 
U(.) = (w1(x),wg(z) ... w ~ ( 2 ) ) .  The conditional proba- 
bility of e(z)is denoted by P(e(z)Jw(z) ) .  This probability 
can be calculated from the following set: 

E ( z )  = {e(z’) : r (w(z ’ ) ,w( z ) )  < A w n d  - z > E }  (1) 

where, r (w(z ’ ) ,w( z ) )  is a measure of similarity between 
neighborhood patterns w(z ’ )  and w(z) ,  and Aw is a similar- 
ity threshold. The constraint that z’-z must be larger than L 

helps us prevent anomalies from influencing the calculation 
of the probability distribution too much. We will ideally be 
well outside the boundaries of any potential anomaly when 
making our comparisons. 

2.1 Computing the Conditional Probability 

There are a few important issues that face us when eval- 
uating P(e(x)lw(z)):  

Low density of the feature space: This problem is due 
to the fact that the feature space spanned by ( e T ,  wT)T 
is huge relative to the number of evaluation and condi- 
tional vectors available in a given image. 

Inaccuracies in the similarity between conditional vec- 
tors: This problem stems from the fact that, because 
the conditional vectors are large, they are easily con- 
taminated by portions of anomalies. Anomalies of- 
ten contain points that are distant in their values from 
points in  non-anomalous regions. This easily ham- 
pers vector comparison measures such as the sum-of- 
squared-distances (SSD). 

Large numbers of comparisons: Note that, to compute 
the joint distribution, we need to find all conditional 
vectors that resemble w,  for each point z in the im- 
age. Further, the larger the evaluation vector, the larger 
the conditional vector, and hence greater the resulting 
computational cost. 

To ameliorate these difficulties, we explore new rep- 
resentations for both evaluation and conditional vectors. 
Problems 1 and 2 will be addressed in section 2.2. Prob- 
lem 3 will be addressed in section 2.3. 
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2.2 Representing Evaluation Vectors 
Accurate calculation of the probability density 

P ( e ( z ) l w ( z ) )  over all ( eT ,  wTlT is usually impossi- 
ble because the number of sample points we have available 
to us is small compared to dimensionality of the feature 
space. To alleviate this problem, we use Independent 
Component Analysis (ICA) and linear estimation. 

In general, ICA calculates a set of bases that are as mu- 
tually independent as possible. Consider a random set of 
variables {yl,  y2 ...yn}. If these variables are mutually in- 
dependent, their joint probability density can be factorized 

denotes the probability density of yz .  Here, more accurate 
estimation of P ( y z )  is usually possible because the feature 
space spanned by yz is one-dimensional. The reduction in 
dimensionality increases the density of sample points and 
makes the estimation of the joint probability distribution 
faster and more accurate. 

Using ICA, we seek to transform each evaluation vector 
e into the vector y = (y1, y2 . . . y ~ ) ,  such that the elements 
of y are as mutually independent as possible. Here, K is 
the number of terms that result from ICA decomposition. 
Then, the conditional probability we seek to calculate can 
be written as: 

If we could transform y such that it  is independent of w ,  the 
above expression can be greatly simplified; the conditional 
probability P(y, lw)  can be calculated from just the prob- 
ability function P( yz). Unfortunately, complete indepen- 
dence between each y and w cannot be expected. However, 
the degree of independence can be increased significantly if 
we decorrelate y and w to reduce the sensitivity of P ( y z ( w )  
to changes in w. 

To this end, before transforming e using ICA, the corre- 
lated component between e and w is subtracted from e.  This 
decorrelation of the evaluation sub-region e from the sur- 
rounding pattern w helps us find independent components 
for the sub-region that are not greatly influenced by its sur- 
roundings. The desired decorrelation is achieved by com- 
puting the estimation matrix A that minimizes: 

(3) 

If e consists of a large number of pixels (and it usually 
does), the estimation of A may be expensive. One can ob- 
tain an approximate solution by using just a single element 
of e, namely e,(z), that corresponds to the center pixel c of 
the evaluation sub-region. Thus, expression (3) becomes 

(4) 

Figure 3. Thc center pixel 01 each subregion IS decorre- 
lated from the surrounding region. The decorrelated pixel 
value is represented as the residue of the linear estimation 
given by expression (5). The residues of other (off-center) 
pixels within a sub-region are interpolated from the residues 
of the center pixels. 

Figure 4. The ICA components for the decorrelated (sub- 
region from surrounding region) image shown in Figure 3 .  
The images (a) - (d) are arranged in descending order of 
negentropy. Note that the strong edges are visible in these 
components. This indicates that the sub-regions are not en- 
tirely independent of their surrounding regions even after 
the decorrelation procedure. 

where, a, is the row vector of A that corresponds to the cen- 
ter pixel of e .  Then, a, is obtained by solving the following 
linear expression: 

-_ 
a ,=wwT (5 ) 

Figure 3 shows the residue e,(z’) - aTw(z ’ )  of the above 
estimation for the textured tablecloth shown in Fig. 1 (a). 

Note that we have only computed the estimation residues 
at the center pixel of each sub-region. We approximate the 
residue at other pixels in the subregion by using the Lanczos 
filter that is similar in its properties to the Sinc filter: 

exf(z) - a z , w ( z )  

= Sinc(g)Sinc(%)(e , (z ’ )  - aTw(z’))  (6 )  

where, N is the size of the evaluation sub-region. 
Next, we use ICA [41 to derive a set of components for 

e, each of which is ideally independent. We applied the 
FastICA algorithm [81 to the decorrelated vector e - A T w  
approximated by equation (6). FastICA yields a set of com- 
ponents (filters) {fi}. We can represent this filter set as a 
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matrix F = (fi, f ~ . . . f ~ ) ~ .  The ICA dimension K is less 
than the number of pixels in the sub-region because compo- 
nents which represent low energy terms of the decomposi- 
tion are eliminated. The filter responses for any sub-region 
in our image, y = FT(e - A T w ) ,  serves as our chosen 
representation for the region’. FastICA computes the basis 
iteratively to find the bases. Its convergence, however, is 
usually fast. 
2.3 Representing Conditional Vectors 

Unfortunately, an ICA decomposed evaluation vector 
will generally not be completely independent of its sur- 
rounding pattern, even after the decorrelation process (see 
Figure 3). Therefore, the joint distribution of 
is still required in order to evaluate equation (2). This 
calculation demands that we find every vector similar to 
( ~ ~ ( z ) ~ ,  ~ ( z ) ~ ) ~  in the image. And, as we discussed, we 
must be very careful not to allow portions of an “anomaly” 
to influence any comparisons between vectors that we may 
make. We take the idea of nonparametric correlation to re- 
duce the influence of anomalies. This step is described in 
section 2.3.1. 

As noted before, another problem faced in calculating 
P(e (x ) lu ( z ) )  is that the size of w can be very large. If we 
assume the size of the evaluation vector to be 32 x 32, the 
size of ~ ( x )  may be more than 150 x 150. The identification 
of all the conditional vectors that resemble w ( z )  cannot be 
done in reasonable time if w is so large. To make this pro- 
cess efficient we compress the conditional vector w. This 
process is outlined in section 2.3.2. 
2.3.1 Similarity Using Non-Parametric Correlation 

A good way to suppress the influence of anomalies is to 
use a non-parametric correlation technique, such as Spear- 
man’s rank-order correlation [91. However, applying Spear- 
man’s method to our problem proves difficult, as it requires 
us to assign ranks to every element of the conditional vec- 
tor under consideration, which is computationally intensive. 
Therefore, instead of assigning ranks, we histogram equal- 
ize the whole image. The equalized pixel value in a vector 
is then taken as the rank of that pixel in our computations. 
The advantage of histogram equalization for reduction of 
anomaly influence is shown in Fig. 5.  

We denote the vector representation of the condi- 
tional vector in the histogram equalized image as w’ = 
( ~ & , w ; . . . w h ) ~ ,  where, the w: correspond to the ranks of 
the corresponding pixel values in the image. The measure 
based on pseudo non-parametric correlation that is used to 

’ FatICA yields a set of components such that the coefficients y are 
distributed with minimal gaussianity. The lack of gaussianity is measured 
by negentropy of y,, J(y,) .  Direct calculation of negentropy is difficult, 
so an approximation is frequently used. We use one of the classical ap- 
proximations, which makes use of higher-order moments. This enables 
high-sped calculation. 

(a) Original image (b) Equalized image 

Figure 5. The original image (a) is histogram equalized 
to get image (b). After equalization, the bright flower has 
less influence on the similarity measure used to compare 
surrounding pattems w. The number of bins used for equal- 
ization is determined such that pixel values of the equalized 
image have the same variances as in original image. 

find the similarity between conditional vectors is defined as: 

This measure draws from both parametric linear correlation 
and non-parametric correlation. 

2.3.2 

A good way to compactly represent our conditional vectors 
is by using the Karhunen-Loeve transform (KLT). However, 
the problem with IUT is that it  is computationally costly 
because of the dimensionality of w.’Most of the cost is in- 
volved in the computation of the covariance matrix needed 
in KLT. For instance, the covariance matrix size would be 
about 22K x 22K for a conditional vector size of 150x 150. 

As noted by Hamidi and Pearl [61, KLT coefficients can 
be approximated by DCT coefficients for signals that can 
be modeled by one-dimensional Markov Random Fields. 
Hence, we use a two-step compression process; DCT fol- 
lowed by KLT. That is, w’(z) is transposed into DCT space 
to reduce its redundancy and then the KLT is applied. No- 
tice that w ’ ( ~ )  has to be calculated for every z and it has a 
hole at its center which corresponds to the evaluation sub- 
region e. A large DCT block does not greatly improve the 
compression rate, therefore, ~ ’ ( z )  is divided into several 
small blocks (8x8 or 16x 16, in our experiments) so as to ef- 
ficiently calculate DCT the coefficients. The use of blocks 
is illustrated in Fig. 6. 

The farther blocks from z are more influenced by the 
topological variations in the rest of image than closer 
blocks. This influence is particularly strong in the case of 
high frequencies. Therefore, we need to suppress the con- 
tribution of high-frequency components for blocks that are 
farther away from Z. This suppression is proportional to the 

Efficient Compression of Conditional Vectors 
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distance from x. We also note that the blocks that are farther 
away from x are less relevant than block close to the eval- 
uation vector. To account for these effects, we introduce a 
diagonal matrix G(d) whose elements are weights associ- 
ated with individual blocks, each weight being a function 
of the distance d of the block from x. One last thing we 
need to account for is the normalization that is contained in 
equation(7). More formally, let b, be the DCT represen- 
tation of the ith block of w‘, and c be our weighted DCT 
representation of w’. Then: 

’ (8) 
(brG(d0); bTG(d1). . .bzG(dm))T 
Ilb;fG(do), bTG ( d i ) .  . .bT,G(&) I1 

c =  

Figure 6. The surrounding region is divided into small 
blocks and DCT coefficients are computed for each block. 
A block has greater significance to the evaluation sub- 
region when i t  closer to it. 

The components of c that do not have much information 
( low energy) arc truncated. Only the fundamental frequency 
coctlicicntj arc calculated Juring DCT calculation at ev- 
ery r The I h \ t  calculation 01 DCT and the truncation of 
frequency components all serve to reduce computations2. (a) First principal component. (b) Second principal component. 
Block\ thiit arc di4tant from .I mahc a rclativdy small con- 
tribution to c ,  and therclorc do not require the u m c  number 
of DCT component4 a\ clowr bloch4 The w e  ol each b, 
depcndz on its distance from the evaluation vcctor Next, 
the KLT barn for r L . ~ ’ ( ~ j  arc‘ crtlculatcd from a covari:incc 

\ I  

matrix ccT. Only a small number of KL bases are needed 
to represent ~ ’ ( I c ) .  The exact number of bases is determined 
by the threshold A w  in equation ( I ) .  The final set of bases 
together form a low-dimensional subspace that is often re- 
ferred to as the “eigenspace.” All conditional vectors are 
represented as points in this space. While we compute the 
KLT representation for U’(.), a similar representation for 
conditional vectors without histogram equalization and am- 
plitude normalization is also computed. This representation 

(c) Third principal component. (d) Fourth principal component. 

Figure 7. The first four principle components (KLT 
bases) computed for the textured tablecloth in Fig. l(a). 
The DC component in these bases is small because the DCT 
coefficients are normalized by their amplitudes. 

P(e(z)lw(x)) 
= P(Yl (x)1e(5))P(Y2(x)(e(x))...P(YN(IC)(e(x)) (9) 

is used for the decorrelation given by equation (5). 
One might wonder why we chose not to use ICA to rep- 

resent the conditional vectors. It turns out that the condi- 
tional vectors tend to be a lot more complex in their vari- 
ability than the evaluation vectors and hence are not suited 
to the ICA representation. 

For our probability calculation, a set of vectors d (E(x)) = 
{C(x’)} must be found where C(x’) is similar to C(z), based 
on the definition of similarity in equation (7), and such that 
x’ lies at a minimum distance of E from x. Since such a set 
must be computed for each image point x, this task appears 
to be computationally very expensive despite the fact that 

3 Computing the Conditional Probability 

The likelihood of the evaluation sub-region at IC is con- 
ditioned on the pattern surrounding it. Our representations 
express this conditional probability as: 

’This DCT computation for an image is almost proportional to 
B210gB (where. B is the block size), even when the fast two-dimensional 
algorithm of Chan [21 is used. Therefore, it is important not to make the 
blocks too large. Our anomaly detection algorithm requires DCT coeffi- 
cients at every point, therefore we need to use an efficient DCT approach. 
We employed the algorithm presented by Christopoulos et al. U31 to avoid 
calculating unnecessary high-frequency components. We also sub-sample 
the image based on Shanon’s sampling theorem before the calculation of 
DCT coefficients. 

our evaluation and condition vectors have been compactly 
represented. One may use a coarse-to-fine heuristic search 
to form the set of similar vectors. However, the normal- 
ization in equation (7) ensures that our conditional vectors 
include high frequencies. As a result, our feature clusters 
are not smooth enough for a coarse-to-fine strategy to work 
well. 

3.1 Multi-Dimensional Histogram Tree 
We have developed a multi-dimensional histogram tree 

that can very efficiently find the set of vectors (for each im- 
age point) needed to compute the conditional probability in 
expression (9). Let the dimensionality of E be k and the 
number of histogram bins for each dimension be 1. Then, 
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Index Table 

0 
Figure 8. The conditional distribution of y for an arbitrary 
e is calculated from the data that reside in the hyper-cubic 
histogram bins, [e] andn, ([e]). 

the total number of bins of the histogram is 1 ‘. In gen- 
eral, it is not possible to calculate such a multi-dimensional 
histogram if IC is large; a small increase in k causes rapid 
growth of the number of bins. This problem can be alle- 
viated by using a larger bins. However, a large bin size 
causes another problem; the histogram has large density 
errors at the borders of its bins. A bin of the histogram 
holds the density of y calculated from a set of vectors 

indicates the effect of quantization. Yet, ;he density in a bin 
is different from that of a set of vectors C(E(x)) .  Low-pass 
filtering the calculated histogram can alleviate the problem. 
However, this is expensive in the case of a high-dimensional 
histogram of the type we are dealing with. 

We take advantage of the fact that the total amount of 
data (corresponding to the number of pixels in an image) 
is really small compared to the number of bins in the his- 
togram. The distribution of data is therefore very sparse3 
and hence all the data can be represented using a small part 
of the complete feature space. For this, we use a multi-way 
tree datastructure that allows us to reach every part of the 
multi-dimensional histogram using table references that are 
equal in number to the dimensions of the histogram. The 
density of yz(z) at any arbitrary point z is calculated from 
the set of C(n,([E(z)])) ,  where n,([e(lc)]) corresponds to 
the center of j t h  neighboring bin (see Fig. 8). 

The data structure used in the histogram tree is shown 
in figure (9). Each node shows a quantized vector element 
[&I, where i corresponds to the distance from the root of 
tree to the node. The node has an index table whose index 
corresponds to the quantized coefficient of the next com- 
ponent, [tZ+1], and each element of the table contains the 
index referring to node [C,,,]. A quantized vector is there- 
fore represented by a set of indices, all Of which are stored 
at the nodes of the tree. The mean of C and histogram of 
yL are stored at the leaves of the tree. A node does not have 
an index when i t  has only one bin attached to it; in this 

e q[E(.) l> = { ( [ h ( x ) ] ,  [ W ) ] . . . [ ~ A 4 ( 4 1 ) } >  where [&(x)l 

We are assuming here that the conditional vectors are not uniformly 
distributed in the high-dimensional feature space. 

Branch IS deleted 
if no following vector exists 

Probability Density for each lattice 
at every leaf of tree 

c 

froiii the distance between actual 

I) Probability of U:(.) 
conditioned on c(.z) 

Neighboring suh-image is eliminated from the disuihulion 

Figure 9. The conditional distribution of y is calculated 
using the proposed multi-dimensional histogram tree. The 
probability density P(yle(z ) )  is calculated from interpola- 
tion of densities in multiple bins of the tree. 

case the leaf can be reached without indexing. The bin cor- 
responding [e(x)] can be reached by tracing the nodes as 
many times as the dimension of the histogram. The bin size 
is determined by ALLI in equation ( I ) .  

3.2 Using the Tree to Find Anomalies 
The distribution of y is represented by a lattice whose 

sampling period is same as the bin size. The conditioned 
distribution of y is calculated by interpolation using a low- 
pass filter that cuts frequencies whose period is shorter than 
the bin size multiplied by two. The optimal low-pass filter 
is the Sinc function, however this filter is known to some- 
times produce ringing effects. We therefore apply the Lanc- 
zos filter that has similar characteristics as the Sinc func- 
tion but is more robust to the ringing problem. Since bins 
that are farther than the bin size from E(.)) have small con- 
tributions to conditioned distribution of y ( ~ ) ,  we use two 
times the bin size for the calculation of the distribution. As 
a result, the number of bins that must be considered is 2 K  
where K is the dimension of y .  Since our algorithm is tai- 
lored to the data, the number of relevant bins never grows 
to an unmanageable number. Given the small size of the 
data we are dealing with, our search technique is expected 
to be much faster than any general algorithm for searching 
through high-dimensional spaces [121. 

The distribution of y is calculated from the distribution 
in the neighboring hypercube bins using Lanczos filter as: 
/.(C(X), % ( P ( X ) l ) )  = n, Sinc ( E r  (.)-nt(liv ‘“’I)) Sinc (e7 (+;;I1S7 (s)l) 

where, L is the bin size. The distribution of yz for the 
point z is denoted by dZ(i.(z)), and is calculated using 
equation (10) as: 
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I Original Image I 
Divide into evaluation vectors 

and conditional vectors 

Evaluation vectors I Conditional vectors 
I 1 

Decorrelation with DCT 
surroundings 1 

I I 
ICA KLT 1 

Figure 10. Complete flow diagram for proposed the 
anomaly extraction algorithm. 

This distribution is used to compute the conditional proba- 
bility of an anomaly at the point 2 in the image. This pro- 
cess is repeated for all points in the image. 

3.3 Eliminating Effects of Anomalies on the Tree 
A very simple but effective method is used to minimize 

the effects of anomalies on the histogram tree. Note that 
the tree is constructed using all the information in the im- 
age and hence includes the contributions of anomalies as 
well. However, the 'effects of anomalies can be reduced 
during the final stage of evaluating sub-regions in the im- 
age. In the case of each sub-region, it is hypothesized that 
it may include an anomaly region. If this is the case, it is 
safe to assume that its immediate neighborhood is also cor- 
rupted by the same anomaly. Hence, the contributions of all 
the evaluation sub-regions that are in the immediate neigh- 
borhood of the present evaluation sub-region are subtracted 
from the tree. Then, the evaluation sub-region is classified 
using the tree. Once this is done, the subtracted contribu- 
tions are added back to the tree and the process is repeated 
for the next evaluation sub-region. This simple step adds 
significant robustness to the extraction algorithm. 

4 Experimental Results 

In our experiments, we use images that include various 
patterns as well as potential anomalies (as perceived by us). 
There are only a couple of parameters that the user needs 
to input while using the proposed algorithm. The first of 
these is the size of the evaluation sub-region. This size is 
set such that the sub-region size is comparable to the ex- 
pected size of the anomalies. The second is the bin size 
of the multi-dimensional histogram tree, which represents 
a distance threshold used to produce clusters of evaluation 

(a) Extracted coffee spot. (b) Extracted squirrel. 

Figure 11. Anomalies extracted by the algorithm for the 
images shown in Figure 1. The sub-region size for table- 
cloth image is 32x32 and for the brick wall image is 64x64. 

(a)  Original image. (h)  Extracted thurribtacks 

Figure 12. Despite the strong specular reflections in this 
bulletin board scene, the algorithm detects the thumbtacks 
as anomalies. The expected anomaly size used for this im- 
age was 32x32. 

.A' 

sub-regions that have similar surroundings. All other pa- 
rameters are kept constant or automatically calculated by 
the algorithm. The conditional sub-image (neighborhood) 
size is 5x5 times larger than the evaluation one in all our 
experiments. 

Figure. 11 (a) shows the extracted anomalies for the tex- 
tured tabletop in Fig. 1 (a). The extracted region is shown 
using bright pixels. Note that the hand-made tablecloth has 
warp and the right side of the image is darker than the cen- 
ter. The difference of brightness between the coffee spot 
and its surrounding is not much, however the coffee spot is 
extracted as an anomaly. Figure. 11 (b) shows the result for 
the brick wall in Fig. 1 (b). Again, the algorithm has ex- 
tracted the squirrel even though the brightness of the squir- 
rel is not very different from those of neighboring bricks. 
The effect of the normalization of the condition vectors is 
seen in Figure. 12. The scene is illuminated by a strong 
flash light and includes a grated curved surface and a couple 
of thumbtacks that are the expected anomalies. Despite the 
strong brightness variations over the scene, the thumbtacks 
are extracted. The low frequencies in the evaluation vectors 
and the condition vectors are strongly correlated and hence 
are eliminated after the decorrelation stage of the algorithm. 

The result in figure 13 demonstrates that the evaluation 
of a sub-region is closely related to its surrounding. The 
flowers in the image are similar in appearance, however, 
the single flower placed out of context (outside the flower 
bed) is successfully extracted. Note that only this flower is 
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(a)  Original image. (b) Extracted flower. 

Figure 13. The image in (a) includes several flowers that 
are similar in appearance. However, only the Rower that is 
outside the Rower bed is extracted as an anomaly (see (b)). 

extracted as an anomaly. 
Finally, Table. 1 shows the computational time required 

for each part of our algorithm. Note that on average the al- 
gorithm takes about 30 seconds to process a 640x480 image 
using a 700 MHz PC. It is worth mentioning that the current 
implementation of the algorithm is not optimized. 

5 Conclusion 

We have proposed a general method for extracting 
anomalies from an arbitrary image. By using the proba- 
bility density for sub-regions in an image conditioned upon 
their surrounding, the developed algorithm can recognize 
irregular parts of a complex image. The algorithm em- 
ploys linear estimation, Independent Component Analysis 
(ICA) and Karhunen Lokve Transform (IUT) for quick 
and compact representation of image data. A carefully de- 
signed multi-dimensional histogram tree enables efficient 
and high-resolution extraction of anomalies from the im- 
age. The proposed algorithm has potential uses in a variety 
of application domains, ranging from unsupervised visual 
inspection to interactive image editing. 
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